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This paper goes on our investigations of the fractal structures in the chaotic and turbulent processes and
connected with a great importance the experimental and theoretical studying of the non-linear dynamical sys-
tems with aim to discover the fractal features and elements of dynamical chaos. In this paper on the basis of
wavelet analysis and multifractal formalism it is carried out an analysis of fractal structures in the chaotic
processes (the time series of the daily runoffs for the Danube river, 1989-1998 years) and the spectrum of the
fractal dimensions has been computed. It is carried out numerical modelling and fulfilled a comparison of
theoretical data on runs with observed ones on the basis of the new approach to modeling the extremal
hydrological events (flood etc.). The latter is based on the multi-factor systems formalism, in particular,

system model with many inputs and one output.
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1. INTRODUCTION

This paper goes on our investigations of the fractal
structures in the chaotic and turbulent processes [1,2]. Let
us remind that in last years it is of a great importance the
experimental and theoretical studying of the non-linear
dynamical systems with aim to discover the fractal fea-
tures and elements of dynamical chaos (e.g. [3-23]). One
of the effective approaches to solving such a problem is
the multifractal and wavelet analyses. The foundations
and application information on the continuous wavelet
transform-based method of multifractal analysis are pre-
sented in Ref. [3]. An extension of the concept of multi-
fractals to irregular functions through the use of wavelet
transform modulus maxima and potential and limitations
of the multifractal formalism in the study of non-
stationary processes and short signals are in details con-
sidered in these references. Especial attention is turned to
the multifractality loss effects in the dynamics of differ-
ent types of systems. A review of fundamental results on
the manifestation of fractal structure in wave (turbulent)
processes is presented in [3].

As it is indicated in many references (e.g. [3]) the
most natural and effective illustration of the chaos effect
can be observed in turbulent flows. In papers by
Zaslavsky et al (e.g. [5]) the fractal properties of the sea
surface have been considered on the scales which are
more than the distortion correlation radius.

In this paper On the basis of wavelet analysis and
multifractal formalism it is carried out an analysis of
fractal structures in the chaotic processes (the time series
of the daily runoffs for the Danube river, 1989-1998
years) and the spectrum of the fractal dimensions has
been computed. It is carried out numerical modelling and
fulfilled a comparison of theoretical data on runs with
observed ones on the basis of the new approach to model-
ing the extremal hydrological events (flood etc.).

2. METHOD
2.1 Wavelet expansions and multifractals

Let us further consider the utilized version of the
wavelet analysis and multi-fractal formalism. Note that
a;; details of the method have been in details presented
in the earlier papers [1,2], so here we are limited only by
the key aspects. The theoretical tool is in fact based on
the wavelet decomposition for analyzing various signals.
At present, the family of analyzing function dubbed
wavelets is being increasingly used in problems of pattern
recognition; in processing and synthesizing various
signals; in analysis of images of any kind (X-ray picture
of a kidney, an image of mineral, etc.); for study of
turbulent fields, for contraction (compression) of large
volumes of information, and in many other cases.
Wavelets are fundamental building block functions,
analogous to the sine and cosine functions. Fourier
transform extracts details from the signal frequency, but
all information about the location of a particular
frequency within the signal is lost. At the expense of their
locality the wavelets have advantages over Fourier
transform when non-stationary signals are analyzed.
Here, we use non-decimated wavelet transform that has
temporal resolution at coarser scales [1,2].

The dilation and translation of the mother wavelet
y(t) generates the wavelet as follows: yj,k(t) = 2j/2y(2jt
— k). The dilation parameter j controls how large the
wavelet is, and the translation parameter k controls how
the wavelet is shifted along the t-axis. For a suitably
chosen mother wavelet y(t), the set {yj,k}j,k provides an
orthogonal basis, and the function f which is defined on
the whole real line can be expanded as

