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It is well known that one-dimensional (1D) models can be an effective tool for solving many 
problems in statistical mechanics. For instance a particular attention in such areas as chemical re-
actions, random walks and aggregation problems has been paid to the role of dimensionality. We 
study the effects of low dimensional constrains of model reactive systems. We present an exactly 
solvable model of fluctuational dynamics in bimoleculary reactive, partially filled, 1D perfect lat-
tice. A rigorous expressions have been obtained for the probability distribution function, average 
numbers of particles, mean square fluctuations, configurational entropy and statistical sum. The 
previous data for Ising model of  1D nonreactive lattice gas adsorption have been completed by 
getting a rigorous expression for configurational statistical sum. We found that in the case of va-
cancied chemically reactive lattice, like in the case of exclusion statistics , distribution function has 
a chiral form, expressed in terms of Jacobi polynomials or Gauss confluent functions. It is shown 
that the nonlinearity of the reaction radically change the expected mean-field behavior. We show 
considered system is nonergodic with respect to chemical dynamics, and has a steady state, with a 
not a mean-field ratio of the average numbers of particles, which approached asymptotically. Ob-
tained results also contrastly  display coupling between microscopic processes and collective  be-
havior as described by the macrovariables            

Keywords: reactive 1D lattices, fluctuation dynamics, probability distribution func-
tions,ergodicity, statistical mechanics on frustrated lattices  

 
 

1. INTRODUCTION    
  

One-dimensional models are known to be an ef-
fective tool for solving a variety of problems in sta-
tistical mechanics. In particular, large attention in 
such areas as chemical reactions, random walks and 
aggregation problems (but not only) is devoted to 
the role of dimensionality in the dynamical evolu-
tion. It has been shown [1, 2], that restricting space 
to low dimension can cause deviations from the 
mean field behavior, depending on the type of the 
nonlinearity involved. In this systems deviations 
from mean field (MF) behavior might be expected 
due to reduced effective mobility of the reactants. 
Along this line we perform here an explicit calcula-
tion of the distribution function of 1D bimolecu-
larly, chemically reactive lattice which include the 
random vacancies by means of conditional probabil-
ity method. The 1D lattice gas adsorption model 
will be considered first, to obtain a rigorous expres-
sion for corresponding configurational statistical 
sum. An explicit expression for distribution function 
in the case of chemically reactive adsorbed gas is 
expressed in form of Jacobi polynomials. This chiral 
form of distribution function, which is typical for 
the systems with an exclusion statistics is shown to 
appear also in the case 1D lattice adsorbed reactive 
gas, (where the vacancies distribution is random.) 

   
2. BIMOLECULARY REACTIVE TOTALLY 

FILLED LATTICE 
 

Consider bimoleculary reactive system 
A+B 2X in one dimension. We stipulate, that 
particles of type A, can change their sort into X, 
whenever they feel the presence of X particles. And 
similarly for X particles. The simplest reaction 
model consist of particles A and X occupying the 
sites of one-dimensional lattice, one particle per 
lattice site, with either periodic or fixed boundary 
condition. We first assume that these are no vacant 
sites on the lattice. We start with a one-dimensional 
lattice of size M. As initial condition we consider a 
uniform configuration containing only X particles. 
Let us call the number of deferent ways of putting 
NA particles A in 1D lattice of size M as distribution 
function, denoted by gM(NA). Because in the consid-
ered model (which is ergodic) all possible configu-
rations are allowed. Then gM(NA) would be equal to 

combinational factor 
A

M

N



 






. Performing the nor-

malization one has 
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Thus, the average number of A particles in a 
chain of size M, under the arbitrary boundary 
conditions can be estimated as 

 

 1

0
/ 2 1 .

