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This article briefly summarizes the Landauer — Datta — Lundstrom electron transport model.
Provided a band structure is given, number of conduction modes can be evaluated and, if a model
for a mean free pass for backscattering can be established, then the near-equilibrium
thermoelectric transport coefficients can be calculated using the final expressions listed below for
1D, 2D, and 3D resistors in ballistic, quasi-ballistic and diffusive linear response regimes when
there are differences in both voltage and temperature across the device. The final expressions of
thermoelectric transport coefficients through the Fermi — Dirac integrals are collected for 1D, 2D
and 3D semiconductors with parabolic band structure and for 2D graphene linear dispersion in
ballistic and diffusive regimes with the power law scattering.
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1. INTRODUCTION

The objectives for these short notes is to give a
condensed summary of Landauer — Datta — Lund-
strom electron transport model [1 — 5] which
works at the nanoscale as well as at macroscale
for 1D, 2D, and 3D resistors in ballistic, quasi-
ballistic, and diffusive linear response regimes
when there are differences in both voltage and
temperature across the device.

Appendices list final expressions of thermoe-
lectric transport coefficients through the Fermi —
Dirac integrals for 1D, 2D, and 3D semiconduc-
tors with parabolic band structure and for 2D gra-
phene linear dispersion in ballistic and diffusive
regimes with the power law scattering.

2. GENERALIZED MODEL FOR CURRENT

The generalized model for current can be writ-
ten in two equivalent forms:

D(E)

=21y 22 f - 1) de.
(1)

2
I =7qu(E)M(E)(f1 ~ f,)dE,
where “broadening” y(E) relates to transit time for
electrons to cross the resistor channel

__h
7(E)=T(E)= 2

density of states D(E) with the spin degeneracy

factor g, = 2 included, M(E) is the integer number
of modes of conductivity at energy E, the trans-
mission

AE
(5 =—2L) 3)
AE)+L
where A(E) is the mean-free path for backscat-
tering and L is the length of the conductor, Fermi
function

1

SE) = “)

is indexed with the resistor contact numbers 1 and
2, Er is the Fermi energy which as well as tem-
perature 7' may be different at both contacts.

Equation (3) can be derived with relatively few
assumptions and it is valid not only in the ballistic
and diffusion limits, but in between as well:

Diffusive: L >> A, T= /L << 1,
Ballistic: L << A; T— 1,
Quasi-ballistic: L= A, T < 1.

The LDL transport model can be used to describe
all three regimes.

It is now clearly established that the resistance
of a ballistic conductor can be written in the form

ho1

ball

R == ——.
q> M(E)

where //g° is fundamental Klitzing constant and
number of modes M(E) represents the number of
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effective parallel channels available for conduc- the 1D, 2D, and 3D densities of states are given
tion. by

This result is now fairly well known, but the I P
common belief is that it applies only to short re- D(E)=D,,(E)L=— _m
sistors and belongs to a course on special topics 7h (E _Ec)
like mesoscopic physics or nanoelectronics. What
is not well known is that the resistance for both

D(E)=D,,(E)A=A4
long and short conductors can be written in the (£) 20 (E) h
form

H(E-E.),

m*
2

H(E-Ec), (7)

2
~>n

m*2m*(E-E_)
5t L D(E) = Dy, (E)Q=Q H(E-E.)
g M(E)\ AE))
where A is the area of the 2D resistor, Q is the
Ballistic and diffusive conductors are not two volume of the 3D resistor, H(E—Ec) is the
different worlds, but rather a continuum as the

L AT . Heaviside step function. Then number of modes
length L in increased. Ballistic limit is obvious for

L<<’/1, while for L >> 4 it reduces into standard M(E)=M,,(E)=H(E-E.),
Ohm’s law
J2m*(E—-E.)
r=L -,k M(E)=WM, ,(E)=Wg,Y————<"H(E-E_),
I A zh
Indeed 1d rewrite R(E) ab m*(E-E
ndeed we could rewrite R(E) above as M(E) =AM, ,(E) = Ag, ( : C)H(E—EC),

_PE)
RE)= A LL+AE)] where gv is the valley degeneracy.

) . ) . Figure 1 shows qualitative behavior of the den-
with a new expression for specific resistivity . .
sity of states and number of modes for resistors

(£) h 1 1 with parabolic band structure.
PEI= 2\ ME)Y 4)ME)

Dip Mp

which provides a different view of resistivity in K |
terms of the number of modes per unit area and ‘ s -l
the mean free path. Lk, ) Lk, )

Number of modes 0 v,
il gl ]
hy .

