УСТОЙЧИВОСТЬ ДВУХПРОЛЕТНОЙ ЖЕЛЕЗОБЕТОННОЙ РАМЫ ПОДВЕРЖЕННОЙ ВОЗДЕЙСТВИЮ АГРЕССИВНОЙ СРЕДЫ

Фомина И.П.

Одесская государственная академия строительства и архитектуры, г. Одесса

В статье [1] была исследована устойчивость П-образной железобетонной рамы, находящейся под воздействием агрессивной среды. В настоящей работе методы, предложенные и [1], используются при исследовании устойчивости двухпролетной железобетонной рамы, также находящейся в условиях агрессивного воздействия среды. Рама является частью конструкции одноэтажного промышленного здания (рис. 1). Агрессивная среда находится внутри здания, поэтому боковые колонны рамы подвергаются несимметричному воздействию среды.

Рис. 1

Как и в работе [1] для определения критического сочетания нагрузок P_1 , P_2 и P_3 будем использовать метод граничных элементов [2]. На каждом из стержней выбрана локальная система координат (рис. 2, номера стержней проставлены в кружках, номера узлов - в квадратах). Для каждого стержня записываем следующее равенство:

$$Y^{(i)} = A^{(i)}(l_i)X^{(i)}$$
(1)

Здесь

$$\boldsymbol{X}^{(i)} = \begin{bmatrix} B_{i}(0) y_{i}(0) \\ B_{i}(0) y_{i}'(0) \\ M_{i}(0) \\ Q_{i} \\ N_{i} \end{bmatrix}, \boldsymbol{Y}^{(i)} = \begin{bmatrix} B_{i}(l_{i}) y_{i}(l_{i}) \\ B_{i}(l_{i}) y_{i}'(l_{i}) \\ M_{i}(l_{i}) \\ Q_{i} \\ N_{i} \end{bmatrix},$$
(2)

$$\mathbf{A}^{(i)}(k_i, x_i) = \begin{bmatrix} 1 & a_{1,2}(k_i, x_i) & a_{1,3}(k_i, x_i) & a_{1,4}(k_i, x_i) & 0 \\ 0 & a_{2,2}(k_i, x_i) & a_{1,2}(k_i, x_i) & a_{1,3}(k_i, x_i) & 0 \\ 0 & a_{3,2}(k_i, x_i) & a_{2,2}(k_i, x_i) & a_{1,2}(k_i, x_i) & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(*i* - номер стержня, $B_i(x_i)$ - его изгибная жесткость, $M_i(x_i)$, Q_i , N_i - изгибающий момент, поперечная и продольная силы). Если поперечное сечение стержня и арматуры остаются неизменными по его длине, то функции $a_{j,k}(x_i)$ (j = 1,2,3; k = 2,3,4) имеют следующий вид:

$$a_{1,2}(k_i, x_i) = \frac{\sin k_i x_i}{k_i}, \ a_{1,3}(k_i, x_i) = \frac{1 - \cos k_i x_i}{k_i^2}, \ a_{1,4}(k_i, x_i) = \frac{k_i x_i - \sin k_i x_i}{k_i^3},$$

$$a_{2,2}(k_i, x_i) = \cos k_i x_i, a_{3,2}(k_i, x_i) = -k_i \sin k_i x_i, k_i = \sqrt{N_i / B_i}.$$
(3)

На рис. 2 в точках А, В и С показаны две составляющие опорной ре-

где

заны две составляющие опорной реакции и реактивный момент. Они представлены в виде продольной и поперечной сил и изгибающего момента в нижнем сечении стержней 1, 2 и 3 (на чертеже показаны их положительные направления).

Следуя [1] строим матрицы $A^{(1)}$ и $A^{(5)}$ для стержней 1 и 5. Для построения матрицы $A^{(3)}$ поступаем аналогично. Разбиваем стержень 3 на несколько участков, в пределах каждого из которых поперечное сечение будем считать постоянным (рис. 3). Каждый из участков, а также его длина и ширина получили двойную нумерацию. Первый из номеров - это номер стержня, а второй - номер участка.