f(t) = kiwCOk(Po,k (t)"' Z
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djk\l’j,k (t)
- , (D
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where the maximum scale J is determined by the
number of data, the coefficients cOk represent the lowest
frequency smooth components, and the coefficients djk
deliver information about the behavior of the function f
concentrating on effects of scale around 2—j near time k x
2—j. This wavelet expansion of a function is closely
related to the discrete wavelet transform (DWT) of a
signal observed at discrete points in time. In practice, the
length of the signal, say n, is finite and, for our study, the
data are available monthly, i.e. the function f(t) in Eq. (1)
is now a vector f = (f(tl),..., f(tn)) with ti = i/n and 1 =
1,...,n. With these notations, the DWT of a vector f is
simply a matrix product d = Wf, where d is an n X 1
vector of discrete wavelet coefficients indexed by 2
integers, djk, and W is an orthogonal n X n matrix
associated with the wavelet basis. For computational
reasons, it is simpler to perform the wavelet transform on
time series of dyadic (power of 2) length. One particular
problem with DWT is that, unlike the discrete Fourier
transform, it is not translation invariant. This can lead to
Gibbs-type phenomena and other artefacts in the
reconstruction of a function. The non-decimated wavelet
transform (NWT) of the data (f(t1), ..., f(tn)) at equally
spaced points ti = i/n is defined as the set of all DWT's
formed from the n possible shifts of the data by amounts
i/n;i=1,...,n.

Thus, unlike the DWT, there are 2j coefficients on the
jth resolution level, there are n equally spaced wavelet
coefficients in the NWT

dy=n " 2y (i/n =)y,

k=0, ...,n-1,

B

on each resolution level j. This results in log2(n)
coefficients at each location. As an immediate
consequence, the NWT becomes translation invariant.
Due to its structure, the NWT implies a finer sampling
rate at all levels and thus provides a better exploratory
tool for analyzing changes in the scale (frequency)
behavior of the underlying signal in time. These
advantages of the NWT over the DWT in time series
analysis are demonstrated in Nason et al (e.g.[12]). As in
the Fourier domain, it is important to assess the power of
a signal at a given resolution. An evolutionary wavelet
spectrum (EWS) quantifies the contribution to process
variance at the scale j and time k. Another way of
viewing the result of a NWT is to represent the temporal
evolution of the data at a given scale. This type of
representation is very useful to compare the temporal
variation between different time series at given scale. To
obtain the results, smooth signal SO and the detail signals
Dj(G=1,...,J)are:

So (t) = kiw%kcpo,k (t)

and

D)= Yd v, (1)
. @

The fine scale features (high frequency oscillations)
are captured mainly by the fine scale detail components
DJ and DJ-1. The coarse scale components SO, D1, and
D2 correspond to lower frequency oscillations of the
signal. Note that each band is equivalent to a band-pass
filter. Further we use the Daubechies wavelet as mother
wavelet [11]. This wavelet is bi-orthogonal and supports
discrete wavelet transform. Using a link between
wavelets and fractals, one could make calculating the
multi-fractal spectrum. As usually, the homogeneous
fractals are described by single fractal dimension D(0).
Non-homogeneous or multifractal objects are described
by spectrum D(q) of fractal dimensions or multifractal
spectrum A problem of its calculation reduces to
definition of singular spectrum f(a) of measure p. It
associates Haussdorff dimension and singular indicator a,
that allows calculating a degree of singularity: Nou(g)=g-
f(a). Below we use a formalism, which allows defining
spectra of singularity and fractal dimension without using
standard Legandre transformations. Wavelet
transformation of some real function F can be also
defined as [1]

x—=b

)dx
(€)

where parameter b denotes a shift in space (a space
scale). The analyzing splash ¥ has to be localized as in
space as on frequency characteristics. The most correct
way of estimate of the function D(h), f(a) is in analysis
of changing a dependence of the distribution function
Z(q,a) on modules of maximums of the splash-transfers
under scale changes

W, [F1(b,a) = (Ve)[ F(x)¥(

N(a)
Z=Y (w,(a)’
(4)

where I=1,...,N(a); N(a) is a number of localized
maximums of transformation W'W[F](b,a) for each scale
a; function m(a) can be defined in terms of coefficients of
the splash-transformations as

o;(a) = max | W [F1(x,a") |,
(x,a")el
a'<a (5)

where lieL(a); L(a) is a set of such lines, which make
coupling the splash-transformation coefficient maximums
(they reach or make cross-section of a level, which is
corresponding to scale a). In the limit a—0+ the distribu-
tion function Z(q,a) manifests the behaviour, which is
corresponding to a degree law:

Z(q,a)~at(q) .

