НЕЛИНЕЙНЫЕ КВАЗИСТАТИЧЕСКИЕ ЗАДАЧИ ДЛЯ МНОГОПРОЛЕТНЫХ ЖЕЛЕЗОБЕТОННЫХ РАМ С УЧЕТОМ ПЛАСТИЧНОСТИ БЕТОНА

Фомин В.М.

Одесская государственная академия строительства и архитектуры, г. Одесса

В статьях [1] и [2] был предложена методика решения статических нелинейно упругопластических задач для железобетонных балок и плоских рам с привлечением метода граничных элементов. В настоящей работе эта методика используется при решении указанных выше задач для многопролетных рам.

Будем исследовать движение плоской железобетонной многопролетной рамы в своей плоскости, вызванное системой горизонтальных и вертикальных сил, приложенных к узлам рамы (рис. 1). При этом

предполагается, что рама невесома, а масса сосредоточена в системе материальных точек M_{κ} (k = 1, 2, ..., n + 1) (n – число пролетов). Если пренебречь продольными деформациями стержней, то у рамы останется только одна форма колебаний – изгибная, связанная с горизонтальными перемещениями ригеля. Будем полагать, что изменение сил, действующих на раму, с течением времени достаточно медленное по сравнению с периодом колебаний рамы. Тогда инерционные эффекты будут оказывать незначительное влияние на движение рамы и его можно будет считать квазистатическим.

Рис. 1

Конструкцию рамы представим в виде системы более простых рам: первая – П-образная рама, образующая первый пролет и состоящая из стержней 1,2 и 3 (номера стержней указаны в кружках), а каждая последующая состоит из двух стержней, образующих Г-образную раму (например, вторая - из стержней 4 и 5).

Рассмотрим внешние силы, действующие на первую раму (рис. 2).

Помимо заданных сил F_1, P_1, F_2, P_2 действуют еще реакции H_1, V_1, H_3, V_3 и реактивные моменты $M_{o,1}, M_{o,3}$.

Для стержней 1, 2 и 3 методами, изложенными в [1], строим квадратные матрицы $A^{(i)}(x_i)$, а также матрицы-столбцы $B_Q^{(i)}(x_i)$ и $B_N^{(i)}(x_i)$ ($i = 1,2,3, x_i$ – абсциссы точек стержней в локальных системах координат). Затем записываем равенства

Рис. 2

$$\boldsymbol{X}^{(i)}(x_i) = \boldsymbol{A}^{(i)}(x_i)\boldsymbol{X}^{(i)}(0) + \boldsymbol{B}_Q^{(i)}(x_i)\Delta Q^{(i)} + \boldsymbol{B}_N^{(i)}(x_i)\Delta N^{(i)} \quad (i = 1, 2, 3).$$
(1)

Здесь $\Delta Q^{(i)}$ и $\Delta N^{(i)}$ — величины приращений поперечной и продольной сил в i – ом стержне,

$$\boldsymbol{X}^{(i)}(\boldsymbol{x}_{1}) = \begin{bmatrix} \Delta \boldsymbol{v}_{i}(\boldsymbol{x}_{i}) \\ \Delta \boldsymbol{v}_{i}'(\boldsymbol{x}_{i}) \\ \Delta \boldsymbol{v}_{i}''(\boldsymbol{x}_{i}) \end{bmatrix}$$
(2)

 $(\Delta v_i(x_i)$ - приращение прогиба i – го стержня в сечении с абсциссой x_i , вызванное приращениями $\Delta F_1, \Delta P_1, \Delta F_2, \Delta P_2$ сил F_1, P_1, F_2, P_2 , штрих означает производную по x_i).