Поперечное сечение каждого из участков представлено на рис. 4. Учитывая условия непрерывности функций $y_1(x_1)$ и $y_1'(x_1)$ на границах участков, можно записать следующее соотношение:

$$\boldsymbol{X}^{(3,j+1)} = \boldsymbol{C}^{(3,j)} \boldsymbol{Y}^{(3,j)}, \qquad (4)$$

$$\boldsymbol{C}^{(3,j)} = \begin{bmatrix} B_{3,j+1} / B_{3,j} & 0 & 0 & 0 & 0 \\ 0 & B_{3,j+1} / B_{3,j} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Для первого участка имеем

$$\boldsymbol{Y}^{(3,1)} = \boldsymbol{A}^{(3,1)}(k_{3,1}, l_{3,1})\boldsymbol{X}^{(3)}, \ \boldsymbol{X}^{(3)} = \begin{bmatrix} 0\\0\\M_3\\Q_3\\N_3 \end{bmatrix},$$
(5)

для последующих

$$\boldsymbol{X}^{(3,i)} = \boldsymbol{C}^{(3,i-1)} \boldsymbol{Y}^{(3,i-1)}, \, \boldsymbol{Y}^{(3,i)} = \boldsymbol{A}^{(3,i)} (k_{3,i}, l_{3,i}) \boldsymbol{X}^{(3,i)}.$$
(6)

Из (5) и (6) получаем для последнего участка

$$\boldsymbol{Y}^{(3,n_{yy})} = \boldsymbol{A}^{(3,n_{yy})}(k_{3,n_{yy}}, l_{3,n_{yy}}) \prod_{i=1}^{n_{yy}-1} \boldsymbol{C}^{(3,i)} \boldsymbol{A}^{(3,i)}(k_{3,i}, l_{3,i}) \boldsymbol{X}^{(3)}$$
(7)

 $(n_{yy}$ - число участков). Учитывая, что $\boldsymbol{Y}^{(3,n_{yy})} = \boldsymbol{Y}^{(3)}$, находим, что

$$A^{(3)} = A^{(3,n_{yq})}(k_{3,n_{yq}}, l_{3,n_{yq}}) \prod_{i=1}^{n_{yq}-1} C^{(3,i)} A^{(3,i)}(k_{3,i}, l_{3,i}),$$
(8)

т.е. получаем матрицу $A^{(3)}$ для стержня 3.

В [1] получено следующее соотношение:

$$\boldsymbol{X}^{(2)} = \boldsymbol{D}^{(1)} \boldsymbol{Y}^{(1)} + \hat{\boldsymbol{P}}_{1}, \ \boldsymbol{D}^{(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & B_{2} / B_{1}(l_{1}) & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \ \hat{\boldsymbol{P}}_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ P_{1} \\ 0 \end{bmatrix},$$
(9)

откуда следует, что

$$\boldsymbol{Y}^{(2)} = \boldsymbol{A}^{(2)}(k_2, L)(\boldsymbol{D}^{(1)}\boldsymbol{A}^{(1)}\boldsymbol{X}^{(1)} + \hat{\boldsymbol{P}}_1).$$
(10)

Равенство (1) при i = 3 и i = 5 записывается так:

$$\boldsymbol{Y}^{(i)} = \boldsymbol{A}^{(i)} \boldsymbol{X}^{(i)}, \ \boldsymbol{X}^{(i)} = \begin{bmatrix} 0\\0\\M_i\\Q_i\\N_i \end{bmatrix} (i = 3,5),$$
(11)

где Q_i, N_i, M_i (i = 3, 5) - опорные реакции и реактивные моменты в точках *В* и *С* (рис.2).

Рассмотрим теперь равновесие граничного элемента 2, находящегося между стержнями 2, 3 и 4 (рис. 5). Составим уравнения равновесия

$$N_4 - N_2 - Q_3 = 0,$$

$$Q_2 - N_3 - Q_4 - P_2 = 0,$$
 (12)

$$M_4(0) - M_2(L) - M_3(H) = 0.$$

Учтем также соотношения

$$y_4(0) = 0, \ y_4'(0) = y_2'(L)$$
. (13)

