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It is well known that one-dimensional (1D) models can be an effective tool for solving many
problems in statistical mechanics. For instance a particular attention in such areas as chemical re-
actions, random walks and aggregation problems has been paid to the role of dimensionality. We
study the effects of low dimensional constrains of model reactive systems. We present an exactly
solvable model of fluctuational dynamics in bimoleculary reactive, partially filled, 1D perfect lat-
tice. A rigorous expressions have been obtained for the probability distribution function, average
numbers of particles, mean square fluctuations, configurational entropy and statistical sum. The
previous data for Ising model of 1D nonreactive lattice gas adsorption have been completed by
getting a rigorous expression for configurational statistical sum. We found that in the case of va-
cancied chemically reactive lattice, like in the case of exclusion statistics , distribution function has
a chiral form, expressed in terms of Jacobi polynomials or Gauss confluent functions. It is shown
that the nonlinearity of the reaction radically change the expected mean-field behavior. We show
considered system is nonergodic with respect to chemical dynamics, and has a steady state, with a
not a mean-field ratio of the average numbers of particles, which approached asymptotically. Ob-
tained results also contrastly display coupling between microscopic processes and collective be-

havior as described by the macrovariables
Keywords: reactive 1D lattices,

fluctuation dynamics, probability distribution func-

tions,ergodicity, statistical mechanics on frustrated lattices

1. INTRODUCTION

One-dimensional models are known to be an ef-
fective tool for solving a variety of problems in sta-
tistical mechanics. In particular, large attention in
such areas as chemical reactions, random walks and
aggregation problems (but not only) is devoted to
the role of dimensionality in the dynamical evolu-
tion. It has been shown [1, 2], that restricting space
to low dimension can cause deviations from the
mean field behavior, depending on the type of the
nonlinearity involved. In this systems deviations
from mean field (MF) behavior might be expected
due to reduced effective mobility of the reactants.
Along this line we perform here an explicit calcula-
tion of the distribution function of 1D bimolecu-
larly, chemically reactive lattice which include the
random vacancies by means of conditional probabil-
ity method. The 1D lattice gas adsorption model
will be considered first, to obtain a rigorous expres-
sion for corresponding configurational statistical
sum. An explicit expression for distribution function
in the case of chemically reactive adsorbed gas is
expressed in form of Jacobi polynomials. This chiral
form of distribution function, which is typical for
the systems with an exclusion statistics is shown to
appear also in the case 1D lattice adsorbed reactive
gas, (where the vacancies distribution is random.)

2. BIMOLECULARY REACTIVE TOTALLY
FILLED LATTICE

Consider  bimoleculary  reactive  system

A+B<> 2X in one dimension. We stipulate, that
particles of type A4, can change their sort into X,
whenever they feel the presence of X particles. And
similarly for X particles. The simplest reaction
model consist of particles 4 and X occupying the
sites of one-dimensional lattice, one particle per
lattice site, with either periodic or fixed boundary
condition. We first assume that these are no vacant
sites on the lattice. We start with a one-dimensional
lattice of size M. As initial condition we consider a
uniform configuration containing only X particles.
Let us call the number of deferent ways of putting
N, particles 4 in 1D lattice of size M as distribution
function, denoted by g,(N,). Because in the consid-
ered model (which is ergodic) all possible configu-
rations are allowed. Then gy,(N,) would be equal to

M
combinational factor ( j Performing the nor-
A

malization one has

gM(NA)z[AA/[I j/(zM -1). (1)
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Thus, the average number of A particles in a
chain of size M, under the arbitrary boundary
conditions can be estimated as

(N,)= :ZIONA [j‘j J/(zM -1},

A

2

Making normalization

M M- (M
S (NA)Z(NAJ/NZ‘O(NAJ’

we leave one state should not be occupied by A4
particles, because of dynamic (totally filled lattice
with only A particles is a “frozen’’, i.e. nonergodic

state). And similarly for (N X}. Note, that obvi-
Ny+N,=M, and
thus(N,)+(N,)=M . Form (2) it is follows that

ously, we have a sum rule :

the ratio r =
(Ny)
r=1- —1
2M 1 (3)
as M — o0,

Thus, this quantity attains its mean-field
valuer =1. In addition to this known result [4] we
are now in the position to perform a calculations of
the mean system fluctuations of the numbers of

given particles <N j>, <N)2(> of given sorts which

occur due to chemical reaction. Namely, we have

M2
4

- (4)

DI
<N2>_NA:O . N, _M2 (1_ 1 )2 N
4 2" 1 4\ 2"
One can compute a covariance matrix of the fluc-

tuations around the mean particle numbers on the
form (2), (4)

((am, ) =(w2) (v, -

1- x2 M
4 (1_2*M) 4

as M — oo.

