УСТОЙЧИВОСТЬ П-ОБРАЗНОЙ ЖЕЛЕЗОБЕТОННОЙ РАМЫ, ПОДВЕРЖЕННОЙ ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ

Фомина И.П.

Одесская государственная академия строительства и архитектуры, г. Одесса

Верхний край зоны коррозии перемещается вверх на каждой из ко-

лонн с постоянной скоростью v_0 . Глубина поврежденной зоны определяется по формуле [1]

$$h(t_1) = h_0 e^{-\beta/t_1} \,. \tag{1}$$

Здесь t_1 – время, отсчитываемое от момента t_0 начала процесса коррозии в данном поперечном сечении стержня.

Очевидно

$$t_0 = x / v_0$$
 (2)

(х - абсцисса сечения). Тогда (1) запишется так:

$$h(x,t) = h_0 e^{-\beta/(t-x/v_0)}.$$
(3)

Здесь t – время, отсчитываемое с момента начала процесса коррозии в колонне. Так как длина H_1 первого (корродированного) участка колонны равна

$$H_1(t) = v_0 t \,,$$

то формула (3) может быть записана так:

$$h(x,t) = h_0 e^{-\beta v_0 / [l_1(t) - x]}.$$
(4)

Для определения критического сочетания нагрузок P₁ и P₂ (т.е. такого,

при котором рама теряет устойчивость [2, 3]) будем использовать метод граничных элементов (см. например, [4]). Введем на каждом из стержней рамы локальную систему координат (рис. 2, на нем приведен схематический чертеж рамы, номера стержней проставлены в кружках, номера узлов - в квадратах). В такой системе координат для каждого стержня при отсутствии поперечной нагрузки по длине стержня записывается следующее равенство:

$$Y^{(i)} = A^{(i)}(l_i)X^{(i)}$$
(5)

Здесь

$$\boldsymbol{X}^{(i)} = \begin{bmatrix} B_{i}(0) y_{i}(0) \\ B_{i}(0) y_{i}'(0) \\ M_{i}(0) \\ Q_{i} \\ N_{i} \end{bmatrix}, \boldsymbol{Y}^{(i)} = \begin{bmatrix} B_{i}(l_{i}) y_{i}(l_{i}) \\ B_{i}(l_{i}) y_{i}'(l_{i}) \\ M_{i}(l_{i}) \\ Q_{i} \\ N_{i} \end{bmatrix},$$
(6)
$$\boldsymbol{A}^{(i)}(k_{i}, x_{i}) = \begin{bmatrix} 1 \ a_{1,2}(k_{i}, x_{i}) \ a_{1,3}(k_{i}, x_{i}) \ a_{1,4}(k_{i}, x_{i}) \ 0 \\ 0 \ a_{2,2}(k_{i}, x_{i}) \ a_{1,2}(k_{i}, x_{i}) \ a_{1,3}(k_{i}, x_{i}) \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{bmatrix}$$

0

(i - номер стержня, $B_i(x_i)$ - его изгибная жесткость, $M_i(x_i)$, Q_i , N_i - изгибающий момент, поперечная и продольная силы). Если поперечное сечение стержня и арматуры остаются неизменными по его длине, то функции $a_{i,k}(x_i)$ (j = 1,2,3; k = 2,3,4) имеют следующий вид:

0

0

1

0

$$a_{1,2}(k_i, x_i) = \frac{\sin k_i x_i}{k_i}, \ a_{1,3}(k_i, x_i) = \frac{1 - \cos k_i x_i}{k_i^2}, \ a_{1,4}(k_i, x_i) = \frac{k_i x_i - \sin k_i x_i}{k_i^3}, a_{2,2}(k_i, x_i) = \cos k_i x_i, \ a_{3,2}(k_i, x_i) = -k_i \sin k_i x_i, \ k_i = \sqrt{N_i / B_i}.$$
(7)

Заметим, что на рис. 2 в точке *А* показаны две составляющие опорной реакции и реактивный момент. Они представлены в виде продольной и поперечной сил и изгибающего момента в нижнем сечении стержня 1 (на чертеже показаны их положительные направления). Аналогично представлены составляющие опорной реакции и реактивный момент в точке *B*.

Разобьем стержень 1 на несколько участков, в пределах каждого из которых поперечное сечение будем считать постоянным (рис. 3). Как видно из чертежа, каждый из участков, а также его длина и ширина получили двойную нумерацию. Первый из номеров - это номер стержня, а второй - номер участка.