M(E)=M,,(E) :Z<Vx (E)) Dy (E), o //— o
"k, ' Lk, '

h Dy, My,

M(E)=WM,,(E)= Wz<v; (E)) Dyp(E) ,(5) & :
h + T //— - T /= E

M(E) =AMy (E) = A7(v: (E)) Dy (E) E, Ee

Fig. 1 — Comparison of the density of states D(E) and number
is proportional to the width W of the resistor in 2D of modes M(E) for 1D, 2D, and 3D resistors with parabolic

and to the cross-sectional area 4 in 3D, <v; (E)> dispersion.
is the average velocity in the +x direction from For linear dispersion in grapheme
contact 1 to contact 2.
For parabolic energy bands E(k)=xhvpk, ©)
X where + sign corresponds to conductivity
E(k):EC + ¥ (6) band with Ez>0 (n-type graphene), and —

sign corresponds to valence band with Ez<0
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(p-type graphene),

(k)——a—b];=vF~1x108cm/s. (10)

Density of states in grapheme

2|E|
D(E) = 11
(E) e (1D)
and number of modes
M(E)= WZ‘E| (12)
whvg

Two equivalent expressions for specific con-
ductivity deserve attention, one as a product of
D(E) and the diffusion coefficient D(E)

o(E)= 2D(E)D(E){ i,l}, (13a)

where
D(E) = <sz'> = VZT(E){I, > 5}

with 7(E) being the mean free time after which an
electron gets scattered and the other as a product
of M(E) and A(E)

o(E) :q—th(E)/l(E){l,%,%} , (13b)

where the three items in parenthesis correspond to
1D, 2D, and 3D resistors.

Although Eq. (13b) is not well known, the
equivalent version in (13a) is a standard result that
is derived in textbooks. Both Eqs (13) are far
more generally applicable compared with tradi-
tional Drude model. For example, these equations
give sensible answers even for materials like gra-
phene whose non-parabolic bands make the mean-
ing of electron mass somewhat unclear, causing
considerable confusion when using Drude model.
In general we must really use Eqs (13) and not
Drude model to shape our thinking about conduc-
tivity.

These conceptual equations are generally ap-
plicable even to amorphous materials and molecu-
lar resistors. Irrespective of the specific E(p) rela-
tion at any energy the density of states D(E), ve-
locity v(E), and momentum p(E) are related to the
total number of states N(E) with energy less than
E by the fundamental relation

D(E)(E)p(E)=N(E)-d, (14

where d is the number of dimensions. Being
combined with (13a) it gives one more fundamen-
tal equation for conductivity

()= LTE) {N(E) N(E) N(E)}

mE)| L LW’ LA

where electron mass is defined as

p(E)
WE)

For parabolic E(p) relations, the mass is inde-
pendent of energy, but in general it could be en-
ergy-dependent as for example in graphene the
effective mass

m(E) = (15)

m*=——
Vi

(16)

3. LINEAR RESPONSE REGIME

Near-equilibrium transport or low field linear
response regime corresponds to lim(dl /dV), .

There are several reasons to develop low field
transport model. First, near-equilibrium transport
is the foundation for understanding transport in
general. Concepts introduced in the study of near-
equilibrium regime are often extended to treat
more complicated situations, and near-equilibrium
regime provides a reference point when we ana-
lyze transport in more complex conditions. Sec-
ond, near-equilibrium transport measurements are
widely used to characterize electronic materials
and to understand the properties of new materials.
And finally, near-equilibrium transport strongly
influences and controls the performance of most
electronic devices.
Under the low field condition let

Jo(BE)= H(E)> fL(E) = fo(E),  (17)

where fy(E) is the equilibrium Fermi function, and
an applied bias

V=AE:/q=(Ep —Ep,)/ q (18)

is small enough. Using Taylor expansion under
constant temperature condition

f=

e fi

gV (19)

F
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and property of the Fermi function

+i=—1 (20)
OE . OE
one finds
9%
h=r5=( aE)qV' (21)

The derivative of the Fermi function multiplied
by kT to make it dimensionless

Fp(E,Ep)= kT( afj (22)

is known as thermal broadening function and
shown in Fig. 2.

