УСТОЙЧИВОСТЬ ШАРНИРНО ЗАКРЕПЛЕННОЙ БЕТОННОЙ КОЛОННЫ ПРИ НЕСИММЕТРИЧНОМ ВОЗДЕЙСТВИИ АГРЕССИВНОЙ СРЕДЫ

Фомина И.П.

Одесская государственная академия строительства и архитектуры, г. Одесса

Исследуем на устойчивость бетонную колонну прямоугольного поперечного сечения, шарнирно закрепленную на концах, у которой подвергается коррозии нижний участок боковой грани колонны (рис. 1а, поперечное сечение на нижнем участке показано на рис. 16, C – центр неповрежденного сечения, C_1 – центр неповрежденной части корродированного сечения). Верхний край зоны коррозии перемещается вверх

с постоянной скоростью v₀. Глубина поврежденной зоны определяется по формуле [2]

$$h(t_1) = h_0 e^{-\beta/t_1}$$
. (1)

Здесь t_1 — время, отсчитываемое от момента t_0 начала процесса коррозии в данном поперечном сечении стержня.

Очевидно

$$t_0 = x/v_0$$
 (2)

С учетом (2) формула (1) принимает следующий вид:

$$h(x,t) = h_0 e^{-\beta/(t-x/v_0)}.$$
(3)

(x - aбсцисса сечения). Здесь $t - время, отсчитываемое с момента начала процесса коррозии в колонне. Так как длина <math>l_1$ первого (корродированного) участка колонны равна

$$l_1(t) = v_0 t ,$$

то формула (3) может быть записана так:

$$h(x,t) = h_0 e^{-\beta v_0 / [l_1(t) - x]}.$$
(4)

На рис. 2а штриховой линией показана ось, на которой расположены центры поперечных сечений неповрежденной части колонны.

Сплошной линией показано деформированное положение этой оси. Через y_1 обозначены ординаты перемещений точек оси на первом (нижнем) участке, а y_0 равно расстоянию CC_1 в каждом сечении, т.е.

$$y_0 = h(x,t)/2$$
. (5)

Заметим, что в связи с тем, что расстояние CC_1 с большой степенью точ-

ности можно считать не меняющимся при деформации колонны, то перемещения точек первоначальной оси на нижнем участке совпадают с $y_1(x)$ (рис. 2б).

Возникающее напряженно-деформированное состояние колонны можно рассматривать как продольный изгиб стержня с начальным искривлением оси. Следуя [3] составляем дифференциальное уравнение

$$EJ_1 \frac{d^2 y_1}{dx^2} = -Py_1 - Py_0 \ (0 \le x \le l_1) \ . \tag{6}$$

Момент инерции поперечного сечения Ј определяется по формуле

$$J_1(x,t) = \frac{d_1 [d_2 - h(x,t)]^3}{12}$$
(7)

 $(d_1 \text{ и } d_2 - \text{ ширина и высота поперечного сечения при } t = 0)$. Заметим, что время *t* играет роль параметра в уравнении (6).

Для второго (верхнего) участка колонны имеем следующее дифференциальное уравнение

$$EJ_2 \frac{d^2 y_2}{dx^2} = -Py_2 \ (l_1 \le x \le l) , \tag{8}$$

где $J_2 = d_1 d_2^3 / 12$.

Заметим, что величины критических сил определяются из условия существования ненулевого решения у системы, состоящей из уравнения

$$EJ_1 \frac{d^2 y_1}{dx^2} = -Py_1 \ (0 \le x \le l_1)$$
(9)

и уравнения (8) при следующих условиях

$$y_1(0) = 0, \ y_2(l_1) = y_1(l_1), \ \frac{dy_2}{dt}(l_1) = \frac{dy_1}{dt}(l_1), \ y_2(l) = 0.$$
 (10)