Равенства (12) и (13) можно записать в следующем виде:

$$\boldsymbol{X}_{1}^{(4)} = \boldsymbol{0}, \, \boldsymbol{X}_{2}^{(4)} = \boldsymbol{Y}_{2}^{(2)}, \, \boldsymbol{X}_{3}^{(4)} = \boldsymbol{Y}_{3}^{(2)} + \boldsymbol{Y}_{3}^{(3)}, \, \boldsymbol{X}_{4}^{(4)} = \boldsymbol{Y}_{4}^{(2)} + \boldsymbol{Y}_{5}^{(3)} + \boldsymbol{P}_{2},$$

$$\boldsymbol{X}_{5}^{(4)} = \boldsymbol{Y}_{4}^{(3)} + \boldsymbol{Y}_{5}^{(2)}.$$
(14)

Из (14) следует

$$\boldsymbol{X}^{(4)} = \boldsymbol{D}^{(2)} \boldsymbol{Y}^{(2)} + \boldsymbol{D}^{(3)} \boldsymbol{Y}^{(3)} + \hat{\boldsymbol{P}}_{2}, \qquad (15)$$

где

Из (10), (11) и (15) находим

$$Y^{(4)} = A^{(4)}(k_4, L)X^{(4)} = A^{(4)}(k_4, L) \{ D^{(2)}A^{(2)}(k_4, L) [D^{(1)}A^{(1)}X^{(1)} + \hat{P}_1] + D^{(3)}A^{(3)}X^{(3)} + \hat{P}_2 \}.$$
(16)

Из формул (11) и (16) следует, что компоненты векторов $Y^{(4)}$ и $Y^{(5)}$ являются функциями девяти неизвестных величин M_i , Q_i , N_i (i = 1,3,5). Заметим, что элементы матриц $A^{(1)}$, $A^{(2)}$ и $A^{(3)}$ также зависят от M_i ,

Заметим, что элементы матриц $A^{(1)}$, $A^{(2)}$ и $A^{(3)}$ также зависят от M_i , Q_i , N_i (i = 1,3,5), так как величины k, входящие в формулы (3), являют-ся функциями этих величин.

Рассмотрим равновесие граничного элемента 3, расположенного между стержнями 4 и 5 (рис. 6). Уравнения равновесия:

$$N_4 + Q_5 = 0,$$

 $Q_4 - N_5 - P_3 = 0,$
 $M_4(L) + M_5(H) = 0$

Они могут быть представлены в следующем виде:

$$Y_{5}^{(4)} + Y_{4}^{(5)} = 0,$$

$$Y_{4}^{(4)} - Y_{5}^{(5)} - P_{3} = 0,$$
 (17)

$$Y_{3}^{(4)} + Y_{3}^{(5)} = 0.$$

Равенства (17) представляют собой три уравнения относительно указанных выше девяти неизвестных. Для составления дополнительных уравнений воспользуемся соотношениями

$$y_2'(L) = y_3'(H), \ y_4'(L) = y_5'(H),$$
 (18)

а также равенствами, вытекающими из допущения об отсутствии продольных смещений точек стержней:

$$y_2(L) = 0, y_4(L) = 0, y_3(H) = y_1(H), y_5(H) = y_1(H).$$
 (19)

Запишем (18) и (19) в следующем виде:

$$Y_{2}^{(2)} - Y_{2}^{(3)} = 0,$$

$$Y_{2}^{(4)} - Y_{2}^{(5)} = 0,$$

$$Y_{1}^{(2)} = 0,$$

$$Y_{1}^{(4)} = 0,$$

$$Y_{1}^{(3)} - Y_{1}^{(1)} = 0,$$

$$Y_{1}^{(5)} - Y_{1}^{(1)} = 0$$

(20)

Равенства (17) и (20) представляют собой систему уравнений относительно неизвестных M_i , Q_i , N_i , (i = 1, 3, 5). Запишем эту систему в следующем виде:

$$\boldsymbol{U}(\boldsymbol{u},\boldsymbol{p})\boldsymbol{u} = \boldsymbol{w}(\boldsymbol{u},\boldsymbol{p}) \,. \tag{21}$$