Определим центр тяжести поперечного сечения участка 1,*j* стержня 1 (рис. 4). Приведенная площадь поперечного сечения участка определяется по формуле

$$S_{np} = d_{1,j}b_1 + 2\frac{E_a}{E_b}S_a$$
. (8)

Здесь E_a и E_b - модули упругости арматуры и бетона соответственно, $d_{1,j} = d_1 - h(x_{j,t})$ (x_j - абсцисса нижнего сечения участка), $S_a = 2n_a\pi r_a^2$ (r_a - радиус стержня арматуры, n_a - число стержней в

одном ряду). Определяя аналогичным образом приведенный статический момент сечения относительно оси η , находим координату ξ центра $C_{1,j}$ тяжести сечения:

$$\xi_{1,j} = \frac{d_j^2 b_1 + 2d_1 S_a E_a / E_b}{2S_{np}} \,. \tag{9}$$

Будем полагать, что опорные реакции в точке A, показанные на рис. 2, приложены в центре тяжести $C_{1,1}$ поперечного сечения участка 1,1.

Рассмотрим равновесие граничного элемента, расположенного между участками 1, *j* и 1, *j*+1 стержня (рис. 5). Из уравнений равновесия получаем

$$Q_{1,j+1} = Q_{1,j}, N_{1,j+1} = N_{1,j}, M_{1,j+1}(0) =$$

= $M_{1,j}(l_{1,j}) + N_{1,j}(\xi_{1,j} - \xi_{1,j+1})$ (10)

Равенства (10) и условия непрерывности функций $y_1(x_1)$ и $y_1'(x_1)$ на границах участков могут быть записаны следующим образом:

$$\boldsymbol{X}^{(1,j+1)} = \boldsymbol{C}^{(1,j)} \boldsymbol{Y}^{(1,j)}, (11)$$

где

$$\boldsymbol{C}^{(1,j)} = \begin{bmatrix} \boldsymbol{B}_{1,j+1} / \boldsymbol{B}_{1,j} & 0 & 0 & 0 & 0 \\ 0 & \boldsymbol{B}_{1,j+1} / \boldsymbol{B}_{1,j} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \xi_{1,j} - \xi_{1,j+1} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Для первого участка имеем

$$\boldsymbol{Y}^{(1,1)} = \boldsymbol{A}^{(1,1)}(k_{1,1}, l_{1,1})\boldsymbol{X}^{(1)}, \ \boldsymbol{X}^{(1)} = \begin{bmatrix} 0\\0\\M_1\\Q_1\\N_1 \end{bmatrix},$$
(12)

для второго

$$\boldsymbol{X}^{(1,2)} = \boldsymbol{C}^{(1,1)} \boldsymbol{Y}^{(1,1)}, \, \boldsymbol{Y}^{(1,2)} = \boldsymbol{A}^{(1,2)}(k_{1,2}, l_{1,2}) \boldsymbol{X}^{(1,2)}.$$
(13)

Из (12) и (13) получаем

$$\boldsymbol{Y}^{(1,2)} = \boldsymbol{A}^{(1,2)}(k_{1,2}, l_{1,2})\boldsymbol{C}^{(1,1)}\boldsymbol{A}^{(1,1)}(k_{1,1}, l_{1,1})\boldsymbol{X}^{(1)}$$

Продолжая таким образом далее, получаем для последнего участка

$$\boldsymbol{Y}^{(1,n_{y^{q}})} = \boldsymbol{A}^{(1,n_{y^{q}})}(k_{1,n_{y^{q}}}, l_{1,n_{y^{q}}}) \prod_{i=1}^{n_{y^{q}}-1} \boldsymbol{C}^{(1,i)} \boldsymbol{A}^{(1,i)}(k_{1,i}, l_{1,i}) \boldsymbol{X}^{(1)}$$
(14)

 $(n_{yy}$ - число участков). Учитывая, что $\boldsymbol{Y}^{(1,n_{yy})} = \boldsymbol{Y}^{(1)}$, находим, что

$$\boldsymbol{A}^{(1)} = \boldsymbol{A}^{(1,n_{yy})}(k_{1,n_{yy}}, l_{1,n_{yy}}) \prod_{i=1}^{n_{yy}-1} \boldsymbol{C}^{(1,i)} \boldsymbol{A}^{(1,i)}(k_{1,i}, l_{1,i}) \,.$$
(15)

Таким образом, построена матрица $A^{(1)}$ для стержня 1. Аналогично строится матрица $A^{(3)}$ для стержня 3.