Видоизменим несколько алгоритм, предложенный в [1]. Введем матрицы $\hat{A}^{(i)}(x_i), \hat{B}_Q^{(i)}(x), \hat{B}_N^{(i)}(x), \hat{X}^{(i)}(x_i)$ следующим образом:

$$\widehat{\mathbf{A}}^{(i)}(x_i) = \begin{bmatrix} y_1^{(i)}(x_i) & y_2^{(i)}(x_i) & y_3^{(i)}(x_i) & 0 & 0\\ y_1^{(i)}(x_i) & y_2^{(i)}(x_i) & y_3^{(i)}(x_i) & 0 & 0\\ y_1^{(i)}(x_i) & y_2^{(i)}(x_i) & y_3^{(i)}(x_i) & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad (3)$$

С помощью введенных матриц формула (1) записывается так:

$$\widehat{\boldsymbol{X}}^{(i)}(x_i) = [\widehat{\boldsymbol{A}}^{(i)}(x_i) + \widehat{\boldsymbol{B}}_Q^{(i)}(x_i) + \widehat{\boldsymbol{B}}_N^{(i)}(x_i)]\widehat{\boldsymbol{X}}^{(i)}(0) \ (i = 1, 2, 3).$$
(4)

Заметим, что

$$\hat{\mathbf{X}}^{(1)}(0) = \begin{bmatrix} 0 \\ 0 \\ \Delta v_1''(0) \\ \Delta Q^{(1)} \\ \Delta N^{(1)} \end{bmatrix}, \quad \hat{\mathbf{X}}^{(3)}(0) = \begin{bmatrix} 0 \\ 0 \\ \Delta v_3''(0) \\ \Delta Q^{(3)} \\ \Delta N^{(3)} \end{bmatrix}, \quad (5)$$

причем $\Delta Q^{(1)} = \Delta V_1, \ \Delta N^{(1)} = -\Delta H_1, \ \Delta Q^{(3)} = \Delta V_3, \ \Delta N^{(3)} = -\Delta H_3.$

Рассмотрим равновесие граничного элемента, расположенного между стержнями 1 и 2 (рис. 3, на рисунке показаны положительные направления внутренних усилий). Из уравнений равновесия находим

$$\Delta N^{(2)} = \Delta F_1 + \Delta Q^{(1)}, \ \Delta Q^{(2)} = -\Delta N^{(1)} - \Delta P_1,$$

$$\Delta M^{(2)}(0) = \Delta M^{(1)}(l_1).$$
 (6)

 $(l_i - длина i - го стержня, l_1 = h_1).$ Из формулы (50) [3] получаем

Рис. 3

 $\Delta M^{(1)}$

275

$$\Delta M^{(i)}(x_i) = Y_1^{(i)}(x_i) \Delta v_i'' + Y_2^{(i)}(x_i) \Delta v_i' - Y_3^{(i)}(x_i) \frac{\Delta N^{(i)}}{H_0^{(i)}} + Y_4^{(i)}(x_i) \frac{\Delta Q^{(i)}}{H_0^{(i)}}.$$
 (7)

Здесь $Y_k^{(i)}(x_i)$ (k = 1,2,3,4) - функции, определенные на предыдущем шаге алгоритма, $H_0^{(i)}$ - начальная жесткость поперечного сечения *i*-го стержня. Заметим, что

$$\Delta v_2'(0) = \Delta v_1'(l_1), \ \Delta v_2(0) = 0 \tag{8}$$

(второе равенство следует из предполагаемой продольной несжимаемости стержней, $l_1 = h_1$).

Соотношения (6) – (8) могут быть записаны в следующем виде:

$$\boldsymbol{C}^{(2)} \hat{\boldsymbol{X}}^{(2)}(0) = \boldsymbol{D}^{(1)} \hat{\boldsymbol{X}}^{(1)}(l_1) + \boldsymbol{U}_1, \qquad (9)$$

