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Abstract. Based on the homogenization method, we propose an asymptotic approach to 

evaluate effective transport properties of a fibre-reinforced composite material. The cell problem is 

solved through the shape perturbation technique. The approach is valid for all values of the 

components’ volume fractions and properties. The obtained results are in line with other authors’ 

data. 

 

Introduction. Theoretical prediction of effective transport properties of composite materials 

is an important problem in science and engineering receiving considerable attention of many 

authors (for detailed reviews of the subject see [1–4]). In the present paper we shall discuss it with a 

reference to the heat conductivity, however, all following assumptions also stay true for other 

transport coefficients such as the electric conductivity, the diffusivity, the dielectric constant, the 

magnetic permeability and so on. Many of known methods are able to provide accurate numerical 

results only in certain partial cases of the problem: when volume fraction of one of the components 

is relatively small (or large), when physical properties of the components are not too distinct, etc. 

As usual, the main computational difficulties arise when rapid oscillations of physical fields occur 

in the composite on micro level (e.g., in the case of nearly touching perfectly conductive 

inclusions). We propose an asymptotic approach which allows to obtain approximate analytical 

solutions valid for all values of the components’ volume fractions and properties. 

Our procedure is based on the asymptotic homogenization method [5–9]. The main idea 

consists in the introduction of two scales of spatial co-ordinates and thus in separating slow and fast  

components of the solution. Slow components represent changing of physical fields (e.g., 

temperature) in the composite on macro level, within the whole sample of the material, meanwhile 

fast ones are intended to describe local variations on micro level. Due to the periodicity of the 

medium fast components can be determined from so called cell boundary value problem considered 

within a distinguished periodically repeatable unit cell of the composite structure. Further 

application of the volume-integral homogenizing operator allows to establish a link from the micro 

mechanical response to the behaviour of the material on macro level and to evaluate the effective 

transport properties. As a rule, the solution of the cell problem presents the main difficulty in 

practical applications of the homogenization method. Here we develop an approximate analytical 

solution of the cell problem using the underlying principles of the boundary shape perturbation 

technique [10]. 

Governing relations and homogenization procedure: Let us consider steady heat transfer in 

transverse direction through a fibre-reinforced composite material consisting of a hexagonal array 

of cylindrical inclusions embedded in an isotropic matrix (Fig. 1); the typical length of 

heterogeneities l  is supposed to be much smaller than the length L  of the whole sample of the 

material ( l L ). The governing relations can be written in the form of Laplace equations: 

                                          
2 a 2 a

a

2 2

2 3

T T
q f

x x

  
   

  
,                                                 (1) 

here and in the sequel variables indexed by "m" correspond to the matrix, indexed by "in" 

correspond to inclusions, the index "a" takes both of these references "a" "m"," in" . In the 
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formula above aq  are the conductivities of the components, aT  is the function of temperature 

distribution; f  is the density of heat sources. The perfect bonding conditions at the components’ 

interface   correspond to the equalities of temperatures and heat fluxes: 

                                                m inT T


 ,
m in

m inT T
q q



 


 n n
,                                       (2) 

where  n  is the normal derivative to  . 

We go on to study the input boundary value problem (1), (2) by means of the homogenization 

method. Let us introduce a natural small parameter 

                                                       l L  , 1                                                  (3) 

characterizing the rate of heterogeneity of the composite structure. Then the scale of co-

ordinates is changed. Instead of the original variables sx , 

s 1,2,3  we introduce slow co-ordinates 

                                                        s sx x                                                                               (4) 

and fast ones 

                                                       1

s sy x   ,                                                                          (5) 

here for the reason of convenience slow co-ordinates are denoted by the previous notations sx . 

The spatial derivatives are transformed as follows: 

                                                     1

s s sx x y

  
  

  
.                                                             (6) 

Slow co-ordinates are used for study of the problem on macro level, within the whole sample 

of the material. Fast ones are intended for the investigation of the composite structure on micro 

level, within a distinguished unit cell (Fig. 2). This allows to separate slow and fast components of 

the solution. The length of the side of the unit cell in co-ordinates sx  equals l  (Fig. 1), meanwhile in 

co-ordinates sy  it equals L  (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The temperatures aT  are searched as the asymptotic expansions 

 

                                   a a 2 a

0 s 1 s s 2 s sT T x T x ,y T x ,y ...      .                                             (7) 

 

Here the first term m in

0 0 0T T T   represents the homogeneous component of the temperature 

field; it changes slowly on the scale of the whole material and does not depend on fast variables. All 
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Fig. 1. Composite structure 

under consideration. Fig. 2. Periodically repeatable unit cell. 
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next terms a

iT , i 1,2,3,...  describe local variations of the temperature on the scale of 

heterogeneities. The micro periodicity of the medium induces the following periodicity conditions 

for a

iT : 

                                          a a

i s s i s sT x ,y T x ,y L  .                                                            (8) 

We substitute relations (4)–(6) and series (7) into the input problem (1), (2). Collecting 

coefficients at terms of equal powers of   one comes to a recurrent sequence of boundary value 

problems: 
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,                                                                       (9) 
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                                              (13) 
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;                                                 (14) 

 

where i  is the components’ interface in the unit cell,  k  is the normal derivative to i  written 

in fast variables. 