Рассмотрим равновесие граничного элемента, находящегося между стержнями 1 и 2 (рис. 6). Из уравнений равновесия находим

$$N_2 = Q_1, \ Q_2 = N_1 + P_1, \ M_2(0) = M_1(l_1).$$
 (16)

Пренебрежем продольными деформациями стержней. Отсюда следует, что

Рис. 6

$$y_2(0) = 0.$$
 (17)

Кроме того, очевидно, что

$$y_2'(0) = y_1'(l_1)$$
. (18)

Условия (14 - 16) можно записать следующим образом:

$$\boldsymbol{X}^{(2)} = \boldsymbol{D}^{(1)}\boldsymbol{Y}^{(1)} + \hat{\boldsymbol{P}}_{1}, \ \boldsymbol{D}^{(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & B_{2} / B_{1}(l_{1}) & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \ \hat{\boldsymbol{P}}_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ P_{1} \\ 0 \end{bmatrix}$$
(19)

Используя (5) при *i* = 1 и 2, а также (19), находим

$$\mathbf{Y}^{(2)} = \mathbf{A}^{(2)}(k_2, L)(\mathbf{D}^{(1)}\mathbf{A}^{(1)}\mathbf{X}^{(1)} + \hat{\mathbf{P}}_1).$$
(20)

Равенство (5) при i = 3 записывается так:

$$\boldsymbol{Y}^{(3)} = \boldsymbol{A}^{(3)} \boldsymbol{X}^{(3)}, \ \boldsymbol{X}^{(3)} = \begin{vmatrix} 0 \\ 0 \\ M_3 \\ Q_3 \\ N_3 \end{vmatrix},$$
(21)

где Q_3, N_3, M_3 - опорные реакции и реактивный момент в точке B(рис.2).

Рассмотрим теперь равновесие граничного элемента, находящегося между стержнями 2 и 3 (рис. 7). Составим уравнения равновесия

$$N_2 + Q_3 = 0,$$

 $Q_2 - N_3 - P_2 = 0,$
 $M_2(l_2) + M_3(l_3) = 0.$

Их можно записать в следующем виде:

$$Y_{5}^{(2)} + Y_{4}^{(3)} = 0,$$

$$Y_{4}^{(2)} - Y_{5}^{(3)} - P_{2} = 0,$$

$$Y_{3}^{(2)} + Y_{3}^{(3)} = 0.$$
(22)

Из формул (20) и (21) следует, что компоненты векторов $Y^{(2)}$ и $Y^{(3)}$ являются функциями шести неизвестных величин M_1 , Q_1 , N_1 , M_3 , Q_3 , N_3 .

Замечание. Следует отметить, что не только компоненты векторов

 $X^{(1)}$ и $X^{(3)}$ зависят от указанных неизвестных величин, но и элементы матриц $A^{(1)}$, $A^{(2)}$ и $A^{(3)}$ также зависят от них, так как величины k, входящие в формулы (12 - 15) и (20), являются функциями этих величин.

Равенства (22) представляют собой три уравнения относительно указанных неизвестных. Для составления дополнительных уравнений воспользуемся во-первых равенством

$$y_2'(L) = y_3'(H),$$
 (23)

а во-вторых допущением об отсутствии продольных смещений точек стержней, что позволяет записать следующие равенства:

$$y_2(L) = 0, \ y_3(H) = y_1(H).$$
 (24)

Запишем равенства (23) и (24) в следующем виде:

$$Y_{2}^{(2)} - Y_{2}^{(3)} = 0,$$

$$Y_{1}^{(2)} = 0,$$

$$Y_{1}^{(3)} - Y_{1}^{(1)} = 0.$$
(25)

Из формул (20) и (21) вытекает, что равенства (22) и (25) представляют собой систему линейных уравнений относительно не равных нулю компонент векторов $X^{(1)}$ и $X^{(3)}$, которые совпадают с неизвестными Q_1 , N_1 , M_1 , Q_3 , N_3 , M_3 . Однако, как следует из приведенного выше замечания, коэффициенты этих уравнений также являются функциями этих величин. Запишем эту систему в следующем виде:

$$\boldsymbol{U}(\boldsymbol{u},\boldsymbol{p})\boldsymbol{u} = \boldsymbol{w}(\boldsymbol{u},\boldsymbol{p}) \,. \tag{26}$$