A

M
M

A A
N A

M
N N

N





 
  

 
   (2) 

 

Making normalization  
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we leave one state should not be occupied by A 
particles, because of dynamic (totally filled lattice 
with only A particles is a “frozen’’, i.e. nonergodic 
state). And similarly for XN . Note, that obvi-

ously, we have a sum rule : , and 

thus
X AN N M 

X AN N  M . Form (2) it is follows that 

the ratio A

X

N
r

N
  
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Thus, this quantity attains its mean-field 
value . In addition to this known result [4] we 
are now in the position to perform a calculations of 
the mean system fluctuations of the numbers of 

given particles 

1r 

2
AN , 2

XN  of given sorts which 

occur due to chemical reaction. Namely, we have 
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One can compute a covariance matrix of the fluc-
tuations around the mean particle numbers on the 
form (2), (4) 
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On the same way, one can perform also correla-
tion function of the fluctuations of the numbers of 
deferent particles A XN N  . Namely, taking into 

account Eqs. (4) and (2), we obtain 
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In Eq.(6), the negative sign means that because 
of bimolecular character of the reaction, if particle 
of sort A appears, then particle of sort X disappears 
from the lattice. 

Thus it is clear that the bimolecularly reactive 1D 
lattice shows mean-field behavior already in one 
dimension (at least  as far as the steady state proper-
ties are concerned). This system is ergodic over all 
the state space except  for the state which consist 
entirely of A particles. This unique configuration is 
frozen and cannot be reached from any other con-
figuration with the Morkovian evolution rules 
adopted. In the classification of the states familiar 
from Markov chains those frozen state qualified as a 
closed class consisting a single adsorbing state. 

The mean square fluctuations in 1D totally filled 
bimolecularly reacted perfect lattice, as well as cor-
relations of fluctuations of the numbers of particle 
behave normal and not anomalous. In the next para-
graph we go to study partially filled lattice expect-
ing the deviations from given above scenario. As it 
will be shown, along this line an exact results could 
be obtained. 

 
3. EXACTLY SOLVABLE MODEL FOR 1D 

LATTICE GAS ADSORPTION 
 

In this section we consider the classical problem 
of gas adsorption in 1D perfect lattice, first in the 
case, in which individual sites (or subsystems) were 
independent of each other and then when 
interactions between the nearest neighbor sites exist. 
Second neighbor and higher interactions are 
important in some cases but, here, we shall confine 
ourselves to particular models without intersite 
interactions or with nearest-neighbor interactions 
only because especially these models can be solved 
exactly. In the development of classical theory of 
Ising lattices, we focus our consideration on the 
rigorous treatment of statistical mechanics of con-
sidered systems, like, for instance, mean square 
fluctuations, configurational entropy. In the case of 
adsorption in the 1D lattice gas with the nearest 
neighbor interactions we show, that in addition to 
[3] the rigorous expression for the statistical sum in 
terms of Jacobi polynomials can be obtained. 

Let 1D lattice of size M contained L particles of 
one kind, say, X and M-L vacancies. Thus all  
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X-particles are distributed randomly among N sites. 
We introducing three auxiliary variables; NXX the 
number of nearest neighbor pairs (NNP) occupied 
simultaneously by X particles, NXO the number of 
NNP of which only one is occupied by X particles, 
and NOO the number of NNP both of which are 
vacant. Then the following relations among them 
can be easily established [3]: 

 

  (7) 


2 2 ,

2 2
XX XO

OO XO

N N L

N N M L

 
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
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Eq.(7) shows that of these three variables only 
one can be chosen independently, say Nxx. 

The number of deferent configurations of X par-
ticles with only Nxx pairs in a lattice of size M with a 
M-L vacancies GMN(Nxx) one can express rigorously, 
as follows 
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Obviously, we have for a total number of con-
figurations with given L and M  
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With the help of Eqs. (8) and (9), one can per-
form the rigorous calculations of the ''fluctuational 
dynamics'' of 1D lattice gas adsorption. Namely, for 
the average number of XX XXN N , and for the 

mean-square fluctuations of  
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Eqs.(10) and (11) show that the mean square 
fluctuations of Nxx, related to the system size M has 

a maxima under the value of filling fraction 
2

M
L  : 
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1
XXN L L

M M M
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One can observe here the reminiscence of ''phase 
transition'' between the gas, liquid and solid phases 
in the case of a system which consists of 
distinguished clumps. Note, that this is of course not 
a real phase transition in terms of regular density, as 
it will be shown latter. This phase transition is 
impossible in 1D case. The maximum value of  

 2
xxN

M


 achieved under the condition that 

1
L

M
  is equal to 1/16. 

