ПРОЕКТИРОВАНИЕ СОСТАВОВ ШТУКАТУРНЫХ РАСТВОРОВ С УЧЕТОМ ИХ СОВМЕСТНОЙ РАБОТЫ С ГАЗОБЕТОННОЙ КЛАДКОЙ

Парута В.А., к.т.н., доц., Саевский А.А., Семина Ю.А., Столяр Е.А., Устенко А.В.

Одесская государственная академия строительства и архитектуры, г. Одесса

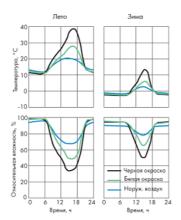
Оштукатуривание стен из автоклавного газобетона, с последующей отделкой красками или декоративной штукатуркой, является наиболее эффективным технико-экономическим решением, а потому одним из самых распространенных технологических операций. Однако, из-за того, что при проектировании состава и свойств штукатурки не учитывается совместность ее работы с газобетонным основанием, часто приходится наблюдать значительное трещинообразование в штукатурном покрытии и в контактной зоне с газобетонной кладкой. Это приводит к снижению долговечности ограждающей конструкции.

Для того чтобы избежать этого, необходимо, наряду с паропроницаемостью, учитывать соотношение прочности при сжатии, модуля упругости, деформаций (температурных, влажностных, карбонизационных) газобетонного основания и штукатурки, а также процессы, протекающие при нанесении штукатурного покрытия, его твердении и эксплуатации ограждающей конструкции.

Понимание механизма деструктивных процессов в системе «кладка - штукатурное покрытие» позволит разработать теоретические предпосылки улучшение работы системы, сформулировать требование к штукатурному покрытию. Механизм процессов, протекающий при нанесении штукатурного покрытия и эксплуатации здания, имеет следующую картину. После нанесения растворной смеси на кладку, из-за высокого капиллярного потенциала газобетона, происходит отсос влаги из твердеющего раствора, испарение ее под воздействием солнечных лучей и воздушных потоков. Это приводит к усадке раствора и образованию, в нем и в контактной зоне с газобетонным основанием, трещин.

Причиной трещин в штукатурном растворе являются напряжения (δ_x) возникающие из-за его усадки и разницы деформаций кладки и штукатурного покрытия ($\Delta\epsilon$):

$$\delta_x = \frac{4\varepsilon_x \cdot E}{1 - \mu} \tag{1}$$


где, Е и μ - значения модуля упругости и коэффициента Пуассона штукатурного покрытия; $\Delta \epsilon_x$ - разность деформаций покрытия и основы.

При эксплуатации, происходит деформация стеновой конструкции. Деформация кладки происходит под воздействием постоянных и временных нагрузок, усадки кладочного раствора, карбонизации газобетона, увлажнения парообразной влагой мигрирующей из помещения и конденсирующейся внутри конструкции, а также температуры. Деформации штукатурного покрытия происходят из-за увлажнения атмосферной влагой, воздействия плюсовых и минусовых температур, деформации кладки (Рис.1,2).

$$\Delta L_p = \alpha \Delta T_p L \ \Delta L_c = \alpha \Delta T_c L \tag{2}$$

$$\Delta L_{TE} = (\alpha \Delta T L F_m) + (\Delta L_a L)$$
(3)

где: ΔL_p , ΔL_c — деформации растяжения и сжатия; α — коэффициент температурного удлинения материала; ΔT — разность температур; L — длина элемента; $\Delta L_{\text{тв}}$ -тепло-влажностные деформации; F_m - показатель материальных дефектов; ΔL_q — влажностные деформации;

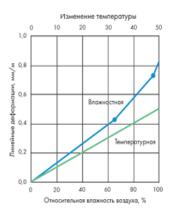


Рисунок 1. Графики изменения: температур и влажности штукатурки, температурных и влажностных деформаций[3]

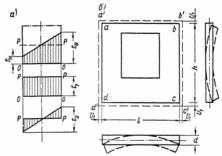
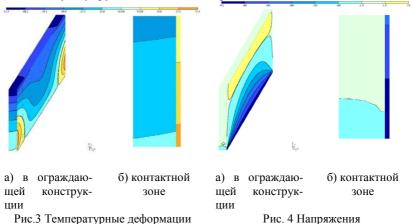



Рис.2 Температурные деформации стеновой конструкции а – распределение температур в ограждающей конструкции; б – температурные деформации [1] с.153

Из-за разности коэффициентов термического расширения, модуля упругости газобетона и штукатурного покрытия в контактной зоне возникают напряжения сдвига:

$$\tau = \left[\Delta T_1 \alpha_1 - \Delta T_2 \alpha_2\right] / \left[\frac{1}{E_1} + \frac{1}{E_2}\right] \tag{4}$$