Произведем в уравнении (9) замену независимой переменной

$$\xi = x/l \tag{11}$$

(*l* – высота колонны). В результате получим следующее уравнение:

$$\frac{d^2 y_1}{d\xi^2} + \varepsilon f(\xi, t) y_1 = 0, \qquad (12)$$

где

$$\varepsilon = \frac{Pl^2}{EJ_2}, \ f(\xi,t) = \frac{12J_2}{d_1[d_2 - h(\xi,t)]^3},$$

$$h(\xi,t) = h_0 e^{-\beta v_0 / l[\lambda_1(t) - \xi]}, \ \lambda_1(t) = l_1(t) / l.$$
(13)

Следуя алгоритму, изложенному в [1], получаем уравнение критических сил:

$$F_1(P,t)\cos k_2\lambda_2 + F_2(P,t)\sin k_2\lambda_2 = 0.$$
 (14)

Здесь

$$F_{1}(P,t) = y_{1}(\lambda_{1}(t),t)k_{2}\cos k_{2}\lambda_{1}(t) - y_{1}'(\lambda_{1}(t),t)\sin k_{2}\lambda_{1}(t),$$

$$F_{2}(P,t) = y_{1}(\lambda_{1}(t),t)k_{2}\sin k_{2}\lambda_{1}(t) + y_{1}'(\lambda_{1}(t),t)\cos k_{2}\lambda_{1}(t),$$
(15)

 $k_2 = l\sqrt{P/EJ_2}$, $\lambda_2 = l_2/l$, $y_1(\xi, t)$ - решение дифференциального уравнения (12), удовлетворяющее начальным условиям

$$y_1(0) = 0, \frac{dy_1}{d\xi}(0) = 1.$$

Переходим к определению прогибов колонны под действием продольной силы *P*. Сделаем в уравнении (6) подстановку (11). В результате получим следующее уравнение:

$$\frac{d^2 y_1}{d\xi^2} + \varepsilon f(\xi, t) y_1 + \varepsilon g(\xi, t) = 0.$$
(16)

Здесь $g(\xi,t) = \frac{6h(\xi,t)J_2}{d_1[d_2 - h(\xi,t)]^3}$. Далее, аппроксимируем функции $f(\xi,t)$ и $g(\xi,t)$ на отрезке $0 \le \xi \le \lambda_1(t)$, используя интерполяционную формулу Лагранжа [4]

$$f(\xi,t) = \sum_{i=0}^{n} f(\xi_{i},t) \frac{\omega_{i}(\xi)}{\omega_{i}(\xi_{i})}, g(\xi,t) = \sum_{i=0}^{n} g(\xi_{i},t) \frac{\omega_{i}(\xi)}{\omega_{i}(\xi_{i})},$$
(17)
$$\omega_{i}(\xi) = (\xi - \xi_{1})(\xi - \xi_{2})...(\xi - \xi_{i-1})(\xi - \xi_{i+1})...(\xi - \xi_{n})$$

 $(\xi_i = \frac{\lambda_1}{n}i, i = 0, 1, ..., n).$

Запишем многочлен ω_i(ξ) в следующем виде:

$$\omega_i(\xi) = \sum_{j=0}^n b_{i,j} \xi^j \,. \tag{18}$$

Здесь $b_{i,j}$ (i, j = 0, 1, ..., n) - постоянные коэффициенты, однозначно выражаемые через ξ_i (i = 0, 1, ..., n).

Подставив представление (18) в формулу (17), получаем

$$f(\xi,t) = \sum_{j=0}^{\infty} f_j(t)\xi^j, \ g(\xi,t) = \sum_{j=0}^{\infty} g_j(t)\xi^j ,$$
(19)

где

$$f_{j}(t) = \sum_{i=0}^{n} f(\xi_{i}, t) \frac{b_{i,j}}{\omega_{i}(\xi_{i})}, g_{j}(t) = \sum_{i=0}^{n} g(\xi_{i}, t) \frac{b_{i,j}}{\omega_{i}(\xi_{i})} \quad (j = 0, 1, ..., n)$$

$$f_{j}(t) = g_{j}(t) = 0 \quad (j > n).$$

Будем искать решение $y_{1,y}(\xi,t)$ задачи Коши для уравнения (16) при начальных условиях

$$y_{1,u}(0,\varepsilon,t) = 0, \frac{dy_{1,u}(0,\varepsilon,t)}{d\xi} = D$$
 (20)

