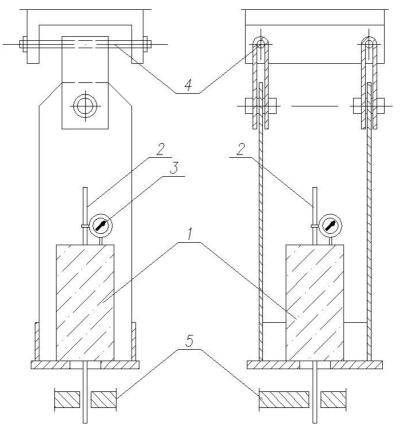
ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ СЦЕПЛЕНИЯ АРМАТУРЫ С МОДИФИЦИРОВАННЫМ БЕТОНОМ

Полейко Н.Л., к.т.н., доц., Мулярчик В.С., Леонович С.Н., д.т.н., проф.

Белорусский национальный технический университет, Минск

В настоящее время в строительном комплексе Республики Беларусь находят применение бетоны, содержащие добавку С-3 и ее модификации, которые характеризуются специфическим составом, различной скоростью нарастания прочности. Эти их особенности оказывают значительное влияние на такой фактор, как сцепление арматуры с бетоном, определяющее несущую способность железобетонных конструкций [1-4]. Цель исследований — оценить влияние прочности и возраста модифицированного бетона на сцепление его с арматурой различных классов.

Для этого изготавливались бетонные образцы — призмы из цемента ОАО «Красносельскстройматериалы» марки ПЦ 500 ДО, гранитного щебня Микашевичского карьера фракции 5-20 мм и кварцевого песка карьера Крапужино с $M_{\rm kp}$ =2,4, количество химической добавки C-3 вводилось 0,4 % от массы цемента.


По геометрической оси образцов устанавливали арматурные стержни, выступающие с обоих торцов на 100-300 мм, для крепления приборов и захвата.

Прочностные и деформативные свойства бетона определяли испытаниями стандартных кубов и призм, а физико-механические характеристики арматурной стали — испытаниями на растяжение отрезков арматурных стержней.

Для исследования сцепления арматуры с бетоном были изготовлены две серии образцов. В первую серию входили образцы-призмы из бетона с химической добавкой проектного класса C12/16 и C35/45, во вторую — призмы-близнецы из бетона без добавки. Высоту призм назначали в зависимости от длины заделки стержней в бетоне (10d, 15d, 20d), а размеры сечения — 100х100 мм и 150х150 мм — в зависимости от диаметра арматуры (d=14, d=16, d=22 мм), принимая расстояние от поверхности стержня до грани призмы равным 3d-5d.

Испытания на выдергивание арматуры из бетона проводились на персе типа МУП-100 с помощью специального шарнирного приспо-

собления, позволяющего осуществлять осевое приложение растягивающей нагрузки. К свободному концу арматурного стержня крепился индикатор часового типа для фиксации сдвига, до начала которого скорость нарастания нагрузки составляла 100~H/c, после этого она прикладывалась ступенями, составляющими 1/20~от нагрузки F_{pas} , соответствующей достижении предела прочности бетона и нулевому сцеплению арматуры с бетоном (рис. 1).

1 – бетонная призма; 2 – арматурный стержень; 3 – индикатор; 4 – штанги пресса; 5 – нижние зажимы пресса.

Рис. 1 – Схема испытаний образцов на сцепление арматуры с бетоном

Прочность сцепления арматуры с бетоном определялась как среднее напряжение в пределах длины заделки стержня:

$$R_{\tilde{n}\ddot{o}} = \frac{F_{\tilde{o}\grave{a}\varsigma}}{\ddot{l} * d * l_a} \tag{1}$$

Результаты испытания образцов представлены в табл. 1.