10 10
T ﬁk
0 E-Ep o >
kT _I/-"”_
_IUU 0.5 1 T 0z s
= f(E kT _"-’_fJ
f(E) > o

Fig. 2 — Fermi function and the dimensionless normalized
thermal broadening function.

If one integrates Fr over all energy range the
total area

TdEFT (E,Ep)=kT, (23)

—00

so that we can approximately visualize Fr as a
rectangular pulse centered around E=Fr with a
peak value of % and a width of ~ 44T.

The derivative (—0f,/0E) is known as the

Fermi conduction window function. Whether a
conductor is good or bad is determined by the
availability of the conductor energy states in an
energy window ~ £ 2kT around the electrochemi-
cal potential Ery, which can vary widely from one
material to another. Current is driven by the dif-
ference f; — f; in the “agenda” of the two contacts
which for low bias is proportional to the deriva-
tive of the equilibrium Fermi function (21). With
this near-equilibrium assumption for current (1)
we have

1{%]T(E)M(E)[ fojdE}V GV ,(24)

with conductivity

G= % jT(E)M(E)( Jo JdE (25)

known as the Landauer expression which is valid
in 1D, 2D, and 3D resistors, if we use the appro-
priate expressions for M(E).

For ballistic limit 7(E)=1. For diffusive trans-
port T(E) is given by equation (3). For a conductor
much longer than a mean free pass the current
density equation for diffusive transport is

_od(E)

. (26)

X

where the electrochemical potential Er is also
known as the quasi-Fermi level.

For a 2D conductor the surface specific con-
ductivity is

247 0
s == MZD(E)ME)(—%] dE (27)

or in a different form
og = fag (E)dE, (28)

where differential specific conductivity

2
a;(E)=%MZD<EM(E)(—Zig].

Similar expressions can be written for 1D and 3D
resistors.

Another way to write the conductance is the
product of the quantum of conductance, times the
average transmission, times the number of modes
in the Fermi windows:

=2 (). 9

(M)=]M (E)(—%)dE,

JT(EYM(E) (- ‘%)dE ()

<T> = ) = .
_ﬁ (M)
[M(E)( 6E)dE

Yet another way to write the conductance is in
terms of the differential conductance G'(E) as

G =[G'(E)dE , [S] (30)

G'(E)—ZZ M(E)T(E)( afoj.
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4. THERMOCURRENT AND THERMOELECT-
RIC COEFFICIENTS

Electrons carry both charge and heat. The
charge current is given by Eqn. (1). To get the
equation for the heat current, one notes that elec-
trons in the contacts flow at an energy £ ~ E.. To

enter a mode M(E) the resistor electrons must
absorb (if E>Er) or emit (if E<Ef) a thermal en-
ergy £ — Er. We conclude that to get the heat cur-
rent equation we should insert (£ — Er)/q inside
the integral. The resulting thermocurrent

1, =%j(E—EF)T(E)M(E)(fl - f,)dE. (31)

When there are differences in both voltage and
temperature across the resistor, then we must the
Fermi difference (f; — f5) expand to Taylor series
in both voltage and temperature and get

(% (9% |E-Er
fl—f2~( agquV ( aéj TFAT, (32)

where AV =V,-V,, AT=T,-T,; and
T=(T,+T,)/2.

Deriving a general near-equilibrium current
equation is now straightforward. The total current
is the sum of the contributions from each energy
mode

[=[I'(E)dE, (33)

where the differential current is
) 2q
I'(E) == TEME)(f; = 1)

Using Eqn. (32) we obtain

I'(E)=G'(E)AV + S;(E)AT (34)
where

2
G'(E) = %T(E)M(E)[—ZLEOJ

is the differential conductance and

' __E E-Ep [_%J_
Sr(E)= I T(E)M(E)( o7 j £

Ao
q

kT

is the Soret coefficient for electro-thermal diffu-
sion in differential form. Note that S;(E) is nega-
tive for modes with energy above Er (n-resistors)
and positive for modes with energy below Er (p-
resistors).

Now we integrate Eqn. (34) over all energy
modes and find

1=GAV +S,AT , [4] (35)

I, =TS AV —K AT, [W]

with three transport coefficients — conductivity
given by Egs. (30) , the Soret electro-thermal dif-
fusion coefficient

E-E,
kT

S, = [S}(E)dE = _k [ [ )G'(E)dE , [4/K]
q

and the electronic heat conductance under the
short circuit conditions (AV = 0)

2 2
KozT(E] I(E‘EFJ G'(E)dE , [W/K]
q kT

where current / is defined to be positive when it
flows into contact 2 with electrons flowing to-
wards. The heat current I, is positive when it
flows in the +x direction out of contact 2.