On the same way, one can perform also correla-
tion function of the fluctuations of the numbers of

deferent particles <AN AN X}. Namely, taking into
account Egs. (4) and (2), we obtain

2

(AN AN ) =(N3)~(N,) =

1- x2 M
M (M +1) 22 LM ©)
4 (1_2*M) 4

as M — .

In Eq.(6), the negative sign means that because
of bimolecular character of the reaction, if particle
of sort A appears, then particle of sort X disappears
from the lattice.

Thus it is clear that the bimolecularly reactive 1D
lattice shows mean-field behavior already in one
dimension (at least as far as the steady state proper-
ties are concerned). This system is ergodic over all
the state space except for the state which consist
entirely of A particles. This unique configuration is
frozen and cannot be reached from any other con-
figuration with the Morkovian evolution rules
adopted. In the classification of the states familiar
from Markov chains those frozen state qualified as a
closed class consisting a single adsorbing state.

The mean square fluctuations in 1D totally filled
bimolecularly reacted perfect lattice, as well as cor-
relations of fluctuations of the numbers of particle
behave normal and not anomalous. In the next para-
graph we go to study partially filled lattice expect-
ing the deviations from given above scenario. As it
will be shown, along this line an exact results could
be obtained.

3. EXACTLY SOLVABLE MODEL FOR 1D
LATTICE GAS ADSORPTION

In this section we consider the classical problem
of gas adsorption in 1D perfect lattice, first in the
case, in which individual sites (or subsystems) were
independent of each other and then when
interactions between the nearest neighbor sites exist.
Second neighbor and higher interactions are
important in some cases but, here, we shall confine
ourselves to particular models without intersite
interactions or with nearest-neighbor interactions
only because especially these models can be solved
exactly. In the development of classical theory of
Ising lattices, we focus our consideration on the
rigorous treatment of statistical mechanics of con-
sidered systems, like, for instance, mean square
fluctuations, configurational entropy. In the case of
adsorption in the 1D lattice gas with the nearest
neighbor interactions we show, that in addition to
[3] the rigorous expression for the statistical sum in
terms of Jacobi polynomials can be obtained.

Let 1D lattice of size M contained L particles of
one kind, say, X and M-L vacancies. Thus all
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X-particles are distributed randomly among N sites.
We introducing three auxiliary variables; Nyy the
number of nearest neighbor pairs (NNP) occupied
simultaneously by X particles, Nxo the number of
NNP of which only one is occupied by X particles,
and Nyo the number of NNP both of which are
vacant. Then the following relations among them
can be easily established [3]:

2N,y + Ny =2L,

7
2Ngpo+Nyo =2(M - L). 2

Eq.(7) shows that of these three variables only
one can be chosen independently, say N,,.

The number of deferent configurations of X par-
ticles with only N,, pairs in a lattice of size M with a
M-L vacancies Gyy(N,,) one can express rigorously,
as follows

L M-L
gM,L(NXX){N J(L_N j (8)

Obviously, we have for a total number of con-
figurations with given L and M

L L (L M-L M
Ng—ogM’L(NXX):NE—O[NHJ(L—NXXJ:(L j-(9)

With the help of Eqgs. (8) and (9), one can per-
form the rigorous calculations of the "fluctuational
dynamics" of 1D lattice gas adsorption. Namely, for

the average number of N, —<N XX>7 and for the

mean-square fluctuations of
Ny —<(ANXX)2>_<NXX>2

we obtain:

2( LY
=—|1-—1.
M( Mj
Egs.(10) and (11) show that the mean square

fluctuations of N,,, related to the system size M has

. . . M
a maxima under the value of filling fraction L = > :

2

<(AJVxx) >__ LY L 2

M M M)

One can observe here the reminiscence of "phase
transition" between the gas, liquid and solid phases
in the case of a system which consists of
distinguished clumps. Note, that this is of course not
a real phase transition in terms of regular density, as

it will be shown latter. This phase transition is
impossible in 1D case. The maximum value of

((av,)')
M

(12)

achieved under the condition that

L )
—=1 is equal to 1/16.
M

Performing simultaneously calculations of the
configurational entropy S, given by

S=kglng, ,(N,),one has

L \(M-L
S=kyn .
N NL-N,,

Using the Stirling formula, we find that expres-

sion (13) has a maximum under the value of
2

L
Npe=—r

(13)