To calculate a singularity spectrum, the standard
canonical approach can be used. It is based on using such
functions:
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haq) = 1 dZ(a,q)
Z(a.q) 0g i (6)
N(a)
Z 2 0 (a) no,(a)
oq i=l ’ (7)
D(a,q) = qh(a,q) - In Z(a,q). 3

The spectra D(q) and h(q) are defined by standard
way as follows:
D(a,q)

D(g) = lim———==

=0 lna ) (9)
h(q) _ 11 (aa C])

a0 Inaqg

(10)
Other details can be found in Refs. [11,15-18].

2.2 Multisystem multifactor response model

Let us briefly describe the key points of the method of
extreme hydrological events, following [21] .. The
systemic approach output function of a nonlinear system
is determined by the sum of the component of the
nonlinear-determined instant-ing retarded and response
system and linear components associated with the linear
response of the system we [7,9]. The master equation for
the output

J o n(j) n()) k(j)
0= "8 Y uPRD BN 5 T DD
J=l i=l k=i J=l i=l (11)
where j = 1,2, ..., J - the number of independent inputs

(including due to rainfall), J - the number of small catch-
ments (total floortion giving catchment); n is the number
of time slots corresponding. rainfall, which contributes to
the prompt and delayed flow components (non-linear part
of the "memory" of the catchment), | - number of similar
time intervals (the linear part of the "memory"); (n + 1) -
total length of the "memory" of the model; P - matrix
precipitation j input series corresponding guide-j-th mini-

Ui — . . . .
catchment; Lk ™ it refers to a series of discrete ordi-
nates of the nonlinear response functions, which are
summarized below, say, in the runoff coefficient;

U,

i the same for the linear part. The important
advantages of the model are adequate consideration
essentially nonlinear response of the system, the
possibility of introducing reverse governing relations [4],
quite effective procedure for numerical programming.
The model is calibrated further according to the number
series of separate data on rainfall and runoff co-
responsible. Ypasuenme (11) ¢ yderom p (p=I1, NN)
YHCIla CepUH IaHHBIX 3aIIMCBHIBACTCS B CIEIYIOIIEM BHIE
Equation (11)with accounting for p (p=1, NN) number of
a series of data is written as follows

op = £ " LuQpiepn £ Wy e

+1
J=1i=1 k=1 - j=1i=1

12)

The solution of equation (12) for the calibration the
series of the N runoffs Q1,Q2,..,QN can be represented
in the vector-matrix form

Q= pOy W) 4 p@)y @), 4 pW)y W)

Equation (11) can also be written as

0="PU, (13)

where P - matrix of size

(NMszFmewaU”
and

J
M = Y mm(/)

J=1

As a result, {PTP} is a square (MxM) symmetric ma-
trix and U — (Mx1) vector (column). Then a solution of
(13) by standard numerical methods. Other details can be
found in Refs. [11,15-18].

3. RESULTS AND CONCLUSIONS

Using the above described formalism, we have carried
out a multifractal analysis of spatial spectrum and time
series of the daily runoffs for the Danube river (1989-
1998 years), The corresponding detailed data on runoffs,
particularly in the seasonal distribution for the years indi-
cated are taken from the UNESCO report (data Slovakian
and Romanian research groups) [21,22]. For example,
Figure 1 shows the average daily cost to the district. Da-
nube in the period 1989-1998 [18] .

L L L L L L L
1076 1979 1982 1985 1988 1991 1904 1997 2000

Fig. 1 - The average daily runoff for the Danube river in the period
1989-1998 (see text).

The process is analyzed on the time intervals which
are more than the correlation scale, i.e., as one could wait
for here, a intermittency has a multi-fractal nature. Using
the PC complex “Geomath” (c.f.[15]) we have per-
formed the numerical calculations of the fractal spectrum.
Our numerical estimates have shown that the fractals
dimensions are lying in the interval [2.4-2.7].

