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On the basis of wavelet analysis and multifractal formalism it has been carried out an analysis of frac-
tal structures in the wave processes (capillary-gravitational ripple).  
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Introduction. In last years it is of a great importance the experimental and theoretical 

studying of the non-linear dynamical systems with aim to discover the fractal features and el-
ements of dynamical chaos (e.g. [1-18]).  One of the effective approaches to solving such a 
problem is the multifractal and wavelet analyses. The foundations and application information 
on the continuous wavelet transform-based method of multifractal analysis are presented in 
Ref. [12]. An extension of the concept of multifractals to irregular functions through the use 
of wavelet transform modulus maxima and potential and limitations of the multifractal for-
malism in the study of non-stationary processes and short signals are in details considered in 
these references. Especial attention is turned to the multifractality loss effects in the dynamics 
of different types of systems. A review of fundamental results on the manifestation of fractal 
structure in wave processes is presented in [1]. Some patterns of the wave scattering and radi-
ation by fractal structures are examined. Principal methods of random signal analysis are de-
scribed to reveal different fractal structures associated with these signals and data on the wave 
field fractal properties are widely discussed in literature.  One of the attractive examples of 
the fractal structures in the wave fields is the fractal ones in the wind waves on the sea sur-
face. As it is indicated in many references (e.g. [1]) here it is possible an effect of the rays 
chaos. It has been defined that the fractal features are available in the shape of the disturbed 
sea surface as for determinative as random waves. In many papers (e.g. [1-4,13,14]) the flow 
exponential spectra of the wind waves with exponent 11/3 and 4 for gravitate waves are used 
(for capillary waves it is equal to 17/6).  In fact, here the rang of scales of the fractal behavior 
is limited by the distortion correlation radius. It is important to note that a scattering of the 
waves on the sea surface can be represented as a scattering on the fractals. In paper by Elgar 
and Mayer-Kress (see Refs. in [1]) another approach is used in studying the fractal properties 
of the distortion. In fact a dimension of the attractor in the phase space is defined by the 
Tackens algorithm.  It is shown that the surface distortion is not governed by finite dimension 
dynamical system with a strange attractor. In papers of Zaslavsky et al (e.g. [5]) the fractal 
properties of the sea surface have been considered on the scales which are more than the dis-
tortion correlation radius. In particular, on the basis of analyzing the aero-photo images  it has 
been found the fractality in distribution of the zones for waves falling (d=0,5). In paper by 
Naugolnyh-Zosimov (see Refs. in [1] the fractal properties of the sea surface have been con-
sidered too and the laser scanning locator measurements of distribution of the mirror dots 
along space-temporal line, defined by the vessel running. The cited measurements were car-
ried out in the tropical Atlantic in the opened ocean, where the tropical passates provided the 
stationary developed distortion during several days. In fact, multi-hours data for intensity of 
the capillary ripple are received. In our paper we have carried out multifractal analysis of 
some patterns of the wave scattering, in particular, non-linear dynamical effects in the indicat-
ed wave processes. The spatial spectrum of the large scaled changing intensity of the capil-
lary-gravitational ripple according to the laser scanning data has been studied.     
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 Method. Let us further consider wavelet analysis and multi-fractal formalism, follow-
ing Refs.  [11,15-18]. Since last decades, many scientists use the new powerful tool based on 
the wavelet decomposition for analyzing various signals. At present, the family of analyzing 
function dubbed wavelets is being increasingly used in problems of pattern recognition; in 
processing and synthesizing various signals; in analysis of images of any kind (X-ray picture 
of a kidney, an image of mineral, etc.); for study of turbulent fields, for contraction (compres-
sion) of large volumes of information, and in many other cases. Wavelets are fundamental 
building block functions, analogous to the sine and cosine functions. Fourier transform ex-
tracts details from the signal frequency, but all information about the location of a particular 
frequency within the signal is lost. At the expense of their locality the wavelets have ad-
vantages over Fourier transform when non-stationary signals are analyzed. Here, we use non-
decimated wavelet transform that has temporal resolution at coarser scales. 
 The dilation and translation of the mother wavelet ψ(t) generates the wavelet as fol-
lows: ψj,k(t) = 2j/2ψ(2jt – k). The dilation parameter j controls how large the wavelet is, and the 
translation parameter k controls how the wavelet is shifted along the t-axis. For a suitably 
chosen mother wavelet ψ(t), the set {ψj,k}j,k provides an orthogonal basis, and the function f 
which is defined on the whole real line can be expanded as 
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where the maximum scale J is determined by the number of data, the coefficients c0k represent 
the lowest frequency smooth components, and the coefficients djk deliver information about 
the behavior of the function f concentrating on effects of scale around 2–j near time k × 2–j. 
This wavelet expansion of a function is closely related to the discrete wavelet transform 
(DWT) of a signal observed at discrete points in time. In practice, the length of the signal, say 
n, is finite and, for our study, the data are available monthly, i.e. the function f(t) in Eq. (1) is 
now a vector f = (f(t1),…, f(tn)) with ti = i/n and i = 1,…,n. With these notations, the DWT of a 
vector f is simply a matrix product d = Wf, where d is an n × 1 vector of discrete wavelet coef-
ficients indexed by 2 integers, djk, and W is an orthogonal n × n matrix associated with the 
wavelet basis. For computational reasons, it is simpler to perform the wavelet transform on 
time series of dyadic (power of 2) length. One particular problem with DWT is that, unlike 
the discrete Fourier transform, it is not translation invariant. This can lead to Gibbs-type phe-
nomena and other artefacts in the reconstruction of a function. The non-decimated wavelet 
transform (NWT) of the data (f(t1), …, f(tn)) at equally spaced points ti = i/n is defined as the 
set of all DWT's formed from the n possible shifts of the data by amounts i/n; i = 1, …, n. 
Thus, unlike the DWT, there are 2j coefficients on the jth resolution level, there are n equally 
spaced wavelet coefficients in the NWT: ( )[ ]∑ =
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on each resolution level j. This results in log2(n) coefficients at each location. As an immedi-
ate consequence, the NWT becomes translation invariant. Due to its structure, the NWT im-
plies a finer sampling rate at all levels and thus provides a better exploratory tool for analyz-
ing changes in the scale (frequency) behavior of the underlying signal in time. These ad-
vantages of the NWT over the DWT in time series analysis are demonstrated in Nason et al 
(e.g.[12]). As in the Fourier domain, it is important to assess the power of a signal at a given 
resolution. An evolutionary wavelet spectrum (EWS) quantifies the contribution to process 
variance at the scale j and time k. From the above paragraphs, it is easy to plot any time series 
into the wavelet domain. Another way of viewing the result of a NWT is to represent the tem-
poral evolution of the data at a given scale. This type of representation is very useful to com-
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pare the temporal variation between different time series at given scale. To obtain the results, 
smooth signal S0 and the detail signals Dj (j =1, …, J) are  
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The fine scale features (high frequency oscillations) are captured mainly by the fine scale 
detail components DJ and DJ–1. The coarse scale components S0, D1, and D2 correspond to 
lower frequency oscillations of the signal. Note that each band is equivalent to a band-pass 
filter. Further we use the Daubechies wavelet as mother wavelet [12]. This wavelet is bi-
orthogonal and supports discrete wavelet transform. Using a link between wavelets and frac-
tals, one could make calculating the multi-fractal spectrum. As usually, the homogeneous 
fractals are described by single fractal dimension D(0). Non-homogeneous or multifractal ob-
jects are described by spectrum D(q) of fractal dimensions or multifractal spectrum  A prob-
lem of its calculation reduces to definition of singular spectrum f(α) of measure µ. It associ-
ates Haussdorff dimension and singular indicator α, that allows calculating a degree of singu-
larity:  Nα(ε)=ε-f(α). Below we use a formalism, which allows defining spectra of singularity 
and fractal dimension without using standard Legandre transformations. This idea at first used 
in ref.[8]. Wavelet transformation of some real function F can be also defined as     
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where parameter b denotes a shift in space (a space scale). The analyzing splash Ψ has to be 
localized as in space as on frequency characteristics. The most correct way of estimate of the 
function  D(h), f(α) is in analysis of changing a dependence of the distribution function Z(q,a) 
on modules of maximums of the splash-transfers under scale changes 
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where I=1,…,N(a); N(a) is a number of localized maximums of transformation WΨ[F](b,a) 
for each scale а; function ω(а) can be defined in terms of coefficients of the splash-
transformations as 
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where li∈L(a); L(a) is a set of such lines, which make coupling the splash-transformation co-
efficient maximums (they reach or make cross-section of a level, which is corresponding to 
scale а). In the limit а→0+ the distribution function Z(q,a) manifests the behaviour, which is 
corresponding to a degree law: Z(q,a)~aτ(q) . To calculate a singularity spectrum, the standard 
canonical approach can be used. It is based on using such functions:  
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                                                       D(a,q) = qh(a,q) – ln Z(a,q).                                            (6c) 
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The spectra D(q) and h(q) are defined by standard way as follows: 
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Other details can be found in Refs. [11,15-18]. 
 Results and conclusions. Using the above described formalism, we have carried out a 
multifractal analysis of spatial spectrum of the large scaled changing intensity of the capil-
lary-gravitational ripple. In fig.1 it is presented the initial spatial spectrum the large scaled 
changing intensity of the capillary-gravitational ripple according to the laser scanning data 
[19].    

