СТАТИСТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННОЙ ПОРОВОЙ СТРУКТУРЫ ТЕПЛОИЗОЛЯЦИОННЫХ КОМПОЗИТОВ

И.В.Довгань, В.Я.Керш, А.В.Колесников, С.В.Семенова

Одесская государственная академия строительства и архитектуры

Одним из актуальных направлений строительного материаловедения, быстро развивающихся в настоящее время, является получение энергосберегающих материалов и изделий из них.

Анализ структуры и свойств таких материалов может быть проведен различными методами, некоторые из которых основываются на исследовании структурной организации материалов [1]. Понятие структурной организации охватывает все составляющие каждого пространственного уровня, одним из которых является макроструктура, формирующаяся структурой пор и межпоровых перегородок. При исследовании на этом масштабном уровне оказывается возможным рассмотреть на плоском препарате каким образом поры располагаются в пространстве.

Рассматриваемые структуры могут быть исследованы с помощью оптических методов – компьютерной микроскопии. Предложенная процедура, основанная на точечной аппроксимации рассматриваемых объектов, связана с главными предположениями:

1. Размеры исследуемых объектов малы, ими можно пренебречь и основываться на их отображении в виде отдельных точек.

2. Таких объектов в рассматриваемом препарате не слишком много, в противном случае начинает играть роль фактор упаковки и геометрией объекта пренебречь нельзя.

В качестве точечных объектов такого вида можно использовать: частицы составляющих композита, поры и минеральные новообразования, проявляемые специальной обработкой.

Процесс исследования таких структур в алгоритмизированном виде частично рассмотрен в [2]. Изучение статистических свойств пространственного распределения точечных объектов может быть проведено исходя из профиля восстановления плотности [3], который представляет собой гистограмму распределения пар пор или других точечных объектов по расстояниям между ними. Зависимости такого же вида могут быть получены при вычислении радиальной функции

распределения в теории жидкого состояния и аморфных тел.

для пространственной структуры пор 18 образцов

Профиль восстановления плотности может служить основой для построения регрессионных моделей.

Наблюдаемое распределение удобно истолковать исходя из аналогии со строением жидкостей и аморфных тел. Для последних, в отличие от кристаллов, наблюдаются широкие максимумы радиальной функции распределения, соответствующие координационным сферам атомов и молекул или ионов. Здесь также оказывается возможным говорить о координационных сферах пор. соответствующих локальным максимумам полученной функции. Такие максимумы выражены в разной степени у различных образцов и приходятся на 40-80 мкм. У образцов исключением большинства за 4,8,11 корреляции с возрастанием расстояния убывают и наблюдается в основном лишь ближний порядок. Для небольшой группы упомянутых выше образцов периодическая составляющая сохраняет амплитуду, что свидетельствует о признаках дальнего порядка и квазикристаллического распределения

пор по объему. Качественное рассмотрение выявленных характеристик пространственного строения позволяет говорить о хорошо выраженных аналогиях с системами статистической физики, теории жидкостей и аморфных тел [4]. Привлечение таких аналогий, доведенных до количественных отношений, представляется чрезвычайно полезным для материаловедения. Кроме того, появление периодических структур рассматривать признаков процессов можно как один ИЗ самоорганизации. Для рассмотренных выше трех образцов следствия таких процессы выражены в большей степени, чем для остальных (где они также имеют место, особенно на малых расстояниях).

Профиль восстановления плотности может служить основой для построения регрессионных моделей. С этой целью статистическому исследованию подверглась пространственная зона радиуса 200 мкм, окружающая каждую пору. Соответствующее расстояние было разделено на 10 бинов гистограммы. Для каждого бина, исходя из профиля восстановления плотности, определялась доля пар пор, находящаяся в соответствующем диапазоне расстояний.

подвергались Полученные данные далее статистическому регрессионные строились исследованию [5] _ зависимости эксплуатационных свойств от распределения межпоровых расстояний. Поскольку при первичном исследовании интерес представлял весь диапазон расстояний, рассматривались полные линейные регрессионные модели без отбора значимых членов. По результатам регрессионного моделирования были построены графики зависимости «наблюдаемаяпредсказанная величина» для различных характеристик таких как, прочность на сжатие (рис.3), теплопроводность (рис.4) и т. д.

Regression Analysis: Rc versus d20; d40; ...

```
The regression equation is

Rc = 8,59 - 13,4 d20 - 16,0 d40 - 14,2 d60 - 14,4 d80 -

20,0 d100 - 46,8 d120 - 2,9 d140 + 20,2 d160 + 11,1 d180

- 76,2 d200

S = 0,2921 R-Sq = 91,1% R-Sq(adj) = 78,5%

Analysis of Variance
```

DF	SS	MS	F	P
10	6,14259	0,61426	7,20	0,008
7	0,59746	0,08535		
17	6,74005			
	DF 10 7 17	DF SS 10 6,14259 7 0,59746 17 6,74005	DF SS MS 10 6,14259 0,61426 7 0,59746 0,08535 17 6,74005	DF SS MS F 10 6,14259 0,61426 7,20 7 0,59746 0,08535 17 6,74005


```
Regression Analysis: Lamb versus d20; d40; ...
```

The regression equation is Lamb = 0,382 - 0,351 d20 - 0,956 d40 - 0,272 d60 - 0,074d80 - 1,02 d100- 0,981 d120 - 0,461 d140 + 0,725 d160 -0,105 d180 - 2,58 d200 S = 0,01021R-Sq = 86,6%R-Sq(adj) = 67,4%Analysis of Variance Source D SS MS Ρ F Regression 10 0,0046987 0,0004699 4,51 0,029 Residual Error 7 0,0007291 0,0001042 Total 17 0,0054278 Total 17 0,0054278

Рис.4. График зависимости «наблюдаемая-предсказанная величина» для теплопроводности

Выводы

характеристики приведенных регрессионных Статистические моделей, такие, как коэффициенты детерминации R², указывают на рассматриваемых существенную взаимосвязь структурных характеристик с различными эксплуатационными свойствами. Такие особенно теплопроводности зависимости, для плотности, И прочностных характеристик, можно использовать в качестве основы для экспресс-методов контроля соответствующих параметров.

Summary

The methods of studying the spatial pore structure of the thermal insulation composite with regression models were considered. The correlations of operational properties and the spatial characteristics of the materials were found.

Литература

1. Керш В.Я., Колесников А.В., Керш Д. В. Методы структурной оптимизации теплоизоляционных композитов. Енергоефективність в будівництві та архітектурі. Науково – технічний збірник .- Київ, КНУБА, 2014, с. 123-127.

2. Статистическое исследование пространственной организации материалов методом квадратных сеток. Довгань И.В., Колесников А.В., Кириленко Г.А., Дмитренко М.П. Вестник ОГАСА №57.

3. Rodieck R. W. The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis Neurosci, 1991, v. 6, 95–111 pp.

4. Скрышевский А. Ф. Структурный анализ жидкостей и аморфных тел. – М., «Высшая школа», 1980, 328 с.

5. Ляшенко Т. В. О математических моделях в строительном материаловедении, «Наука та будівництво», 2015, 1, с. 10-17.