, which is exactly equal to the average

number of N, —<NXX>. Comparing (10), (11) and
(13) we see that the average density of nearest-
neighbors pairs (N P > / M mononically increases as
a parabolic law, but the relative mean square fluc-
tuations and the entropy of displacement (configura-
tional entropy) has a maximum. Namely, the maxi-
mum in the mean-square fluctuations have observed
in the case that the half of lattice sites are occupied,

and thus characterized by the mean value <N XX>

L M .
equal to <NXX>=H=T. At the same time, the

entropy of displacement, given by Eq.(13), after
2

. L
Nyy :<NXX>:M

maximum value, but it is simple to show that S has

substitution reached their

. . . L
no maximum as a function of density a Thus, the

. M . . .
point L = - is not a point of real phase transition,

2
because under the given value of <N % >:Lﬁ,

entropy S has a maximum value under the any
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. .. L .
appropriate value of density v (M is fixed). Note
that when M — o (a sufficiently large system), and

L .
i -constant, entropy S has no maximum at all for

L .
any values of a Thus above described property of

the considered model is occurred for the finite sized
systems only.

Consider now the same model, as described
above, when the nearest-neighbor interactions
between the X particles within Nyy pairs are taken
into account on a simplest way. Namely, rewriting
the expression for the statistical sum of Izing model

[3]

within the framework of our model we obtain the
following expression

Z — eLS/kBT i L M - L (eZS/kBT )NXX (14)
N\ Nyy \L=Nyy '

The summation in the Eq.(14) have been
performed approximately by means of maximum
term method, giving rise to the estimation of the
certain  statistical ~mechanical values, like
configurational energy and heat capacity, for
instance [3]. We found that the sum (14) can be
calculated explicitly, which allow us to conclude
about the real exact character of considered model.
Namely, performing sum (14) [5], we have

L M-L
Z(s)=6(M - 2L){(2sh [SD P20 coth(gJ} +0(2L - M )Ml {[th [SD P coth [5]} (15)
ey T kT ey T ey T

where P"(x) are the Jacobi polynomials. Tak-
ing the limit £ - 0 in (15) and using the properties
of Jacobi polynomials [5], one has as expected

liiré(Z(g))zﬁ(M—ZL)[jL\/I J+

vl )]

Eq.(15) permits us to perform a rigorous analyti-
cal or numerical simulations of statistical thermody-
namics of the considered system, which is not a
purpose of this paper.

(16)

4. BIMOLECULARY REACTIVE LATTICE

We are now in the position to make a
hybridization of the two previously considered in
Secs. 2 and 3 models, for the bimolecularly reactive,
totally filled lattice, and for the 1D lattice gases
adsorption, respectively. Consider the possibility of
reversible bimolecular reaction type X +4—2X
in 1D lattice gases adsorption model, described
above. The presence of vacancies is expected to
change an ergodic character of 1D bimolecularly
reactive system (see Sec. 2). Here we are going to
obtain an explicit expressions for the respective
distribution functions, average number of particles
and their mean-square fluctuations. We also address
here the question weather exist a steady state in
bimolecularly reactive 1D adsorptive lattice gas, and

how our system approach this steady state, if so.
Clear, that under the above construction, particles 4
can only be created from the configurations initially
involving continuous X particles (note, that again as
before we start from homogenous initial configura-
tion, which consist of only X particles). Further-
more, the conditional probability to find N, number
of A particles in whole system which include Nyy
nearest neighbors pairs occupied simultaneously by

. . [ Nxx N
X particles is ¥ 27« (see Sec. 2). Thus, the

A
total distribution of A particles G,,_, (N,) within

1D partially filled bimolecularly reactive system of
size M with M-L vacancies can be expressed as fol-
lowing sum

L (N )L (ML o,
_N§=O N ENXX](L—NX;(] - (17)

Eq.(17), after using the following property for
the products of binomials,

M R

can be rewritten as

o (vt ) e (EN ML
M,L( A)_ NA NX/Z\,::O L—NXX L—NXX ZT)Q(( )

GM,L (NA)
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Finally, performing the summation in Eq.(18)
explicitly [5], we obtain:

L
Gy (N,)= (N ]x {.9(2L ~M =N )PP () +0(M —2L+ N ) B0 (g)}. (19)
A

In terms of Gauss confluent function , F, (a, ,7,z)
Eq.(19) can be rewritten as follows:

One can see, that taking the limit L —> M (to-
tally filled lattice) in the rigorous Egs.(18) and (19)
we obtain explicitly the respective expression for
the distribution function, given by Eq.(1), thus

LN, M-L
P B (-M+L,L—N, +1,2L-M~N +5,~1)+0(M-2L+N,) Ly B (-L+NyM—=L+1L,M=2L+N, +1;~1){.
V4

L 1 L
> GM,L( A):_L
N,=0 2% N,=0

Jpa-of o))