These data are satisfactory agreed with the prelimi-
nary estimates within the simple standard multifractal
definition modelling.
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Table 1 - The calculated runoffs (m’/ s), corresponding to extreme
floods for the Danube river (see text)

Date Cunovo Komarno Sturovo
1.8.3:00 3770 3770 3771
1.8.6:00 3709 3767 3767
1.8.9:00 3650 3763 3763

1.8. 12:00 3608 3756 3761
1.8. 15:00 3583 3745 3758
1.8. 18:00 3565 3736 3755
1.8.21:00 3539 3725 3746
2.8.0:00 3513 3710 3735
2.8.3:00 3441 3692 3724
2.8. 6:00 3386 3671 3710
2.8.9:00 3333 3652 3692
2.8.12:00 3297 3623 3676
2.8.15:00 3272 3595 3652
2.8.18:00 3258 3562 3630
2.8.21:00 3250 3540 3601
3.8.0:00 3245 3510 3575
3.8.3:00 3240 3485 3545
3.8.6:00 3255 3460 3524
3.8.9:00 3288 3435 3496
3.8.12:00 3320 3416 3470
3.8. 15:00 3690 3411 3451
3.8. 18:00 4180 3430 3442
3.8.21:00 4727 3475 3437
4.8. 0:00 5136 3556 3472
4.8.3:00 5475 3657 3520
4.8. 6:00 5713 3778 3586
4.8.9:00 5929 3905 3674
4.8.12:00 6039 4050 3775
4.8.15:00 6182 4195 3890
4.8.18:00 6304 4340 4010
4.8.21:00 6395 4485 4139
5.8.0:00 6474 4628 4269
5.8.3:00 6618 4770 4398
5.8.6:00 6715 4905 4538
5.8.9:00 6793 5040 4670
5.8.12:00 6810 5171 4798
5.8. 15:00 6800 5294 4926
5.8.18:00 6747 5410 5049
5.8.21:00 6680 5517 5167
6.8.0:00 6550 5615 5280

In [21-23] as an application of the multisystem, multi-
factor method have been performed evaluating flood
discharges and compared with those observed ones for
the river Danube from the station Devin (Bratislava) to
the station Nagymaros [18,19].All empirical data needed
for implementation of the model have been taken from
the UNESKO reports [18,19] (and references cited there-
in). The model was calibrated according to the 1991,
1992 years. Table 1 shows the results of numerical mod-
eling the characteristics of extremely high flood (flood
scenario; see [18] ). Detailed analysis and comparison of
the results and possibilities of our method shows that
application of the system model allows you to track quan-
titatively acceptable runoffs in a case of the extreme
events. Of course, the critical point of the model is its
proper calibration and adjustment. Resolving this issue
could lead to further improvements in the model options.
Therefore, our analysis confirms the universal conclusion
regarding availability of the multifractal features for the
daily runoff series for the Danube river.
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AHAJIN3 ®PAKTAJIBHBIX CTPYTYP B XAOTHYECKHUX MPOLECCAX:
BPEMEHHBIE PSIJIbI CYTOYHBIX PACXO/IOB JIJI1 PEKU IYHAN
N 9KCTPEMAJIBHBIE THAPOJIOI'MYECKHUE ABJIEHUA

H.T'. CepboB, x.reorp.H.,A.A.CBUHapeHKO, 1-p ¢.-M. H., 1pod.,
0.10. Xenennyc, a1-p ¢.-m. 1., ipod., A.K. Banan, ct.nper.

Ooeccxuti 20cy0apcmeeHublil HIKON0UYeCKUll yHusepcumen,
ya. Jleeoeckas, 15 , 65016, Odecca, Yxpauna , svinarenkoaa@gmail.com

Jlannast paboTa IpooDKaeT HAIIM MCCIIeIOBAaHUS (DPaKTAIBHEIX CTPYKTYP B XaOTHYECKHX U TypOyJICHT-
HBIX IPOILECCax U CBsI3aHa ¢ OOJIBIIOI aKTYaIbHOCTBIO U BAYKHOCTBIO SKCIIEPUMEHTAIBHOTO ¥ TEOPETHIECKO-
IO W3YYEHHs HEJIMHEWHBIX XaOTHYECKUX AWHAMHYECKUX CHCTEM C LeNbI0 OOHapyX eHHs (paKTalbHBIX
CTPYKTYp U CBOMCTB M 3JIEMEHTOB AHMHAaMU4YECKOro xaoca. Ha ocHOBe BeiiBieT-aHanm3a U MyJbTH(paKTAIb-
HOro (hopMas3Ma OCYLIECTBIIAETCS aHAIN3 (PPAKTAIBHBIX CTPYKTYP B XaOTHYECKUX IPOLECCOB (BPEMEHHbIE
PSIBI CYTOYHBIX CTOKOB JUtA peku JyHait, 1989-1998 roasl) 1 BEIYHUCIEHO BBIAMIOBBIIHINA CIIEKTP (pakTans-
HBIX pa3MepHocTeil. Ha ocHOBE HOBOTO METO/Ia OIMCAHMS SKCTPEMaTIbHBIX THAPOJIOTMYECKHX SBICHHUM, B Ya-
CTHOCTH, IaBOJAKOB, 0A3MPYIOIIETOCS Ha MHOTO(aKTOPHOM CHCTEMHOM MOJEIHNPOBAHUU U CHCTEMHOH Moje-
T ¢ «MHOYXECTBOM BXOJIOB» U «OJHHM BBIXOJJOM» HPOBE/ICH YHCICHHBIN pacueT U NPHBEACHBI Pe3yIbTaThl
XapaKTepHCTHK SKCTPEMaIbHO BHICOKHX ITaBOJAKOB (Ha mpumepe p./lyHait).