Здесь

$$\boldsymbol{u} = \begin{bmatrix} Q_1 \\ N_1 \\ M_1 \\ Q_3 \\ N_3 \\ M_3 \end{bmatrix}, \quad \boldsymbol{p} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}.$$

Для решения задач продольно-поперечного изгиба при заданных значениях P_1 и P_2 (а он таковым является из-за того, что эти силы оказываются внецентренно приложенными вследствие несимметричной коррозии колонн) предлагается метод последовательных приближений: на первом шаге полагаем $N_1 = -P_2$, $N_3 = -P_2$, $Q_1 = M_1 = Q_3 = M_3 = 0$, тем самым определяя вектор *u*. Затем при помощи значений этих величин определяем элементы матрицы U(u,p) и вектора w(u,p) и решая систему (26), находим новые значения Q_1 , N_1 , M_1 , Q_3 , N_3 , M_3 , через них определяем новые значения элементов матрицы U(u,p) и вектора w(u,p) и т.д. Метод оказывается быстро сходящимся из-за малости значений функции h(x,t) по сравнению с размерами поперечного сечения.

При решении задач устойчивости для нахождения значения критических сил используем равенство

$$\det[\boldsymbol{U}(\boldsymbol{u},\boldsymbol{p})] = 0. \tag{27}$$

Решение этого уравнения определяет некоторую линию (назовем ее критической) в системе координат P_1 , P_2 . Зададимся начальными значениями P_1 и P_2 , а далее используем метод последовательных приближений точно так же, как и при решении задач продольно-попереч- ного

изгиба и находим значение определителя det[U(u, p)]. Если он оказывается не равным нулю, то фиксируем значение P_1 и меняя значение P_2 находим такое его значение, при котором выполняется уравнение (27), при этом для каждого значения P_2 используя метод последовательных приближений. Затем задаемся новым значение P_1 и для него находим значение P_2 , при котором выполняется (27) и т.д. Используя

полиномиальную аппроксимацию, можно найти уравнение этой линии.

Пример. Исследуем на устойчивость железобетонную раму при следующих значениях параметров: $H = 16 \ m, \ L = 16 \ m, \ E_b = = 27 \cdot 10^3 \ mTa, \ E_a = 2 \cdot 10^5 \ mTa;$ параметры поперечных сечений стержней 1,2,3: $d_1 = d_2 = \ d_3 = 0,4 \ m, \ b_1 = b_2 = b_3 = 0,8 \ m, \ \delta = 0,04 \ m;$ параметры арматуры: $r_a = 0,01 \ m, \ n_a = 8$; параметры зоны коррозии: $h_0 = 0,08 \ m, \ \beta = 7,5 \ nem, \ v_0 = 0,1 \ m/2od$.

На рис. 8 представлены графики линий критических сил для Побразной рамы, построенные при помощи изложенного выше алгоритма (значения P_1 и P_2 на графиках - в килоньютонах). Линия 1 соответствует t = 0, т.е. раме, не подверженной коррозии. Каждая точка на этой линии соответствует критическому сочетанию величин сил P_1 и P_2 (т.е. при котором наблюдается потеря устойчивости рамы). Кривая 2 соответствует t = 50 лет, а кривая 3 - t = 100 лет. Заметно значительное понижение значений критических сил с увеличением периода эксплуатации конструкции.

Вывод

Предложен алгоритм исследования устойчивости железобетонных рам при агрессивном воздействии среды, что необходимо для своевременного их усиления для обеспечения надежности конструкции.

Summary

An algorithm for investigation of stability of RC frames subjected to aggressive environmental impact is offered, what is necessary for their on-time strengthening to secure reliability of constructions.

Литература

1. Сетков В.Ю., Шибанова И.С., Рысева О.П. Действие углекислого газа на железобетонные балки и плиты промышленных зданий и сооружений // Строительство и архитектура, №12, 1984. - с. 1 - 4.

2. Киселев В.А. Строительная механика. Специальный курс (динамика и устойчивость сооружений) - Москва: Стройиздат, 1980 - 616с.

3. Вольмир А.С. Устойчивость деформируемых систем. – М.: Наука, 1967. – 984 с.

4. Баженов В.А., Коломиец Л.В., Оробей В.Ф. и др. Строительная механика. Специальный курс. Применение метода граничных элементов - Одесса: Астропринт, 2001 - 288с.