(*D* – некоторая постоянная, значение которой будет определено позднее) в виде разложения по степеням малого параметра є:

$$y_{1,4}(\xi,t) = \sum_{k=0}^{\infty} \varepsilon^k y_{1,4,k}(\xi,t) .$$
 (21)

Подставив это разложение в уравнение (11), получаем

$$\frac{d^2 y_{1,4,0}}{d\xi^2} + \sum_{k=1}^{\infty} \varepsilon^k \left[\frac{d^2 y_{1,4,k}}{d\xi^2} + f(\xi,t) y_{1,4,k-1} \right] + \varepsilon g(\xi,t) = 0.$$
(22)

Приравнивая коэффициенты при степенях є нулю, получаем систему дифференциальных уравнений

$$\frac{d^2 y_{1,4,0}}{d\xi^2} = 0, \frac{d^2 y_{1,4,1}}{d\xi^2} = -f(\xi,t) y_{1,4,0} - g(\xi,t),$$

$$\frac{d^2 y_{1,4,k}}{d\xi^2} = -f(\xi,t) y_{1,4,k-1} \quad (k > 1)$$
(23)

381

Из первого уравнения (23) с учетом условий (20) получаем

$$y_{1,y,0}(\xi,t) = D\xi$$
. (24)

Для остальных уравнений (23) будем разыскивать решения, удовлетворяющие нулевым начальным условиям

$$y_{1,y,k}(0,t) = 0, \frac{dy_{1,y,k}(0,t)}{d\xi} = 0 \ (k = 1,2,...)$$
(25)

При k = 1 уравнение (23) выглядит так

$$\frac{d^2 y_{1,4,1}}{d\xi^2} = -f(\xi,t) y_{1,4,0} - g(\xi,t) \,.$$

Подставив сюда (24) и (19) и дважды интегрируя по ξ , находим с учетом (25)

$$y_{1,4,1}(\xi,t) = DZ_1^{(1)}(\xi,t) + Z_2^{(1)}(\xi,t), \qquad (26)$$

где $Z_1^{(1)}(\xi,t) = \sum_{j=0}^{\infty} f_j^{(1)}(t)\xi^j, Z_2^{(1)}(\xi,t) = \sum_{j=0}^{\infty} g_j^{(1)}(t)\xi^j,$
 $f_0^{(1)}(t) = f_1^{(1)}(t) = f_2^{(1)}(t) = 0, f_j^{(1)}(t) = -\frac{f_{j-3}(t)}{(j-1)j} \quad (3 \le j \le n+3),$
 $f_j^{(1)}(t) = 0 \quad (j > n+3); \quad g_0^{(1)}(t) = g_1^{(1)}(t) = 0, \quad g_j^{(1)}(t) = -\frac{g_{j-2}(t)}{(j-1)j}$
 $(2 \le j \le n+2), \quad g_j^{(1)}(t) = 0 \quad (j > n+2).$

При k = 2 уравнения (23) с учетом (19) и (26) выглядят так

$$\frac{d^2 y_{1,4,2}}{d\xi^2} = -\sum_{j=0}^{\infty} f_j(t) \xi^j [D \sum_{i=0}^{\infty} f_i^{(1)}(t) \xi^i + \sum_{i=0}^{\infty} g_i^{(1)}(t) \xi^i].$$
(27)

Перемножая стоящие в правой части (27) степенные ряды и дважды интегрируя по ξ с учетом условий (25), приходим к следующему выражению:

$$y_{1,4,2}(\xi,t) = DZ_1^{(2)}(\xi,t) + Z_2^{(2)}(\xi,t) , \qquad (28)$$

где
$$Z_1^{(2)}(\xi,t) = \sum_{j=0}^{\infty} f_j^{(2)}(t)\xi^j, Z_2^{(2)}(\xi,t) = \sum_{j=0}^{\infty} g_j^{(2)}(t)\xi^j,$$

$$f_0^{(2)}(t) = f_1^{(2)}(t) = 0, \ f_j^{(2)}(t) = -\frac{1}{(j-1)j} \sum_{m=0}^{j-2} f_m(t)f_{j-m-2}^{(1)}(t),$$

$$g_0^{(2)}(t) = g_1^{(2)}(t) = 0, \ g_j^{(2)}(t) = -\frac{1}{(j-1)j} \sum_{m=0}^{j-2} f_m(t)g_{j-m-2}^{(1)}(t) \quad (j \ge 2).$$