Таблица 1 – Результаты испытаний образцов

No	Модифицированный бетон				Обычный бетон			
п/п	Диаметр и класс арматуры	Длина заделки стержней в бетоне, см	Прочность бетона, МПа	Прочность сцепле- ния, МПа	Диаметр и класс арматуры	Длина заделки стержней в бетоне, см	Прочность бетона, МПа	Прочность сцепле- ния, МПа
1	2	3	4	5	6	7	8	9
1	10S240	10	28,7	2,5	10S240	10	26,2	1,4
2	10S400	10	28,7	7,0	10S400	10	35,5	6,1
3	10S800	10	35,5	10,6	10S800	10	26,2	7,1
4	10S240	15	35,7	2,4	10S240	10	22,0	5,0
5	10S500	15	36,7	7,4	10S240	15	35,5	1,5
6	10S1200	15	35,5	11,7	10S500	15	35,5	8,2
7	10S240	20	35,7	2,8	10S1200	15	22,0	8,5
8	10S1200	20	38,2	12,2	10S240	20	35,5	1,5
9	10S240	9,3	35,7	2,6	10S1200	20	34,6	11,1
10	16S400	9,3	38,6	8,2	16S240	9,3	35,5	1,6
11	16S800	9,3	38,2	7,8	16S400	9,3	38,7	5,4
12	16S240	12,5	28,7	3,1	16S800	9,3	34,6	5,3
13	16S500	12,5	28,7	7,5	16S500	12,5	35,5	8,7
14	14S1200	14,3	35,5	8,9	14S1200	14,3	22,0	7,6
15	22S240	9,1	35,7	3,4	22S240	9,1	35,5	1,9
16	22S400	9,1	38,2	7,4	22S400	9,1	34,6	7,0
17	22S500	9,1	28,2	4,7	22S500	9,1	16,2	6,4
18	16S240	18,7	38,6	2,1	16S240	21,4	34,0	10,6
19	16S800	18,7	28,2	8,5	14S1200	21,4	26,2	7,9
20	22S240	13,6	28,2	2,4	22S240	13,6	34,0	1,4
21	22S400	13,6	37,3	6,7	22S400	13,6	34,0	6,6
22	22S800	13,6	37,3	6,5	22S800	13,6	33,0	5,8
23	22S240	20,4	37,3	2,8	22S240	20,4	33,0	1,2
24	22S800	20,4	32,8	5,0	22S800	20,4	33,0	4,8
25	10S240	10	75,3	4,5	10S240	10	64,9	2,5
26	10S800	10	75,6	16,3	10S800	10	64,2	12,0
27	14S1200	15	75,6	15,9	10S240	9,3	61,1	1,7
28	16S240	9,3	68,7	3,7	16S800	9,3	58,5	10,9
29	16S800	9,3	70,4	10,8	14S1200	10,7	64,2	11,0

Продолжение таблицы 1

1	2	3	4	5	6	7	8	9
30	14S1200	14,3	75,6	11,5	14S1200	14,3	58,5	9,5
1	2	3	4	5	6	7	8	9
31	22S240	9,1	68,7	3,9	22S240	9,1	61,1	1,5
32	22S500	9,1	74,9	10,0	22S500	9,1	59,0	7,7
33	22S400	13,6	69,5	6,8	22S400	13,6	59,2	7,0

Видно, что прочность сцепления арматуры с модифицированным бетоном несколько выше, чем с обычным: для арматуры периодического профиля — в среднем в 1,16 раз, при этом для стержней диаметром d=10 мм - в 1,39 раза; d=14 мм - в 1,1; d=16 мм - в 1,09; d=22 мм - в 1,04 раза. Для гладкой арматуры это превышение еще значительнее — в отдельных случаях в 1,6 раза.

Значение R_{cq} существенно зависит от прочности бетона [5-10]. Эта зависимость линейна и одинакова как для обычного, так и для модифицированного бетона, хотя численные параметры ее различны. В частности, с повышением предела прочности бетона на сжатие R_{cm} от 30 до 70 МПа средне значение R_{cq} для гладкой арматуры в модифицированном бетоне увеличивается в 1,5, а в обычном — в 1,36 раза.