где: т-напряжение сдвига от температурных деформаций, кгс/см²; ΔT_1 , ΔT_2 -разность температуры покрытия и кладки, °C; α_1 , α_2 -коэффициент термического расширения кладки и покрытия; E_1 , E_2 -модули упругости кладки и покрытия, кгс/см²;

Эти напряжения и являются основной причиной развития магистральной трещины в контактной зоне между штукатуркой и кладкой со скоростью (dl/dN) (Puc.5):

$$dl/dN = A(\Delta K)^{n}$$
 (5)

где: А и n - эмпирические коэффициенты, n=2-7, с увеличением хрупкости материала n увеличивается; $\Delta K = K_{max} - K_{min}$ - перепад коэффициента интенсивности напряжений за один цикл, N — число циклов.

$$dl/dN = C_o(K_{max} - K_{tb}/K_c - K_{max})^q$$
 (6)

где: $C_o,\ q$ — эмпирические величины, K_{th} - пороговый коэффициент интенсивности напряжений, K_c — вязкость разрушения.

Для такой системы характерно усталостное разрушение, при относительно низком уровне напряжений и частой их цикличности.

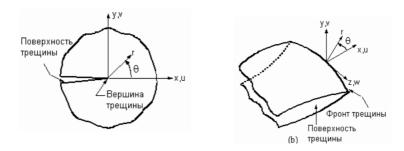


Рис.5 Характер трещинообразования в контактной зоне «газобетонная кладка - штукатурное покрытие»

Трещина развивается на границе двух разнородных материалов с отличительными свойствами - газобетонной кладке и штукатурке.

Основной причиной ее развития является изменение деформаций в вершине трещины при увлажнение-высушивание, нагревание-охлаждение. При нагревании или увлажнении, или при их совместном воздействии, происходит рост деформаций в контактой зоне «газобетонная кладка-штукатурное покрытие», что приводит к увеличению радиуса кривизны вершины трещины. Пока уровень деформаций меньше предельного значения адгезионной прочности, трещина не растет. Если в ходе дальнейшего роста внешней нагрузки деформации в кончике трещины превзойдут предельный уровень, произойдет ее подрастание. На обратном ходе цикла нагружения, происходит частичное восстановление геометрии вершины трещины и размера пластиче-

ской зоны, существовавших в начале цикла нагружения, однако в дальнейшем трещина увеличивает свою длину.

Это приводит к разрушению в контактной зоне, отслоению штукатурного покрытия от кладки по преимущественно адгезионном типу. Процесс интенсифицируется из-за присутствия влаги, агрессивных жидкостей и газов, отрицательных температур. Так например в здании, построенном в г.Рига, уже через 24 года эксплуатации, в штукатурке наблюдалось большое количества трещин шириной 0,2-2мм, на 30% площади фасада штукатурка потеряла сцепление с газобетонной кладкой. Имелись значительные отпадения штукатурки по всему фасаду здания [2].

Для повышения долговечности ограждающей конструкции необходимо предотвратить протекание вышеуказанных деструктивных процессов, обеспечить совместность работы газобетонной кладки и штукатурного покрытия. Для этого еще на стадии проектирования состава раствора и его свойств, необходимо учитывать характеристики составляющих системы «кладка-штукатурное покрытие», с учетом совместности их работы. Снизить температурно-влажностные деформации и напряжения, вызванные ними, в покрытии и контактной зоне можно путем подбора состава штукатурного покрытия со свойствами как можно более близкими к свойствам газобетонной кладки. Этого можно добиться, целенаправленно модифицируя растворную смесь, создав условия для формирования бездефектной контактной зоны и штукатурного покрытия.

Для повышения адгезии между штукатуркой и кладкой необходимо использовать значительный капиллярный потенциал газобетонного основания. При нанесении растворной смеси, поры будут «присасывать» ее к себе, обеспечивая максимальную площадь контакта между ними. У обычного раствора этого не происходит, так как отсос влаги приводит к его усадке и отслоению от газобетонного основания. Для того чтобы обеспечить максимальную площадь контакта, необходимо, чтобы растворная смесь имела высокую водоудерживающую способность. Поэтому в ее состав мы вводили заполнитель и наполнитель (карбонатный, керамзитовый, бой газобетона, перлит, вермикулит) водоудерживающий эффект от которых, усиливали при помощи эфиров целлюлозы и редиспергируемых полимерных порошков.

При нанесении растворной смеси, будет происходить смачивание поверхности газобетонной стенки полимерцементной суспензией. Водная дисперсия полимера, проникая в межпоровые перегородки, обеспечат «анкерование» полимера находящегося в штукатурном растворе. Силикаты кальция газобетона, являясь центрами кристаллиза-

ции для неорганических новообразований, будут способствовать формированию качественной структуры полимерцементного композита в контактной зоне. Введением полимерной фибры в смесь, будет обеспечено микроармирование контактной зоны. Все вместе взятое позволит сформировать контактную зону с малым количеством дефектов, достаточной адгезионной прочностью и эластичностью, позволяющей релаксировать возникающие напряжения.