Здесь

$$\boldsymbol{u} = \begin{bmatrix} \boldsymbol{Q}_1 \\ \boldsymbol{N}_1 \\ \boldsymbol{M}_1 \\ \boldsymbol{Q}_3 \\ \boldsymbol{N}_3 \\ \boldsymbol{M}_3 \\ \boldsymbol{Q}_5 \\ \boldsymbol{N}_5 \\ \boldsymbol{M}_5 \end{bmatrix}, \quad \boldsymbol{p} = \begin{bmatrix} \boldsymbol{P}_1 \\ \boldsymbol{P}_2 \\ \boldsymbol{P}_3 \end{bmatrix}.$$

Для решения задач продольно-поперечного изгиба при заданных значениях P_1 , P_2 и P_3 используем метод последовательных приближений: на первом шаге полагаем $N_1 = -P_2$, $N_3 = -P_2$, $N_5 = -P_3$, $Q_1 = Q_3 = Q_5 =$ $M_1 = M_3 = M_5 = 0$, тем самым определяя вектор *u*. Затем определяем элементы матрицы U(u,p) и вектора w(u,p) и решая систему (21), находим новые значения M_i , Q_i , N_i (i = 1,3,5), через них определяем новые значения элементов матрицы U(u,p) и вектора w(u,p) и т.д. Метод оказывается быстро сходящимся из-за малости значений функции h(x,t) по сравнению с размерами поперечного сечения.

При решении задач устойчивости для нахождения значения критических сил используем уравнение

$$\det[\boldsymbol{U}(\boldsymbol{u},\boldsymbol{p})] = 0. \tag{22}$$

Решение этого уравнения определяет некоторую поверхность (назовем ее критической) в системе координат P_1 , P_2 , P_3 . Зададимся некоторым значением $P_2 = P_2^{(0)}$. Это значение определит кривую, получающуюся в результате пересечения упомянутой поверхности плоскостью $P_2 = P_2^{(0)}$. Затем задаемся начальными значениями P_1 и P_3 и используем метод последовательных приближений точно так же, как и при решении задач продольно-поперечного изгиба, в результате находим значение определителя det[U(u, p)]. Если он оказывается не равным нулю, то фиксируем значение P_1 и меняя значение P_3 находим такое его значения, при котором выполняется уравнение (22), при этом для каждого значения P_3 используя метод последовательных приближений. Затем задаемся новым значением P_1 и для него находим значение P_3 , при котором выполняется (27) и т.д. Используя полиномиальную аппроксимацию, можно найти уравнение сечения критической поверхности плоскостью $P_2 = P_2^{(0)}$. Меняя значения $P_2^{(0)}$, строим новое сечение критической поверхности и т.д.

Пример. Исследуем на устойчивость железобетонную раму при следующих значениях параметров: $H = 16 \text{ м}, L = 16 \text{ м}, E_b = 27 \cdot 10^3 \text{м} \Pi a$,

 $E_a = 2 \cdot 10^5 M \Pi a$; параметры поперечных сечений стержней 1,2,3:

 $d_1=d_2==d_3=0,4m,b_1=b_2$ = $b_3=0,8$ м, $\delta=0,04$ м; параметры арматуры: r_a = 0,01м, n_a = 8; параметры зоны коррозии: h_0 = 0,08м, β = 7,5 лет, v_0 = 0,1 м/200.

На рис. 7 представлены графики сечений критических поверхностей, построенные при помощи изложенного выше алгоритма (линии 1, 2, 3 для $P_2 = 0$ и t = 0, t=50 лет, t = 100 лет соответственно; линии 4, 5, 6 для $P_2 = 5000\kappa H$ и t= 0, t = 50 лет, t = 100

понижение значений критических сил с увеличением периода эксплуатации конструкции.

Вывод

Произведен расчет на устойчивость двухпролетной железобетонной рамы при агрессивном воздействии среды, что необходимо для своевременного ее усиления для обеспечения надежности конструкции.

Summary

Stability structural analysis of two-span RC frame subjected to aggressive environmental impact is carried out, what is necessary for itsr on-time strengthening to secure reliability of constructions.

Литература

1. Фомина И.П. Устойчивость П-образной железобетонной рамы подверженной воздействию агрессивной среды// Вісник ОДАБА. Вып.57, – Одесса, 2015. – с.346-444.

2. Баженов В.А., Коломиец Л.В., Оробей В.Ф. и др. Строительная механика. Специальный курс. Применение метода граничных элементов - Одесса: Астропринт, 2001. - 288с.