С увеличением $R_{\rm cw}$ прочность сцепления арматуры с бетоном повышается, а относительное ее значение $R_{\rm cu}$ / $R_{\rm cw}$ снижается, так как при этом уменьшается относительная прочность бетона на растяжение $R_{\rm p}$ / $R_{\rm cw}$. Интегральная прочность сцепления существенно зависит от $R_{\rm p}$ и определяется механическим зацеплением выступов арматуры с растворной частью бетона, работающего на срез. В проведенных испытаниях при увеличении $R_{\rm cw}$ от 30 до 70 МПа среднее значение $R_{\rm cu}$ для арматуры периодического профиля снижалось в 1,5 раза для модифицированного и в 1,8 раза для обычного бетонов.

Прочность сцепления с бетоном арматуры периодического профиля значительно выше (с модифицированным бетоном – в среднем в 3 раза). Заметно также нарастание прочности сцепления R_{cq} с уменьшением диаметра стержней, особенно арматуры периодического профиля. Так, с уменьшением ее диаметра в 2,2 раза (с 22 мм до 10 мм) прочность сцепления бетона с арматурой R_{cq} в модифицированном бетоне возрастает в среднем в 1,6 раза (в обычном бетоне – в 1,4 раза). При этом рельеф поверхности периодического профиля арматуры практически не влияет на прочность ее сцепления с бетоном.

Обработка результатов испытаний позволила установить опытные зависимости между прочность сцепления арматуры с бетоном и прочностью бетона:

для модифицированного бетона и арматуры периодического профиля

$$R_{cu} = 61 + 0.066R_{coe} (2)$$

- для модифицированного бетона и гладкой арматуры

$$R_{cu} = 24 + 0.015R_{cuc} \tag{3}$$

- для бетона без добавки и арматуры периодического профиля

$$R_{cu} = 47.3 + 0.08R_{coe} (4)$$

- для бетона без добавки и гладкой арматуры

$$R_{cu} = 9.6 + 0.015R_{co} \tag{5}$$

Полученные зависимости справедливы в исследованном диапазоне прочности бетона (от 20 МПа до 70 МПа). При значениях меньше 20 МПа, когда прочность сцепления падает до нуля, формулам (2)...(5) соответствуют зависимости вида:

- для модифицированного бетона и арматуры периодического профиля $R_{cu}=0.32R_{csc}$, гладкой арматуры $R_{cu}=0.32R_{csc}$;
- для бетона без добавки и арматуры периодического профиля $R_{cy}=0.32R_{cxc}$, гладкой арматуры $R_{cy}=0.063R_{cxc}$.

Опытные значения прочности сцепления бетона с арматурой R_{cu}^{on} соответствуют теоретическим R_{cu}^{m} , вычисленным по формулам (2)...(5).

Экспериментальные данные характеризуются определенным разбросом, поэтому прочность сцепления бетона с арматурой необходимо определять по нормативным значениям R_{cu}^{n} .

Формулы для определения R_{cu}^{n} в диапазоне изменения предела прочности бетона на сжатие от 20 до 70 МПа имеют вид:

- для модифицированного бетона и арматуры периодического профиля

$$R_{cu}^{H} = 24 + 0.066 R_{cuc} \tag{6}$$

- для модифицированного бетона и гладкой арматуры

$$R_{cu}^{H} = 12 + 0.015 R_{cx} \tag{7}$$

- для бетона без добавки и арматуры периодического профиля

$$R_{cu}^{H} = 16 + 0.08R_{coc} \tag{8}$$

- для бетона без добавки и гладкой арматуры

$$R_{cu}^{H} = 3.6 + 0.015 R_{cx}$$
 (9)

Соответственно, при прочности бетона меньше 20 МПа:

- для модифицированного бетона и арматуры периодического профиля

$$R_{cu}^{H} = 0.186R_{cuc} \tag{10}$$

- для модифицированного бетона и гладкой арматуры

$$R_{cu}^{\scriptscriptstyle H} = 0.075 R_{\scriptscriptstyle CMC} \tag{11}$$

- для бетона без добавки и арматуры периодического профиля

$$R_{cu}^{\scriptscriptstyle H} = 0.16 R_{coc}$$
 (12)

- для бетона без добавки и гладкой арматуры

$$R_{cu}^{H} = 0.033 R_{cuc} (13)$$

Значения R_{cu}^n для модифицированного бетона, рассчитанные по формулам (6)...(11), приведены в табл. 2.