Equations (35) for long diffusive resistors can
be written in the common form used to describe
bulk transport as

d(Ep/q) dT

J. =0 — 5. —, [A/m’ 36
¥ e o [4/m7]  (36)
JQX=TSTM—KOd—T,[W/mZ]
x dx

with three specific transport coefficients

o=[o'(E)dE,

2
o'(E) = %MgD(EWE)(—%j , [1/QmJ]

k (E-E;) ,
Sy =—;j'( T Fja (EYdE , [A/mK]

2 2
Ky = T(E] j(ﬁj c'(E)dE . [W/mK]
q kT

These equations have the same form for 1D and
2D resistors, but the units of the various terms
differ.

The inverted form of Eqgs (35) is often pre-
ferred in practice, namely:

AV =RI - SAT , (37)
I, =-TI[ -KAT,
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where
§$=8,/G,
n=7s8,
K=K,-TISG.

In this form of the equations, the contributions
from each energy mode are not added, e.g.
R#[R(E)E .

Similarly, the inverted form of the bulk trans-
port equations (36) become

d(Ep/q) _ dT

J +S5—, 38

i PS5 (38)
J e =1SJ, —Kd—T
dx

with transport coefficients:
p=1/o,
S=s;/0,
k=x,-S"0T.

In summary, when a band structure is given,
number of modes can be evaluated from Eqs (5)
and, if a model for the mean free pass for back-
scattering A(E) can be chosen, then the near-
equilibrium transport coefficients can be evalu-
ated using the expressions listed above.

5. BIPOLAR CONDUCTION

Let us consider a 3D semiconductor with para-
bolic dispersion. For the conduction band

M, (E)=¢,—— > (E E.) (EzE:) (39)
and for the valence band
Mip(E)=g,> 5 e (E —E). (E<Ey)

The conductivity is provided with two contri-
butions: for the conduction band

=q7°f w(EM(E)( f‘)jdE (40)
E

and for the valence band

o, ‘i EIVM (E)4, (E)( ‘%)

—00

The Seebeck coefficient for electrons in the
conduction band follows from Eqs (36):

o= ] o'(E)E, @1

Ec

(E)—ZZ My (E- Ec)ﬂ(E)( f"j

OF
=‘;E£(

Similarly, for electrons in the valence band we
have:

j (E)dE , S=Si/o.

o, = bj o' (E)dE , (42)
24* 9
o,(E) :%MS‘)D(EV —E)ﬂp(E)(—gj,

) k& (E-E .
s;>:——j(k—TFJap(E)dE,

—
S,=sp/0,,

but the sign of S, will be positive.

What is going on when both the conduction
and valence bands contribute to conduction? This
can happen for a narrow bandgap conductors or at
high temperatures. In such a case, we have to
simply integrate over all the modes and will find

o EO‘+(7 ;?M’OI(E)X,(E)( aﬁ)JdE (43)

El
Mé%(E)=M3D(E)+M;D(E);

moreover, we have not be worried about integrat-
ing to the top of the conduction band or from the
bottom of the valence band because the Fermi
function ensures that the integrand falls exponen-
tially to zero away from the band edge. What is
important that in both cases we integrate the same
expression with the appropriate M;p(E) and A(E)
over the relevant energy difference £, — E;. Elec-
trons carry current in both bands. Our general
expression is the same for the conduction and
valence bands. There is no need to change signs
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for the valence band or to replace f,(E) with
1 —fo(E).

To calculate the Seebeck coefficient when both
bands contribute let us remind that in the first
direct form of the transport coefficients (36) the
contributions from each mode are added in paral-
lel so the total specific Soret coefficient

+
tot__E ‘

sy = I[%jGI(E)dEZSG+SpGP; (44)

—00

then the Seebeck coefficient for bipolar conduc-
tion
ot _ So+S,0,

O'+O'p

Since the Seebeck coefficients for the conduction
and valence bands have opposite signs the total
Seebeck coefficient just drops for high tempera-
tures and the performance of a thermoelectrical
device falls down.