From Eqgs.(19) and (20) it follows that distribu-
tion function has change of their behavior (bifurca-

. . M S
tion point) at the value of L=7, which is the

reminiscence of the critical behavior of 1D lattice
gas adsorption (See Sec. 2). One can perform now

(20)

lim g,/ , (NA) 21

L>M

v}

Obviously, the normalization condition is satis-
fied by Egs.(19), (20). In particular, we have:

L
5 [ N ]x (0QL=M =N )PE 0 o)+ 0(M =2L+ N )P (2)) =
A

(22)

the calculations of the average values (N A> , (N X>

()
(V)

<N A>, after some transformations, we calculate the

and their ratio r=

By use of definition

respective sum explicitly:

L L ) L (L _ r
_ (M-2L+N,,0) (M—-2L+N,,0) _
NJ)=3> N -
< A> NAZ=:0 A (NA )PLNA (8)/NAZ;0(NA )PLNA (5) M (23)

S M .
Here we put for simplicity L :7. Using Eq.(23)

and taking into account the trivial sum rule for our
model L =<N A>+<N X) , we calculated the ratio

(Na)
(Nx)

r= , hnamely

24

)

N
Eq.(24) shows that ratio r = <—A> increased mono-

(Nx)

. .. L
tonically as a function of density v and under the
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M .
value of L=7 approaches 1/3. This is, as ex-
pected, quite different from the mean-field value
1,y =1. Note, that the value r, given by Eq.(24)

approaches mean-field value 1 in the limit, when
L — M (totally filled lattice without the vacancies).
We can conclude now that bimolecularly reactive
partially filled 1D lattice, starting from homogene-
ous initial configuration, asymptotically approaches
a steady state in which the ratio » takes the value

1 M
r<l (r= 3 when L = > ). We performed a calcu-
fluctuations

lation of the  mean-square

<(ANA )2> = <Nfl> - <NA >2 , namely, with the help
of Egs.(19) and (20), we obtain

AN L 1r
AN =—|l-—+—— 25
<( A)> 2M[ M 2M2J 2
From Eq.(25) it follows that mean-square
. . . L
fluctuations decreased as a function of density a

The relative fluctuations

[fo0,)

approaching the value 1/4 (which is exactly equal to
the limit of totally filled lattice, See Sec. 1) in the

mean-square

behaves as square law from the density,

limit L — M . For the dilute lattice, when L <%,

the mean-square fluctuations are much smaller then
in the case of totally filled lattice. As expected, the
presence of vacancies plays a role of restrictor for
the development of chemical fluctuations, which
developed only within the X particle islands. We
present also the useful formula for the ratio

()
.

structure factor S (k) under the value of wave vec-

, which is related with respective static

tor k£ equalto0

() o g

Ny M

Comparing the result described above with the
conclusions made in Sec. 2, we see an exact corre-
spondence between them if one adopt simply

<N A> = <N X > / 2. This isomorphism, however,

(26)

dropped when one goes to express the mean square
fluctuations (compare Eq.(11), and Eq.(25)). We
would not present here the precise calculations of
average values and mean-square fluctuations in the

case of %< i <1. It could be done without princi-

pal difficulties with the help of rigorous expressions
for the distribution function g,,, (N,), given by

Eq.(19) and Eq.(20). Note only, that in the limit of
L —> M we obtain again famous results for totally
filled 1D lattice we would get again the familiar
results obtained in the Sec. 2,3.

5. SUMMARY

We have developed a 1D model of chemically
reactive lattice which include the vacancies. It is
shown that even in one dimension bimolecularly
reactive totally filled lattice mimics a mean-field
scenario of fluctuational chemical dynamics, which
is rather surprising. From another side in the
reactive lattice with vacancies, the nonergodic
scenario of the behavior of chemical fluctuations
occurs. An important advantage of considered
model and given approach is that one obtains an
explicit expressions either for distribution functions
(which gives the probability to find a given particle
configuration) and average number of particles, or
mean-square fluctuations, configuration sum and
entropy. We found that in the case of vacancied
chemically reactive lattice, like in the case of exclu-
sion statistics [7,8], distribution function has a chiral
form, expressed in terms of Jacobi polynomials or
Gauss confluent functions. We conclude that in spite
their simplicity 1D reactive lattices able to exhibit
complex not a mean-field, and nonergodic behavior.
This property should be taken into account, for in-
stance, in the description of cooperative adsorption
of the products on the surfaces, or band formation in
the polymers [9].
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TOYHO-PO3BA3YBAHA MOJEJb XUMIYHO PEATYIOUOI CHCTEMHA
HA OJJTHOBUMIPHIIA YACTKOBO 3AIIOBHEHIM I'PATIII