Performing simultaneously calculations of the 
configurational entropy S, given by 

 ,lnB M L xxS k g N , one has 
 

 . (13) lnB
xx XX

L M L
S k

N L N

  
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Using the Stirling formula, we find that expres-
sion (13) has a maximum under the value of 

2

XX
L

N
M

 , which is exactly equal to the average 

number of XX XXN N . Comparing (10), (11) and 

(13) we see that the average density of nearest-
neighbors pairs XXN M  mononically increases as 

a parabolic law, but the relative mean square fluc-
tuations and the entropy of displacement (configura-
tional entropy) has a maximum. Namely, the maxi-
mum in the mean-square fluctuations have observed 
in the case that the half of lattice sites are occupied, 
and thus characterized by the mean value XXN  

equal to
2

4XX
L M

N
M

  . At the same time, the 

entropy of displacement, given by Eq.(13), after 

substitution 
2

XX XX
L

N N
M

   reached their 

maximum value, but it is simple to show that S has 

no maximum as a function of density 
L

M
. Thus, the 

point 
2

M
L   is not a point of real phase transition, 

because under the given value of  
2

XX
L

N
M

 , 

entropy S has a maximum value under the any  
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within the framework of our model we obtain the 
following expression appropriate value of density 

L

M
 (M is fixed). Note 

that when M  (a sufficiently large system), and 
L

M
 -constant, entropy S has no maximum at all for 

any values of 
L

M
. Thus above described property of 

the considered model is occurred for the finite sized 
systems only. 
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The summation in the Eq.(14) have been 
performed approximately by means of maximum 
term method, giving rise to the estimation of the 
certain statistical mechanical values, like 
configurational energy and heat capacity, for 
instance [3]. We found that the sum (14) can be 
calculated explicitly, which allow us to conclude 
about the real exact character of considered model. 
Namely, performing sum (14) [5], we have 

Consider now the same model, as described 
above, when the nearest-neighbor interactions 
between the X particles within NXX pairs are taken 
into account on a simplest way. Namely, rewriting 
the expression for the statistical sum of Izing model 
[3]   

___________________________________________ 
  

89 
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  __________________________________________ 
 

m
nPwhere x  are the Jacobi polynomials. Tak-

ing the limit 0 

0

 in (15) and using the properties 
of Jacobi polynomials [5], one has as expected 
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Eq.(15) permits us to perform a rigorous analyti-
cal or numerical simulations of statistical thermody-
namics of the considered system, which is not a 
purpose of this paper. 

 
4. BIMOLECULARY REACTIVE LATTICE 

 

We are now in the position to make a 
hybridization of the two previously considered in 
Secs. 2 and 3 models, for the bimolecularly reactive, 
totally filled lattice, and for the 1D lattice gases 
adsorption, respectively. Consider the possibility of 
reversible bimolecular reaction type 2X A X   
in 1D lattice gases adsorption model, described 
above. The presence of vacancies is expected to 
change an ergodic character of 1D bimolecularly 
reactive system (see Sec. 2). Here we are going to 
obtain an explicit expressions for the respective 
distribution functions, average number of particles 
and their mean-square fluctuations. We also address 
here the question weather exist a steady state in 
bimolecularly reactive 1D adsorptive lattice gas, and 

how our system approach this steady state, if so. 
Clear, that under the above construction, particles A 
can only be created from the configurations initially 
involving continuous X particles (note, that again as 
before we start from homogenous initial configura-
tion, which consist of only X particles). Further-
more, the conditional probability to find NA number 
of A particles in whole system which include NXX 
nearest neighbors pairs occupied simultaneously by 