In summary, given a band structure dispersion,
the number of modes can be evaluated and, if a
model for a mean free pass for backscattering can
be established, then the near-equilibrium transport
coefficients can be calculated using final expres-
sions listed above.

We also collect below the thermoelectric coef-
ficients for parabolic band semiconductors and for
grapheme [4, 5].

6. CONCLUGIONS

In summary, we see that the LDL concept used
to describe electron transport can be generalized
for phonons. In both cases the Landauer approach
generalized and extended by Datta and Lundstom
gives correct quantitative description of transport
processes for resistors of any nature, any dimen-
sion and size in ballistic, quasi-ballistic, and diffu-
sive linear response regimes when there are dif-
ferences in both voltage and temperature across
the device. We saw that the lattice thermal con-
ductivity can be written in a form that is very
similar to the electrical conductivity, but there are
two important differences.

The first difference between electrons and
phonons is the difference in bandwidths of their
dispersions. For electrons, the dispersion
BW > kT at room temperature, so only low en-
ergy states are occupied. For phonons,
BW =~ kT, so at room temperature all of the
acoustic modes across the entire Brillouin zone

are occupied. As a result, the simple Debye ap-
proximation to the acoustic phonon dispersion
does not work nearly as well as the simple effec-
tive mass approximation to the electron disper-
sion.

The second difference between electrons

and phonons is that for electrons the mode popula-
tions are controlled by the window function which
depends on the position of the Fermi level and the
temperature. For phonons, the window function
depends only of the temperature. The result is that
electrical conductivities vary over many orders of
magnitude as the position of the Fermi level var-
ies, while lattice conductivities vary over only a
few orders of magnitude.

Finally, we have also collected the thermoelec-
tric coefficients for parabolic band semiconduc-
tors and for graphene.

APPENDIX A. THERMOELECTRIC COEF-
FICIENTS FOR 1D, 2D, AND 3D SEMICONDUC-
TORS WITH PARABOLIC DISPERSION FOR
BALLISTIC AND DIFFUSIVE REGIMES

Thermoelectric coefficients are expressed
through the Fermi — Dirac integral of order j de-
fined as
1 T n’
L(j+1) o exp(n-1n,)+1

S () = dn, (45)

where the location of the Fermi level E relative
to the conduction band edge E¢ is given by the
dimensionless parameter

EF _EC
=—L£ 46
e T (46)

In expressions below thermoelectric coeffi-
cients (35) and (37) for diffusive regime were
calculated with the power law scattering

A(E)w(%j - 47)

1. Thermoelectric coefficients for 1D ballistic
resistors:

29°
G:%‘S—I(UF);

k2q° 3
Sr 2_5%[ so(nF)_nFJ—l(nF)];
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£
K[ 3y ‘ KO—WT 2q N27zm* kT
~ F | q h h
g1 3_,(np)

15
3773 +
Kosz 2’ {ZJ 1T75) = 2nF\so(nF)+} [4%(%) NS (1) 41 mmﬂ
q h +77F RG]

ho h

y 15 \51/2 (nF)
{ 4 S 1) - S (UF):|'

*

. 2 K= WT( J 2q ~N2zm* kT
k) 2 ~ 3 q
ZT[CIJ Z {ZJI("F)_J(UF)}

2. Thermoelectric coefficients for 1D diffusive

resistors: 4. Thermoelectric coefficients for 2D diffusive
resistors:
(2) T
G=—"-| = |T(r+D3I,_ (n:);
h \ L " 24* 2m*kT 3
G= WL(&j n L(r+2)3,0,(np);
s h \ L h 2
Sy =—£2i[ijr(r+l)x
qg h \ L S__E{(’”+3/2)3;~+1/2(’7F)_77 }
- . -
<[(r + D3, (1) 13, (1p)]; R
S__E{(r+1)3,(77F)_77 } 5, = k24 (%J\/Zm*'kT .
al 3., ] g h \L) 7xh
- 5 _ 3
k 2 242 L(r+3)3,,,(1x) ~ X|:r(r+E)‘Sr+l/2(77F)_UFF(F+E)‘Sr—1/2(77F):|;
K, = T[—j Z (L o, T(r+2)3, (70 + |;
+7p D +1)3, ., (75) kY 247 (A \N2Zm* kT
Ky=WT| = ) x
q) h \L h