KnroueBble cj10Ba: THAPOJIOTHYECKHE CUCTEMBI, ()paKTaIBHBIE CTPYKTYPBI, Xa0TUUECKUE MTPOLECCHI, IKC-
TpeMaJIbHbIe THIPOJIOTHYECKHE SIBICHUS, PpaKTalIbHbIC Pa3MEPHOCTH

AHAJII3 ®PAKTAJIBHUX CTPYTYP Y XAOTUYHHUX ITPOLECAX:
YACOBI PAIU JOBOBUX BUTPAT JJIAA PITYKU IYHAU
I EKCTPEMAJIBHI I'TAPOJIOT'TYHI SIBUILA

M.T'. Cepoos, k.reorp.t., A.A,CBUHapeHKo, 1-p ¢.-M. H., TPO.,
0.10. Xeneaiyce, n1-p ¢.-m. 1., npo.I'.K. Banan, ct.Buki.

Odecokuti Oepoicagnuil exonoeiunuil ynieepcumen,
syn. Jlvsiecoka, 15, 65016 Oodeca, Vkpaina, svinarenkoaa@gmail.com

Jlana po0oTa IpoJOBKY€ HAIlli JOCHIIKEHHST (PAKTAIBHAX CTPYKTYP B XaOTHYHUX 1 TypOYJIEHTHHX IPO-
Hecax i MoB's3aHa 3 BEIUKOI aKTYaIbHICTIO 1 BOXKIIMBICTIO €KCIIEPUMEHTAIBHOIO i TEOPETHYHOTO BUBUCHHS
HEJHIHNX XaOTHYHUX JMHAMIYHHX CHCTEM 3 METOI0 BUSBICHHS (hPaKTaJbHUX CTPYKTYp i BIACTHBOCTEH Ta
€JIEMEHTIB TUHAMI4HOTO Xaocy. Ha ocHOBI BeiiBieT-aHami3y Ta MyJIbTiQpaKTaIbHOTO (GOpMati3My 3IifCHIO-
€TBCS aHANTI3 PpPaKTATBHUX CTPYKTYP B XaOTHYHHX MPOIECIB (YaCOBI PAaM JOOOBUX CTOKIB A piuku JlyHai,
1989-1998 pokn) i 0OUHCIICHO BiNIOBIMHMI CIIEKTp (pakTanbHUX po3MipHocTei. Ha ocHOBI HOBOro MeTomy
OIICY eKCTPEMAJIbHHX TiPOJIOTIYHUX SBUII, 30KpeMa, MaBOJKIB, 0 6a3yeThcs Ha 6araTrodakTopHOMY CHC-
TEMHOMY MOJEIIOBAHHI Ta CHCTEMHOI MOJIET 3 «Oe3/1iY4r0 BXO/IBY» 1 «OJHMM BHUXOZOM» IPOBEICHO YHCEIb-
HHUH PO3paxyHOK Ta HaBEJCHO PEe3yJbTaTH XapaKTEPUCTHUK €KCTPEMAIbHO BHCOKHX MAaBOJKIB (Ha MPHKIAmi

p.dynaii).

Kitio4uoBi cj1oBa: Tiposioriuni cuctemMy, (ppakTaibHi CTPYKTYPH, XaOTHYHI MPOLIECH, eKCTPEeMabHi Tif-

poutoriui siBHIIA, GpaKTaTbHI PO3MIPHOCTI
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