где

$$\boldsymbol{C}^{(i)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & Y_2^{(i)}(0) & Y_1^{(i)}(0) & Y_4^{(i)}(0) / H_0^{(i)} & -Y_3^{(i)}(0) / H_0^{(i)} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\boldsymbol{D}^{(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & Y_2^{(1)}(l_1) & Y_1^{(1)}(l_1) & Y_4^{(1)}(l_1) / H_0^{(1)} & -Y_3^{(1)}(l_1) / H_0^{(1)} \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$
(9a)
$$\boldsymbol{U}_k = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\Delta P_k \\ \Delta F_k \end{bmatrix}.$$
Из (9) получаем
$$\hat{\boldsymbol{X}}^{(2)}(0) = [\boldsymbol{C}^{(2)}]^{-1} \boldsymbol{D}^{(1)} \hat{\boldsymbol{X}}^{(1)}(l_1) + [\boldsymbol{C}^{(2)}]^{-1} \boldsymbol{U}_1.$$
(10)

Рассмотрим теперь равновесие граничного элемента, соединяющего стержни 2, 3 и 4 (рис. 4). Из уравнений равновесия находим

$$\Delta N^{(4)} = \Delta N^{(2)} + \Delta F_2 + \Delta Q^{(3)}, \ \Delta Q^{(4)} = \Delta Q^{(2)} - \Delta N^{(3)} - \Delta P_2,$$

$$\Delta M^{(4)}(0) = \Delta M^{(2)}(l_2) + \Delta M^{(3)}(l_3).$$
 (11)

Здесь $l_2 = L_1$, $l_3 = h_2$. Учитывая, что

Здесь

$$\boldsymbol{D}^{(i)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 \\ 0 & Y_2^{(i)}(l_i) & Y_1^{(i)}(l_i) & Y_4^{(i)}(l_i)/H_0^{(i)} & -Y_3^{(i)}(l_i)/H_0^{(i)} \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} (i > 1).$$

Замечание 1. Из формул (10), (12) и (4) следует, что элементы любой матрицы-столбца $\hat{X}^{(i)}(x_i)$ (i = 1,2,3,4) являются линейными функциями элементов матриц-столбцов $\hat{X}^{(1)}(0)$ и $\hat{X}^{(3)}(0)$.

Формула (12) позволяет перейти к следующей (второй) раме (рис. 5 при k = 2). Эта формула позволяет выразить элементы столбца $\hat{X}^{(4)}(0)$ через величины $\Delta v_j''(0)$, $\Delta Q^{(j)}$, $\Delta N^{(j)}$ (j = 1,3). С помощью (4) определяем $\hat{X}^{(4)}(l_4)$ и $\hat{X}^{(5)}(l_5)$, причем $\hat{X}^{(5)}(0)$ имеет следующий вид:

Рис. 5

$$\hat{\boldsymbol{X}}^{(5)}(0) = \begin{bmatrix} 0 \\ 0 \\ \Delta v_5^{"}(0) \\ \Delta Q^{(5)} \\ \Delta N^{(5)} \end{bmatrix}.$$
(13)

Далее при помощи формулы, аналогичной (12), определяем

$$\hat{\boldsymbol{X}}^{(6)}(0) = [\boldsymbol{C}^{(6)}]^{-1} \boldsymbol{D}^{(4)} \hat{\boldsymbol{X}}^{(4)}(l_4) + [\boldsymbol{C}^{(6)}]^{-1} \boldsymbol{D}^{(5)} \hat{\boldsymbol{X}}^{(5)}(l_5) + [\boldsymbol{C}^{(6)}]^{-1} \boldsymbol{U}_3.$$
(14)

Из (4), (13) и (14) следует, что элементы столбцов $\hat{X}^{(4)}(l_4), \hat{X}^{(5)}(l_5)$ и $\hat{X}^{(6)}(0)$ являются линейными функциями величин $\Delta v_i^{''}(0), \ \Delta Q^{(j)}, \ \Delta N^{(j)}(j=1,3,5)$.