X particles is 2 XXXX N

A

N

N

 
 
 

 (see Sec. 2). Thus, the 

total distribution of A particles  M L AG N  within 

1D partially filled bimolecularly reactive system of 
size M with M-L vacancies can be expressed as fol-
lowing sum 
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Eq.(17), after using the following property for 
the products of binomials, 
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Finally, performing the summation in Eq.(18) 
explicitly [5], we obtain: 

 

__________________________________________ 
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In terms of Gauss confluent function  2 1 , , ,F z    

Eq.(19) can be rewritten as follows: 
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One can see, that taking the limit  (to-
tally filled lattice) in the rigorous Eqs.(18) and (19) 
we obtain explicitly the respective expression for 
the distribution function, given by Eq.(1), thus 
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Obviously, the normalization condition is satis-
fied by Eqs.(19), (20). In particular, we have: 

__________________________________________ 
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From Eqs.(19) and (20) it follows that distribu-
tion function has change of their behavior (bifurca-

tion point) at the value of 
2

M
L  , which is the 

reminiscence of the critical behavior of 1D lattice 
gas adsorption (See Sec. 2). One can perform now 

the calculations of the average values AN , XN  

and their ratio A

X

N
r

N
 . By use of definition 

AN , after some transformations, we calculate the 

respective sum explicitly: 
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Here we put for simplicity 
2

M
L  . Using Eq.(23) 

and taking into account the trivial sum rule for our 
model AL N N  X , we calculated the ratio 
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Eq.(24) shows that ratio A

X

N
r

N
  increased mono-

tonically as a function of density 
L

M
 and under the 
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value of 
2

M
L   approaches 1/3. This is, as ex-

pected, quite different from the mean-field value 
. Note, that the value r, given by Eq.(24) 

approaches mean-field value 1 in the limit, when 
 (totally filled lattice without the vacancies). 

We can conclude now that bimolecularly reactive 
partially filled 1D lattice, starting from homogene-
ous initial configuration, asymptotically approaches 
a steady state in which the ratio r takes the value 

 (

1mfr 

L 

1r 

M

1

3
r   when 

2

M
L  ). We performed a calcu-

lation of the mean-square fluctuations 

 2 22
A A AN N N   , namely, with the help 

of Eqs.(19) and (20), we obtain 
 

  
2 22

2

1
1

2 2A
L L L

N
M M M


   


.




 (25) 

 

From Eq.(25) it follows that mean-square 

fluctuations decreased as a function of density 
L

M
. 

The relative mean-square fluctuations 

 2

AN

M


behaves as square law from the density, 

approaching the value 1/4 (which is exactly equal to 
the limit of totally filled lattice, See Sec. 1) in the 

limit . For the dilute lattice, when L M
2

M
L  , 

the mean-square fluctuations are much smaller then 
in the case of totally filled lattice. As expected, the 
presence of vacancies plays a role of restrictor for 
the development of chemical fluctuations, which 
developed only within the X particle islands. We 
present also the useful formula for the ratio 

 2

A

A

N

N


, which is related with respective static 

structure factor  under the value of wave vec-

tor   equal to 0 

 S k

k

 
 2

2

2
1

2

A

A

N
L L

N M
.

M


     (26) 

 

Comparing the result described above with the 
conclusions made in Sec. 2, we see an exact corre-
spondence between them if one adopt simply 

2A XXN N . This isomorphism, however, 

dropped when one goes to express the mean square 
fluctuations (compare Eq.(11), and Eq.(25)). We 
would not present here the precise calculations of 
average values and mean-square fluctuations in the 

case of 
1

1
2

L

M
  . It could be done without princi-

pal difficulties with the help of rigorous expressions 
for the distribution function  ,M L Ag N , given by 

Eq.(19) and Eq.(20). Note only, that in the limit of 
 we obtain again famous results for totally 

filled 1D lattice we would get again the familiar 
results obtained in the Sec. 2,3. 