Совершенно аналогично поступаем и при k > 2. В результате получаем рекуррентные соотношения

$$\begin{split} f_0^{(k)}(t) &= f_1^{(k)}(t) = 0, \ f_j^{(k)}(t) = -\frac{1}{(j-1)j} \sum_{m=0}^{j-2} f_m(t) f_{j-m-2}^{(k-1)}(t), \\ g_0^{(k)}(t) &= g_1^{(k)}(t) = 0, \ g_j^{(k)}(t) = -\frac{1}{(j-1)j} \sum_{m=0}^{j-2} f_m(t) g_{j-m-2}^{(k-1)}(t) \quad (j \ge 2) \end{split}$$

для коэффициентов разложений

$$y_{1,4,k}(\xi,t) = DZ_1^{(k)}(\xi,t) + Z_2^{(k)}(\xi,t),$$

$$Z_1^{(k)}(\xi,t) = \sum_{j=0}^{\infty} f_j^{(k)}(t)\xi^j, Z_2^{(2)}(\xi,t) = \sum_{j=0}^{\infty} g_j^{(k)}(t)\xi^j.$$

Заметим, что ввиду существенной малости є для практических задач можно ограничиться и небольшим числом членов в разложении (21). Таким образом, можно считать, что частное решение $y_{1,y}(\xi,t)$ задачи Коши для уравнения (19) с учетом условий (20) построено. Очевидно, оно может быть представлено в следующем виде:

$$y_{1,y}(\xi,t) = DZ_1(\xi,\varepsilon,t) + Z_2(\xi,\varepsilon,t), \qquad (29)$$

где
$$Z_1(\xi, \varepsilon, t) = \xi + \sum_{k=1}^{\infty} \varepsilon^k Z_1^{(k)}(\xi, t), Z_2(\xi, \varepsilon, t) = \sum_{k=1}^{\infty} \varepsilon^k Z_2^{(k)}(\xi, t).$$

383

Переходим ко второму (некорродированному) участку. Дифференциальное уравнение (8) после подстановки $\xi = x/l$ будет выглядеть так

$$\frac{d^2 y_2}{d\xi^2} + k_2^2 y_2 = 0, (30)$$

где $k_2 = l \sqrt{\frac{P}{EJ_2}}$. Общее решение этого уравнения

$$y_2(\xi, t) = C_1 \cos k_2 \xi + C_2 \sin k_2 \xi$$
(31)

 $(C_1 \, \text{ и } \, C_2 - \text{постоянные, зависящие от параметров } t \, \text{и } P).$

Для нахождения этих постоянных используем второе и третье условия (10)

$$y_2(\lambda_1(t), t) = y_{1, 4}(\lambda_1(t), t), \frac{dy_2}{d\xi}(\lambda_1(t), t) = \frac{dy_{1, 4}}{d\xi}(\lambda_1(t), t).$$
(32)

Из (32) получаем систему уравнений

$$C_{1} \cos k_{2} \lambda_{1}(t) + C \sin k_{2} \lambda_{1}(t) = y_{1,4}(\lambda_{1}(t), t)$$

$$k_{2}[-C_{1} \sin_{2} \lambda_{1}(t) + C_{2} \cos k_{2} \lambda_{1}(t)] = y_{1,4}'(\lambda_{1}(t), t)$$