Замечание 2. Для стержня с номером 2k, относящегося к k-му пролету, формула (14) записывается так

$$\widehat{X}^{(2k)}(0) = [C^{(2k)}]^{-1} D^{(2k-2)} \widehat{X}^{(2k-2)}(l_{2k-2}) + \\
+ [C^{(2k)}]^{-1} D^{(2k-1)} \widehat{X}^{(2k-1)}(l_{2k-1}) + [C^{(2k)}]^{-1} U_k.$$
(15)

Отсюда следует, что для стержней k – го пролета элементы столбцов $\widehat{X}^{(2k)}(0), \widehat{X}^{(2k)}(l_{2k})$, а кроме того, и $\widehat{X}^{(2k+1)}(l_{2k+1})$ являются линейными функциями величин $\Delta v_j^{''}(0), \Delta Q^{(j)}, \Delta N^{(j)}(j=1,3,...2k+1)$. Продолжая таким же образом далее для последнего n – го пролета получаем, что элементы столбцов $\widehat{X}^{(2n)}(l_{2n})$ и $\widehat{X}^{(2n+1)}(l_{2n+1})$ являются линейными функциями величин $\Delta v_j^{''}(0), \Delta Q^{(j)}, \Delta N^{(j)}(j=1,3,...2n+1)$. Общее количество этих неизвестных величин $N_{\text{неизв}} = 3n + 3$.

Введем обозначения $u_{1+3k} = \Delta v_{2k+1}$ ''(0), $u_{2+3k} = \Delta Q^{(2k+1)}$, $u_{3+3k} = = \Delta N^{(2k+1)}$ (k = 0, 1, ..., n). Необходимо иметь 3n + 3 уравнений для их определения. Из условия продольной несжимаемости стержней и жесткого соединения их в узлах имеем

$$\Delta v_{2k}(l_{2k}) = 0, \ \Delta v_{2k+1}(l_{2k+1}) = \Delta v_1(l_1),$$

$$\Delta v_{2k}'(l_{2k}) = \Delta v_{2k+1}'(l_{2k+1}) \quad (k = 1, 2, \dots, n).$$
(16)

Еще три уравнения можно построить следующим образом. Введем дополнительный стержень, имеющий номер 2n + 2 и являющийся продолжением ригеля за пределы n - го пролета. Так как он не загружен, то для него выполняются следующие равенства

$$\Delta v_{2n+2}''(0) = 0, \ \Delta Q^{(2n+2)} = 0, \ \Delta N^{(2n+2)} = 0$$
(17)

и, кроме того, его можно считать линейно упругим и в формуле (9а) для матрицы $C^{(2n+2)}$, необходимой для вычисления столбца $X^{(2n+2)}(0)$, положить $Y_1^{(2n+2)}(0) = H_0^{(2n)}, Y_2^{(2n+2)}(0) = Y_3^{(2n+2)}(0) = Y_4^{(2n+2)}(0) = 0.$ Уравнения (16) и (17) могут записаны так

$$\left. \begin{aligned} \hat{X}_{1}^{(2k)}(l_{2k}) &= 0 \\ \hat{X}_{1}^{(2k+1)}(l_{2k+1}) - \hat{X}_{1}^{(1)}(l_{1}) &= 0 \\ \hat{X}_{2}^{(2k)}(l_{2k}) - \hat{X}_{2}^{(2k+1)}(l_{2k+1}) &= 0 \end{aligned} \right\}^{k} = 1, 2, \dots, n; \\
\left. \hat{X}_{3}^{(2k+2)}(0) &= 0 \\ X_{4}^{(2n+2)}(0) &= 0 \\ X_{5}^{(2n+2)}(0) &= 0 \end{aligned} \tag{18}$$

Из замечания 2 следует, что левая часть каждого из них представляет собой линейную функцию неизвестных u_k (k = 1, 2, ..., 3n+3), т.е. система уравнений (18) может быть записана так:

$$E_{i,0} + \sum_{k=1}^{3n+3} E_{i,k} u_k = 0 \ (i = 1, 2, \dots, 3n+3) .$$
 (19)

Для численного определения величин $E_{i,0}$ (i = 1, 2, ..., 3n+3) поступим следующим образом: положим все величины u_i (i = 1, 2, ..., 3n+3) равными нулю, т.е. примем, что

$$\Delta v_j''(0) = 0, \ \Delta Q^{(j)} = 0, \ \Delta N^{(j)} = 0 \ (j = 1, 3, ..., 2n+1),$$

и в соответствии с изложенным выше алгоритмом вычислим значения величин, стоящих в левых частях формул (18). Эти значения и будут значениями коэффициентов $E_{i,0}$ (i = 1, 2, ..., 3n+3).