 
 
 

Fig. 1 - The initial spectrum of the large scaled changing intensity of the capillary-
gravitational ripple according to the laser scanning data [19]. In fact a number of reflections 
under scanning a surface by the thin laser flux (the vessel velocity is 8m/s; frequency 1 Gz is 

corresponding to spatial scale 8 m). 
 

Using the PC  complex “Geomath” (c.f.[15]) we have performed the numerical calcu-
lations of the fractal spectrum for the capillary-gravitational ripple. The numerical estimates 
have shown that the fractals dimensions are lying in the interval [0,65-0,88]. These data are 
satisfactory agreed with the preliminary estimates within the correlation integral formalism 
[11]. Our analysis confirms the universal conclusion regarding availability of the fractal fea-
tures for distortion in large scales to a weak wave turbulence for waves with non-decay spec-
trum. In fact speech is about a model, which describes a growth and stationary spectra of the 
wave distortion.  
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Aналіз фрактальних структур у хвильових процесах. Хецеліус О.Ю., Свинаренко А.А. 
Виконано аналіз фрактальних структур у хвильових процесах (капілярно - гравітаційні хвилі) на підставі 
вейвлет - аналізу та мультіфрактального формалізму.  
Ключові слова: фрактальні структури, хвильові процеси  
 
Анализ фрактальных структур в волновых процессах. Хецелиус О.Ю., Свинаренко А.А.  
Выполнен анализ фрактальных структур в волновых процессах (капиллярно-гравитационные волны) на 
основе вейвлет - анализа и мультифрактального формализма.   
Ключевые слова: фрактальные структуры, волновые процессы 
 