KzT{Ej E(%)F(Wrﬁx

h 7o 5.~
q L(r+ 5)\%3/2 (1) = 2n,T'(r+ 5)‘51'+1/2 (1) +

(r+1)33(nF)}' x

X{(?+2)5,~+1(77F)— 3 ()
r—1\'1F

3.~
+77§* I'(r+ E)Jr—l/z (7F)

Conductivity G = o1p/L is given in Siemens: 5
[o1p] = 1S'm. Similarly for other specific coeffi- K= WT[ﬁJ 2q° (ﬁ}\lzm *kT y

cients: St = Sz, ko = KoL, k = KL. qg) h L h
3. Thermoelectric coefficients for 2D ballistic s 5 (r+§)33+1/2(77F)
resistors: xL(r+=)| (r +=)3,,3, (7)) — 3
2 2 S, 1201F)
2¢* \/27rm *kT
G=w Z S_12(F);
Conductivity G=o0,,W /L 1is given in Sie-
</ *
S, __wk 22 Zﬂn; LZi mens: [o,,]=1S. Similarly for other specific
q

; coefficients: Sy = SeL/W; ky = KoL/W, k = KL/W.

x| =3 -3 ; . .. .

[2 v2 1) =i ”2(%)} 5. Thermoelectric coefficients for 3D ballistic
resistors:

k| 33,,(nF) )

q[23.,(nF) W 30(1r);
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S —_4 EZLM[
r 27h?

g h () — UF‘SO(UF)]

5{231(%)_ }
~ Mr |
g 3o(np)

kY 24 m* kT
Ky=AT| = | L2 "
q h 2xh

X[632 () =403, (np) + 77;30 (7p )J’

szim*kTX

K=AT|—
[q h 2zh’

~2
X{632(77F)——4jl (”F)}.
So(1p)

6. Thermoelectric coefficients for 3D diffusive
resistors:

_ 2 ﬂoj m* kT
G=4 . [L Py L(r+2)3,(175);

S:_g{vf)s”l(w)%}
q ‘Sr(nF)

m*
S, = k 2¢* (Zoj sz y
q h 2xh
[L(r+3)3,,, (1) =1, (r + 23, (1p)];

2, *
K, =ar|X] 24 (@jm I
qg) h \L)2xh

{F(l’ + 43,15 (17p) = 200 (r +3)3,,, (1) +]

+nrL(r+2)3, (1)

2, 5 «
K =7l K ﬂ[ﬁjm kZTX
q) h \L)2zh
(r+2>sf+l<nF>}
Sr(nF)

xD(r+ 3){@ +3)3,42 (1) =

Conductivity G =o0,,4/L is given in Siemens:

[osp] = 1 S/m. Similarly for other specific coeffi-
cients: Sy = SrL/A; ko = KoL/A; k = KL/A.

APPENDIX B. THERMOELECTRIC COEF-
FICIENTS FOR GRAPHENE WITH LINEAR
DISPERSION FOR BALLISTIC AND DIFFUSIVE
REGIMES

Graphene is a 2D conductor with a unique lin-

ear band structure (9). Its transport coefficients are
calculated from Egs (35) and (37) with the num-
ber of modes given by Eqn (12). The power law
scattering for diffusive regime (47) is used.
Conductivity G=cW /L 1is given in Siemens:

[o] = 18S. Similarly for other specific coefficients:

st =SIL/W; ko = KoL/W; k = KL/W.

1. Ballistic regime:

jgi][so(nmmo(—m)];

ghatl _ _ % {2[ 51 F)]_UF};
q

So (77F )+ 3o (~77r)

h

2. Diffusive regime:
iy 20 24T (ﬁ]
h \ mwhv, )\ L
XC(r+2)[ 3, (1) + 3, (=nr) J:
Sd[ﬁ":_k{ ”+2) Bﬁr+1 ) Bgr+1( UF)]_UF};

q S, (1) + 3, (=11
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Y3AT'AJIBHEHA TPAHCIIOPTHA MOJIEJIb EJIEKTPOHIB
JAHIAYEPA - JATTHU — IYHACTPOMA

Kpyrasik }0.0. mpod.,
Tepemenko T.M. nou.