Для определения величин $E_{i,k}$ (i = 1, 2, ..., 3n+3) для некоторого k > 0 поступим так: положим, что $u_i = 0$ (i = 1, 2, ..., k-1, k+1, ..., 3n+3), а $u_k = 0$, и снова вычислим значения величин, стоящих в левых частях

формул (18). Эти значения и будут значениями коэффициентов $E_{i,k}$ (i = 1, 2, ..., 3n+3).

После определения значений всех коэффициентов системы уравнений (19) решаем ее и находим значения неизвестных величин $\Delta v_j''(0)$, $\Delta Q^{(j)}$, $\Delta N^{(j)}$ (j = 1, 3, ..., 2k + 1), а через них с помощью изложенного алгоритма приращения перемещений и напряжений в точках рамы, а значит, и значения самих перемещений и напряжений, складывая приращения с найденными на предыдущих шагах значениями.

Пример. Исследуем движение железобетонной трехпролетной рамы (рис. 6), вызванное горизонтальной гармонической силой F_4 с периодом $T_4 = 5c$ и амплитудой $\hat{F}_4 = 100 \ \kappa H$. Массы материальных точек (грузов) $m_1 = m_2 = m_3 = m_4 = =35 \ T$. Вертикальные силы постоянны и равны весам грузов. Геометрические параметры: $L_1 = L_2 = L_3 = h_1 = h_2 = h_3 = h_4 = 8 \ M$. Размеры поперечных сечений: колонн – $b = 0.8 \ M$, $h = 0.28 \ M$, ригеля – $b = 0.8 \ M$, $h = 0.5 \ M$. Армирование симметричное: $S_1 = S_2 = 8,5cm^2$. Сталь марки А-III, характеристики бетона: $E_0 = 2,8\cdot10^4 \ M\Pi a, R_c = 19 \ M\Pi a, R_p = 1,9 \ M\Pi a, \Gamma_c = 0.583\cdot10^{-3}$.

Рис. 6

Как и в статьях [1-2] предполагается, что нагружение рамы происходит в два этапа. На первом (предварительном) этапе происходит постепенное увеличение массы грузов (т.е. постепенное увеличение сил тяжести) от нуля до заданного значения. Это приводит к появлению сжимающих продольных сил в колоннах,

что влияет на частоту свободных изгибных колебаний. В рассматриваемом случае период свободных колебаний $T_0 = 1,07 \ c$, что гораздо меньше периода возмущающей силы F_4 . Поэтому можно пренебречь инерционными эффектами и считать движение рамы квазистатическим. Затем «включается» сила $F_4 = \hat{F}_4 \sin \frac{2\pi}{T_4} t$. Движение точки M_4 (а

значит, и точек M_1 , M_2 , M_3 приведено на рис. 7. Заметно накопление пластических деформаций.

Вывод

Предложен метод, позволяющий исследовать квазистатичесие задачи для многопролетных железобетонных рам с учетом нелинейного поведения и пластичности бетона.

Summary

A method which enables one to investigate quasistatic problems for multispan RC frames with taking into account nonlinear behavior and plasticity of concrete is presented.

Литература

1. Фомин В.М. Применение метода граничных элементов при исследовании статики железобетонных балок и рам с учетом нелинейного поведения и пластичности бетона // Вісник ОДАБА. Вып. 54, – Одесса, 2013. – с.

2. Фомин В.М. Применение метода граничных элементов при статических расчетах статически неопределимых железобетонных балок и рам с учетом нелинейного поведения и пластичности бетона // Вісник ОДАБА. Вып. 54, – Одесса, 2013. – с

3.Фомин В.М. Дифференциальное уравнение плоского изгиба железобетонной балки с учетом пластичности бетона при сложном нагружении // Вісник ОДАБА. Вып.44, – Одесса, 2011. – с.345–353.