The first boundary value problem (9), (10) is satisfied trivially since 0T  does not depend on 

fast co-ordinates ( 0 s 0T y T 0     k ). Equations (11), (12) define the cell problem, owing to the 

periodicity of a

1T  by sy  (8) it is considered within only one distinguished unit cell. The solution of 

the cell problem allows to determine the local variations of the temperature a

1T . The effective heat 

conductivity q  can be evaluated from the next boundary value problem (13), (14). Let us apply to 

equation (13) the homogenizing operator    
m in
i i

2 3 2 3dy dy dy dy
 

    . Terms containing a

2T  are 

eliminated by means of Green’s theorem taking into account the boundary conditions (14) and the 

periodicity relations (8). After routine transformations we obtain 
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                                   (15) 

 

where c  is the inclusion’s volume fraction,    2 2c 2 A 3 3L 0... 2 3     Substituting into 

equation (15) expressions for a

1T  evaluated below we shall come to so called homogenized equation 
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,                                                        (16) 

 

where the effective conductivity q  can de derived in an explicit analytical form after the 

evaluation of the integrals in equation (15). However, in the present paper we calculate these 

integrals numerically in program package Maple using standard in-built subroutines. 

Solution of the problem: The solution of the cell problem presents one of the main 

difficulties in practical applications of the homogenization method. Interactions between 

neighbouring inclusions induce rapid oscillations of the temperature field on micro level. As the 

inclusions’ volume fraction and the contrast between the components’ conductivities increase the 

local temperature gradient can grow significantly, in this case the overall behaviour of the material 

is strongly governed by the specific geometry of the micro structure. Then many of commonly used 

methods may face computational difficulties: analytical approaches, which represent distributions 

of physical fields by various infinite series, can lack convergence and therefore a number of 

additional terms of the series need to be calculated; the finite elements method can require 

drastically increase in the density of the discretization mesh; etc. In the present paper we develop an 

approximate analytical solution of the cell problem valid for all values of the components’ volume 

fractions and properties using the underlying principles of the boundary shape perturbation 

technique [10]. The basic idea of this approach consists in searching an asymptotic solution of the 

given boundary value problem in the form of an expansion by a natural small parameter reflecting a 

discrepancy in shapes between the input domain and a certain relatively simple geometrical figure. 

The rigorous mathematical justification as well as convergence estimations of the procedure were 

given by Guz and Nemish [10]. 

Following the boundary shape perturbation technique we replace in the first approximation 

the square contour of the outer boundary i,0  of the unit cell by a circle of radius R  (Fig. 2), find 

the solution of the cell problem (8), (11), (12) in polar co-ordinates 2 2

2 3r y y  , 

 3 2arctan y y   assuming R const  and finally introduce the dependence of the distance R  

upon the polar angle  R R   in such a way that to reproduce the original hexagonal shape of the 

unit cell. The mathematical sense of this simplification is that we satisfy the periodicity and 

boundary conditions (8), (12) strictly, but involve a certain residual gap into the constitutive 

equation (11), which is to be compensated in the next approximations. The local variations of the 

temperature a

1T  are derived as follows: 

                               m 1 0
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k
6 3

 
    at  k k 1

3 3

 
    , k 0,1,2,... . 

 

where    in m in mq q q q    . 

Numerical results: In Fig. 3 the developed solution for the effective conductivity q  is 

compared with results of Perrins et al. [11] and Vanin [12] at different values of the components’ 

properties. Perrins’ approach is based on the idea inspired by Lord Rayleigh to describe polarization 

of each inclusion in an external field by an infinite set of multipole moments. Then corresponding 

multipole coefficients can be calculated from an infinite set of linear equations. Application of 
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digital computers allows to take into account a large number of multipoles and to improve 

efficiently the computational accuracy of the method. Vanin’s solution consists in a representation 

of physical fields in the composite by certain complex multi-periodic functions which are further 

determined by means of series expansions in powers of local co-ordinates. It should be pointed out 

that both Perrins’ and Vanin’s methods are not applicable in the limiting case of perfectly 

conductive nearly touching inclusions ( in mq q   ,  c 2 3  ) when rapid oscillations of the 

temperature field occur on micro level and the magnitude of the effective conductivity with respect 

to the conductivity of the matrix tends to infinity ( mq q  ). Our approach allows to predict this 

case correctly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions: In the present paper we proposed an asymptotic approach for evaluating the 

effective transport properties of the fibre-reinforced composite material consisting of the regular 

hexagonal array of cylindrical inclusions embedded in the isotropic matrix. Our procedure is based 

on the homogenization method. The cell problem is solved using the underlying principles of the 

boundary shape perturbation technique. As the results we derive approximate analytical solutions 

for the effective heat conductivity and for the local distributions of the temperature field. The 

significant advantage of the developed procedure is that it is applicable for all values of the 

components’ volume fractions and properties. In particular, the obtained solutions work well in 

cases when rapid oscillations of the temperature occur on micro level (e.g., in the case of perfectly 

conductive nearly touching inclusions), while many of commonly used methods may face 

computational difficulties. Extension of the proposed approach to other types of periodic composite 

structures is a subject to further research. 
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