Однако, только формирование качественного контактного слоя, недостаточно. Рассмотрим систему кладка покрытие как трехслойную систему «штукатурка-контакная зона - газобетонное основание». При использовании штукатурного раствора с прочностью и модулем упругости большем, чем у газобетонного основания, при высокой прочности контактной зоны, разрушение будет происходить по газобетону (когезионное разрушение). Необходимо чтобы кладка и штукатурный раствор имели сходные прочность и модуль упругости, температурные и влажностные деформации. В этом случае формирование достаточно прочной, эластичной контактной зоны, обеспечит совместную работу слоев системы «кладка-штукатурное покрытие».

Уменьшение модуля упругости штукатурки приведет, в соответствии с формулами 1, 4 и 5, к уменьшению растягивающих напряжений в штукатурке, напряжений сдвига и уменьшению скорости продвижения магистральной трещины в контактной зоне. Этого можно добиться введением в смесь мелкого заполнителя с низким модулем упругости (карбонатный, керамзитовый и газобетонный песок, перлит, вермикулит). Добавление полимерной дисперсии и полимерной фибры позволит усилить полученный эффект, снизив не только модуль упругости штукатурного раствора, но и уменьшив его температурные и влажностные деформации и добиться снижения трещинообразования в системе «кладка-покрытие».

Исходя из вышеизложенных теоретических предпосылок, нами были подобраны модифицированные штукатурные смеси на смеси заполнителей и наполнителей – керамзитовом и из боя газобетона. Модифицирующий эффект усиливали введением редиспергируемого полимерного порошка Winnapas 8043 H и Tylose MBZ 15009. Для оптимизации рецептурно-технологических параметров использовали пятифакторный эксперимент со следующими варьируемыми факторами (таблица 1).

В результате получена штукатурка позволяющая обеспечить совместность работы газобетонной кладки со штукатурным покрытием и тем самым высокую долговечность стеновой конструкции. Основные физико-механические характеристики штукатурки: средняя плотность 1100-1300 кг/м³, прочность при сжатии 30-120 кг/см² (рис.6-7).

Диапазон варьиро- вания	Расход вяжущего, кг/м³	Расход заполнителя и наполнителя, $\frac{1}{K\Gamma/M^3}$	Расход фибры, кг/м³	Расход редисперги- руемого полимерно- го порошка Winna- pas 8043 H, % от вяжущего	Pacxoд Tylose MBZ 15009, % от вяжу- щего
	X1	X2	X3	X4	X5
1	500	1,05/1	1,2	5	X5 0,5
0	400	1,05/1	0,9	3	0,3
-1	300	1,05/1	0,6	1	0,1

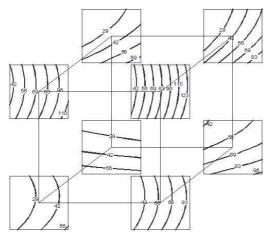


Рис.6 Средняя плотность, $\kappa \Gamma / M^3$

Выводы

Приведенные данные свидетельствуют о том, что целенаправленной модификацией штукатурной смеси, можно улучшить ее параметры и обеспечить совместность работы «газобетонная кладка - штукатурное покрытие». Это в свою очередь, обеспечит повышение долговечности стеновой конструкции.

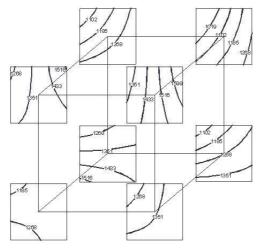


Рис. 7 Прочность при сжатии, кгс/см²

Summary

The article describes the causes and mechanisms of fracture processes in the "gas concrete masonry, plaster coating." The ways of solving the problem by targeting modified plaster is proposed.

Литература

- 1. Емельянов А.А. Повреждения наружных панелей жилых полносборных зданий при температурных деформациях по данным натурных исследований. // Анализ причин аварий и повреждений строительных конструкций/. Выпуск 2, Под ред. А.А.Шишкина. Издательство литературы по строительству, -М.: 1964. – С.153-177
- 2. Силаенков Е.С., Зарин Р.А., Рудин П.В. Опыт эксплуатации газобетонных конструкций //Анализ причин аварий и повреждений строительных конструкций/, Выпуск 2, Под ред. А.А.Шишкина. Издательство литературы по строительству, -М.: 1964. -С.137-153
- 3. В. Г. Гагарин Теплоизоляционные фасады с тонким штукатурным слоем. Журнал «АВОК» №6, 2007 г.