L M

 
 

5. SUMMARY 
 

We have developed a 1D model of chemically 
reactive lattice which include the vacancies. It is 
shown that even in one dimension bimolecularly 
reactive totally filled lattice mimics a mean-field 
scenario of fluctuational chemical dynamics, which 
is rather surprising. From another side in the 
reactive lattice with vacancies, the nonergodic 
scenario of the behavior of chemical fluctuations 
occurs. An important advantage of considered 
model and given approach is that one obtains an 
explicit expressions either for distribution functions 
(which gives the probability to find a given particle 
configuration) and average number of particles, or 
mean-square fluctuations, configuration sum and 
entropy. We found that in the case of vacancied 
chemically reactive lattice, like in the case of exclu-
sion statistics [7,8], distribution function has a chiral 
form, expressed in terms of Jacobi polynomials or 
Gauss confluent functions. We conclude that in spite 
their simplicity 1D reactive lattices able to exhibit 
complex not a mean-field, and nonergodic behavior. 
This property should be taken into account, for in-
stance, in the description of cooperative adsorption 
of the products on the surfaces, or band formation in 
the polymers [9]. 
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ТОЧНО-РОЗВЯЗУВАНА МОДЕЛЬ ХИМІЧНО РЕАГУЮЧОЇ СИСТЕМИ  

НА ОДНОВИМІРНІЙ ЧАСТКОВО ЗАПОВНЕНІЙ ГРАТЦІ 
 

О. І. Герасимов, д-р фіз.-мат. наук, проф. 
 

Одеський державний екологічний університет 
(15, вул.Львівська., Одеса  65016, Україна; gerasymovoleg@gmail.com) 

 

Розглянута модель флуктуаційної динаміки двох-компонентної реагуючої суміші на од-
новимірній гратці із вакансіями,яка припускає точні розв’язки. Отримані аналітичні вирази 
для ймовірнісних функцій розподілу,середніх чисел заповнення та їх середньоквадратичних 
флуктуацій,конфігураційної ентропії та статистичної суми. Модель Ізинга не реагуючої за-
повненої гратки доповнена отриманим точним виразом для статистичної суми на випадок 
наявності вакансій. Наочно продемонстрована не ергодичність розглянутої системи,яка ха-
рактеризується  відмінними від висновків моделі середнього поля співвідношеннями між 
середніми кількостями реагентів у асимптотичних квазістаціонарних станах.. 

Ключові слова : реагуючі одновимірні гратки, флуктуаційна динаміка,ймовірнісні фун-
кції розподілу,ергодичність,статистична механіка реагуючих граток із вакансіями 

 
 
 

ТОЧНО-РЕШАЕМАЯ МОДЕЛЬ ХИМИЧЕСКИ РЕАГИРУЮЩЕЙ СИСТЕМЫ  
НА ОДНОМЕРНОЙ ЧАСТИЧНО ЗАПОЛНЕНОЙ РЕШЕТКЕ 

 

О. И. Герасимов, д-р физ.-мат. наук, проф. 
 

Рассмотрена модель флуктуационной динамики двух-компонентной химически реаги-
рующей системы на одномерной решетке с вакансиями, которая допускает точное решение. 
Получены аналитические выражения для вероятностных функций распределения, средних 
чисел заполнения  и их среднеквадратичных флуктуаций, конфигурационной энтропии и 
статистической суммы. Модель Изинга нереагирующей заполненной решетки дополнена 
полученным точным выражением для статистической суммы на случай наличия вакансий. 
Наглядно продемонстрирована неэргодичность рассмотренной системы, которая характери-
зуется отличными от предсказанных теорией среднего поля соотношениями средних чисел 
реагентов в асимптотически квази-стационарных состояниях. 

Ключевые слова: реагирующие одномерные решетки, флуктуационная динамика, веро-
ятностные функции распределения, эргодичность, статистическая механика реагирующих 
решеток с вакансиями 
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