Ooecvruil Oeparcadnull ekoN02iuHULL YHIgepcumen,
eyn. Jlvsiscvka, 15, 65016 Ooeca, Ykpaina, quantumnet@yandex.ru

CrHcio BUKIIA/IeHa y3arajbHeHa MOJIellb TPaHCTIOPTy enekTpoHiB Jlannayepa — lartu — JlyHn-
cTpoma. 3aaBIId 30HHY CTPYKTYpPY, MOXKHA OOYHMCIMTH YHCIIO MOJ MPOBITHOCTI 1 PU BHOpaHOT
MOJIETI PO3CISIHHA UISl CEpeTHbOI TOBXKHHU BUIFHOTO IPOOIry OOYMCIIOIOTHCS TEPMOETIEKTPHYHI
TPAHCIOPTHI KOeimieHTH B pexumi miHiiHOTO Bimryky it 1D, 2D i 3D mnpoBigHHKIB B
OamicruuHOMy 1 AM(y3iHHOMY peKMMaXx K MPH PI3HUILI MOTEHIATIB, TaK 1 IPH PI3HUIII TeMIiepa-
Typ Ha KOHTaKkTax. HaBemeHO KiHIEBI BHpasW Uil BCIX TEPMOEIEKTPUYHUX TPAHCHOPTHHUX
koedimienTiB depe3 interpamu Pepmi — Mipaka mng 1D, 2D i 3D HamiBOpOBiZHUKIB 3
napabomiuHOK Jucnepciero 1 s rpadeHy 3 IHIHHOI JUCHEpCiero B OallicTUYHOMY i
mudy3iiiHOMY perMax 3 ypaxyBaHHSIM CTEIEHEBOTO 3aKOHY PO3CIIOBaHHSI.

KnarouoBi cioBa: HaHOEGNIEKTPOHIKA, MOJIM TPOBITHOCTI, KOEDILIEHT MPOXOMIKEHHS,
OanicTHYHHUN TPaHCIIOPT, TUQY3IHHII TPAHCIIOPT, TEPMOCIEKTPHYHI KOe(DiIli€HTH.
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OBOBILIEHHASI MOJIEJIb TPAHCIIOPTA DJIEKTPOHOB
JAHJIAYIPA — IATTBI - IVHACTPOMA

Kpyrask FO.A. ipod.,
Tepemenko T.M. jor1.

Ooeccrkuii cocyoapcmeentblil IKOIOSUYECKUL YHUBepCUMen,
yi. JIveoeckasn, 15 , 65016, Ooecca, Yrpauna, quantumnet@yandex.ru

Cxaro n3noxeHa 0000IIeHHas: MOJIETIb TPAHCIIOpTa 31eKTpoHoB Jlannayspa — atter — JlyHn-
cTpoMa. 3aJaB 30HHYIO CTPYKTYPY, MOXHO BBIYMCIHUTD YHCIIO MOJ MPOBOJMMOCTHU U TIPH BHIOpaH-
HOIl MOZENN paccestHust AT CPeIHEeH JIMHBI CBOOOJHOTO MPOOera BHIYUCIAIOTCS TEPMOIICKTPH-
YEeCKUE TPAHCIOPTHHIE KOAPQUIMEHTHI B pexkuMe JIMHEHHOTo oTKinKa a1t 1D, 2D u 3D nposoa-
HHUKOB B OamaucTHYecKOM M ITUPQPY3MOHHOM peXrMMax Kak MpH pa3iiiuuyl MOTEHIHAIOB, TaK H
IIPU PAa3HOCTH TEMIIEpaTyp Ha KOHTakTax. IIpuBeneHbI KOHEUHBIC BBIPAXEHUS AT BCEX TEPMO-
INEKTPUYECKUX TPAHCIIOPTHBIX K03 uuneHToB depe3 uaterpansl Gepmu — dupaka ms 1D, 2D
1 3D nonynpoBOJHHUKOB C MapaboIMuecKoi nuctepcuerd u aist rpadeHa ¢ TMHeHHOH anucrepcuer
B 0AJUTHCTHYECKOM M TU(PPY3HOHHOM PEKUMaX C YIETOM CTEIIEHHOTO 3aKOHA PACCESTHHS.

KnroueBble cj10Ba: HAaHOIEKTPOHHKA, MOJBI NMPOBOJUMOCTH, KOIGUIMEHT MPOXOKIACHHUS,
OaJuTCTHYECKUH TPaHCTIOPT, AU (Y3MOHHBIN TPAHCIIOPT, TEPMOINIEKTPUIECKHIE KO PHIIUESHTHI.
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