O. L. I'epacumoB, a1-p }i3.-Mat. HayK, IPod.

Ooecvruti Oepaicaghull eKON0STUHUL YHI6epCUmen
(15, eyn.Jlvsiscoka., Odeca 65016, Vrpaina, gerasymovoleg@gmail.com)

Po3risinyta Mozenb GuyKTyamiifHo IMHaMIiKK JBOX-KOMIIOHEHTHOI pearyrodoi cymimii Ha of-
HOBHMIpPHIH rpaTi i3 BakaHCIIMHU,AKa MPUIyCKae TOYHI po3B’si3ku. OTpuMaHi aHAIITHYHI BUPa3H
JUISl IMOBIpHICHUX (DYHKIIH PO3MOALTY,CepPEaHIX YHCEll 3aII0BHEHHS Ta X CepeJHbOKBaIPaTHYHNX
¢rykryaniii,koH}irypamiiinoi enrpomii Ta craructuunoi cymu. Mozenp [3uHra He pearyrouoi 3a-
MOBHEHOI I'PAaTKM JONOBHEHA OTPUMAaHHM TOYHUM BHPA30M ISl CTATHCTUYHOI CyMH Ha BHUIAIOK
HasBHOCTI BakaHCiiH. HaouHO 1poeMOHCTpOBaHA HE eprofANyYHICTh PO3IIISTHYTOI CUCTEMH,IKa Xa-
PaKTepU3y€EThCS BIAMIHHUMHE BiIl BUCHOBKIB MOJICNI CEPEIHBOTO TIONS CITiBBIAHOIICHHSIMH MiXK
CepeaHIMHU KiTBbKOCTSIMH PEareHTiB y aCHMIITOTHYHNX KBa3iCTAlllOHAPHUX CTaHAX..

KoarouoBi ciioBa : pearyroui 0HOBUMIpPHI IpaTku, QIyKTyalliiiHa AMHaMIKa,iMOBIpHICHI (QyH-
KIii po3moiny,eproAnyHiCTh,CTATUCTUYHA MEXaHiKa pearyrounx IrpaTok i3 BaKaHCISIMH

TOYHO-PEINAEMAS MOJEJIb XUMHUUYECKH PEATUPYIOIIEN CUCTEMBI
HA OJHOMEPHOU YACTHUYHO 3AIIOJIHEHOU PEHIETKE

0. U. I'epacumoB, 1-p ¢u3.-Mat. HayK, Mpog.

PaccmorpeHa Mojenb (IyKTyalMOHHOM TUHAMHKH JABYX-KOMIIOHEHTHOH XMMHYECKH pearu-
pyolIei cUCTeMbI Ha OTHOMEPHOI! pelieTke ¢ BaKaHCUAMHU, KOTOpas IOMyCKaeT TOUHOE PEILICHHUE.
[omy4eHs! aHaNUTHYECKUE BBHIPAKEHHS IJISI BEPOSTHOCTHBIX (DYHKIMH pacipesiesieHNs, CPeJHNX
YHCeJ 3all0JHEHUsI W UX CPEeIHEKBaJIPAaTHYHBIX (UIyKTyalui, KOHQHUIYPalMOHHOW SHTPONHMH H
cTaTucTHUYeckol cyMMbl. Mojens M3uHra Hepearupyromeil 3aloIHEHHON PEHIeTKH JONOJHEHA
MTOJYYEHHBIM TOYHBIM BBIPRKEHHEM JUIl CTATHCTHYECKOW CyMMBI Ha CIIydail HalWdusl BaKaHCHH.
HarnsaHo npogeMoHCTpHpOBaHa HEIPTOANIHOCTh PACCMOTPEHHOM CHCTEMBI, KOTOpast XapaKTepH-
3yeTcsl OTIAMYHBIMHU OT NPECKAa3aHHBIX TEOPHEH CPEITHETO OIS COOTHOUICHUSIMU CPEIHUX YHCEIN
peareHTOB B aCHMITOTHYECKU KBAa3H-CTAI[HOHAPHBIX COCTOSHHSAX.

KaroueBble cji0Ba: pearupyomnye OJHOMEPHBIC PEIIeTKH, (UIyKTyallMOHHAsl AMHAMUKA, BEPO-
ATHOCTHBIE (DYHKIIUM paCIpeEeICHUs], 3prOJUIHOCTb, CTATHCTHUECKAas MEXaHHKa peardpyromnx
PEIIETOK C BaKaHCUSAMHU
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