Предел прочности	Значения R_{cu}^{H} для арматуры			
бетона при сжатии, МПа	Периодического профиля	Гладкой		
10	1,86	0,75		
20	3,72	1,50		
30	4,38	1,65		
40	5,04	1,80		
50	5,70	1,95		
60	6,36	2,10		
70	7.02	2.25		

Таблица 2 – Значения R_{cu}^{H} модифицированного бетона

Расчетные значения прочности сцепления арматуры с бетоном определяются делением R^n_{cu} на требуемый коэффициент надежности по бетону.

Выводы

Результаты проведенных исследований позволяют сделать следующие выводы:

- 1. Сцепление арматуры с бетоном зависит от его прочности, с повышением которой сцепление возрастает. Закономерность эта качественно одинакова как для обычного, так и для модифицированного бетона, однако количественные значения характеризующие сцепление в обоих случаях различны. Для модифицированного бетона и арматуры периодического профиля повышение прочности бетона с 30 МПа до 70 МПа способствует увеличению сцепления в среднем в 1,5 раза, а в обычном в 1,36 раза.
- 2. С увеличением $R_{c \pi}$ бетона прочность сцепления арматуры повышается, а относительное ее значение $R_{c \pi} / R_{c \pi}$ снижается, так как при

этом уменьшается относительная прочность бетона на растяжение $R_{\rm p} \, / \, R_{\rm cw}.$

3. Сцепление бетона с арматурой зависит также от ее диаметра и класса. Наиболее значительный прирост сцепления для обоих видов бетона соответствует арматуре периодического профиля диаметром 10 мм, а для остальных диаметров сцепление несколько ниже.

Summary

This article presents the results of studies of the effect of strength modified concrete with superplasticizer C-3 on clutch with fittings of various classes. Clutch of fitting with concrete depends on its strength. This pattern is qualitatively the same for both conventional and modified concrete.

Литература

- 1. Гвоздев А.А. Состояние и задачи исследования сцепления арматуры с бетоном / Бетон и железобетон. 1968. №12. С. 1-4
- 2. Гвоздев А.А. Новое проектирование бетонных и железобетонных конструкций. Москва, 1978. 208с.
- 3. Ахвердов И.Н. Основы физики бетона. Москва: Стройиздат, 1981. 464 с.
- 4. Ахвердов И.Н. Влияние усадки, условий твердения и циклических температурных воздействий на сцепление бетона с арматурой / Бетон и железобетон. 1968. №12. С. 4-7
- 5. Мулин Н.М. Экспериментальные данные о сцеплении арматуры с бетоном / Бетон и железобетон. 1968. №12. С. 16-18
- 6. Оатул А.А. Предложения к построению теории сцепления арматуры с бетоном / Бетон и железобетон. 1968. №12. С. 8-10
- 7. Холмянский М.М. Техническая теория сцепления арматуры с бетоном и е применение / Бетон и железобетон. 1968. №12. С. 10-13
- 8. Полейко Н.Л., Неверович И.И., Марцинкевич В.Л. Сцепление арматуры с бетоном, модифицированным добавкой М-1 / Республиканский межведомственный сборник: Вопросы строительства и архитектуры. Минск. 1987. Выпуск 16. С. 62-66
- 9. Железобетон в XXI веке: состояние и перспективы развития бетона и железобетона в России / Госстрой России; НИИЖБ. Москва, Готика, 2001. 684с.
- 10. СНБ 5.03.01–02 Бетонные и железобетонные конструкции. Минск: Минстройиархитектуры РБ, 2003. 139с.