(штрих означает производную по ξ), решая которую находим

$$C_1 = \frac{1}{k_2} F_3(P,t), \ C_2 = \frac{1}{k_2} F_4(P,t),$$

где

$$F_{3}(P,t) = y_{1,u}(\lambda_{1}(t),t)k_{2}\cos k_{2}\lambda_{1}(t) - y_{1,u}'(\lambda_{1}(t),t)\sin k_{2}\lambda_{1}(t),$$

$$F_{4}(P,t) = y_{1,u}(\lambda_{1}(t),t)k_{2}\sin k_{2}\lambda_{1}(t) + y_{1,u}'(\lambda_{1}(t),t)\cos k_{2}\lambda_{1}(t).$$
(33)

Подставив полученные выражения в (31), будем иметь

$$y_2(\xi,t) = \frac{1}{k_2} [F_3(P,t)\cos k_2 \xi + F_4(P,t)\sin k_2 \xi]$$

Используем теперь условие на конце второго участка

384

$$y_2(1,t) = 0$$
,

из которого следует

$$F_3(P,t)\cos k_2 + F_4(P,t)\sin k_2 = 0$$
.

Подставив сюда выражения (33), а затем (29), после ряда преобразований получаем

$$\begin{split} D &= -\frac{Z_2(\lambda_1(t),\varepsilon,t)k_2\cos k_2\lambda_2(t) + Z_2'(\lambda_1(t),\varepsilon,t)\sin k_2\lambda_2(t)}{Z_1(\lambda_1(t),\varepsilon,t)k_2\cos k_2\lambda_2(t) + Z_1'(\lambda_1(t),\varepsilon,t)\sin k_2\lambda_2(t)} \\ \text{Hапомним, что здесь } k_2 &= l\sqrt{\frac{P}{EJ_2}}, \ \varepsilon = \frac{Pl^2}{E}, \lambda_2(t) = \frac{l - l_1(t)}{l}. \end{split}$$

Пример. Исследуем на устойчивость бетонную колонну, подверженную коррозии, при следующих значениях параметров: l = 16m, $d_1 = 0.5m$, $d_2 = 0.4m$, $E = 27 \cdot 10^3 m \Pi a$, $h_0 = 0.08m$, $\beta = 7.5$ лет, $v_0 = 0.1$ м/год.

Критическая сила для неповрежденной коррозией колонны

$$P_{\kappa p,\max} = \frac{\pi^2 E J_2}{l^2} = 2776 \ \kappa H.$$

Используя изложенный выше алгоритм, определяем значения критической силы $P_{\kappa p}$ для ряда значений *t* в пределах от 0 до 150 лет. График изменения $P_{\kappa p}$ в зависимости от *t* представлен на рис.3 ($P_{\kappa p}$ - в κH , *t* - в годах). На рис.4 показаны деформированные положения оси колонны при *t* = 100 лет и разных значениях продольной сжимающей силы: график 1 соответствует $P = 0.8P_{\kappa p}$, график $2 - P = 0.9P_{\kappa p}$, график $3 - P = 0.97P_{\kappa p}$. Заметно резкое нарастание прогибов при приближении $P \kappa P_{\kappa p}$.

Вывод

Предложен метод, позволяющий проводить исследование устойчивости однородных (в частности бетонных) колонн при несимметричном агрессивном воздействии окружающей среды, что необходимо для своевременного их усиления для обеспечения надежности конструкции.

SUMMARY

The method for investigation of stability of homogenious (particularly concrete) columns with taking into account nonsymmetrical aggressive environmental impact is offered, what allows their on-time strengthening to secure the reliability of constructions.

Рис.3

Рис. 4

1. Фомина И.П. Уточненный метод исследования устойчивости бетонной колонны с учетом воздействия агрессивной среды // Вісник ОДАБА. Вып. 51, Одесса, 2013. – с. 265-273.

2. Сетков В.Ю., Шибанова И.С., Рысева О.П. Действие углекислого газа на железобетонные балки и плиты промышленных зданий и сооружений // Строительство и архитектура, №12, 1984. - с. 1 - 4.

3. Вольмир А.С. Устойчивость деформируемых систем. – М.: Наука, 1967. – 984 с.

4. Березин И.С., Жидков Н.П. Методы вычислений. - М.: Физматгиз, 1962. - 464 с.