Завгородний В.В., Яловая Е.Н., Яшина К.В.

ТЕХНОЛОГИИ ДИСТАНЦИОННОГО ОБУЧЕНИЯ В СИСТЕМЕ ТРАНСФЕРА ЗНАНИЙ СОВРЕМЕННОГО УНИВЕРСИТЕТА

Представлены результаты выполнения 5-го рабочего пакета международного проекта IRNet. Определены основные функциональные требования к академической МООС-платформе, как к действенному инструментарию оптимизации процессов трансфера знаний в системе преподаватель-студент. Результаты, представленные в статье, позволяют более углубленно изучать процессы взаимодействия участников системы трансфера знаний с целью оптимизации информационных процессов.

Ключевые слова: дистанционное обучение, информационные технологии, трансфер знаний, прогрессивная педагогика

Постановка проблемы. В общем смысле определение «трансфер знаний» (ТЗ) означает перенос определенных научных идей или научных проблем в другую научную область, в которой, в связи с этим, образуется новая, до этого не существующая, научно-практическая зона. Данное определение широко используется для описания информационных процессов распространения накопленных знаний университетов и является одним из приоритетных направлений развития современных обществ. Знания университета циркулируют в системе «создатель знаний» (поставщик) – потребитель знаний».

Задача данной статьи заключается в представлении результатов анализа и обоснования целесообразности использования технологий дистанционного обучения (ДО) и проектирования академической МООС-платформы (massive open online courses) для оптимизации системы трансфера знаний (СТЗ) в университете.

Результаты работы получены в ходе выполнения пятого рабочего пакета международного проекта IRNet (International Research Network for study and development of new tools and methods for advanced pedagogical science in the field of ICT instruments, e-learning and intercultural competences) [1] по разработке основных компонентов компьютерно-ориентированной системы дистанционной подготовки современных специалистов. В качестве технологии дистанционного обучения рассматривается проектирование академической МООС-платформы.

Анализ предыдущих исследований и публикаций. В Украине вопросами развития ДО и ЭО занимались А.А. Андреев, Б. И. Шуневич, Е.С. Полат, Н.В. Казаринова, А. Яценко, С. Степаненко, В.Ю. Стрельников, В. Кремень. Проблемы, с которыми сталкивается современное электронное обучение (ЭО), являются актуальными и широко обсуждаются во всем мире. Многое из успехов и неудач использования ЭО связывают с системой управления обучением, его организацией и наличием мотивации в образовательной среде [2]. Предметами научных исследований в сфере ЭО являются:

- модели и формы ЭО, где затрагиваются вопросы организации системы электронного обучения (СЭО), способы управления процессом обучения [3], педагогические аспекты создания индивидуально-ориентированных подходов к обучению в рамках установленных учебных планов и программ дисциплин;
- реализация эффективных форм и представлений электронных материалов лекций практических занятий [4] особое внимание уделяется разработке и внедрению виртуальных лабораторий для получения практических навыков студентами инженерных и технических

специальностей, с возможностью проведения экспериментов, технологических опытов, моделирования сложных технологических процессов и систем;

- информационные технологии (ИТ), используемые для программной реализации систем дистанционного обучения (СДО) [5], где затрагиваются вопросы эффективного администрирования СЭО, оптимального хранения учебных материалов, способов ускорения обработки информации в базах данных и знаний, используемых при хранении обучающих материалов, создание новых форматов хранения данных больших объемов;
- инновационные методы представления учебных материалов, использование мультимедиа, видеоконференций, чатов, интерактивной поддержки процесса обучения [6];
- способы и формы реализации оценки полученных знаний как со стороны самого обучающегося, так и со стороны руководителя образовательного процесса [7]; рассматриваются вопросы необходимости дискретного или постоянного контроля за процессом приобретения знаний;
- оценка качества СДО. Критерии оценки качества систем были сгруппированы в несколько категорий, которые позволяют дать оценку эффективности системы со стороны всех участников процесса обучения, учитывая уровень приобретенных знаний, общую удовлетворенность при ДО, необходимое время для проработки информации по сравнению с традиционным обучением.

Выделение нерешенных ранее частей общей проблемы. Несмотря на глубину исследований и на разнообразие научных работ, следующие задачи остаются актуальными и требуют дальнейшего решения: разработка методов формального описания процесса разработки СЭО, анализ требований для программной реализации СЭО, разработка функциональных и объектных моделей предметной области относительно приобретения знаний в рамках СЭО, анализ процесса имплементации СЭО и СДО в сферу деятельности ВУЗов Украины, роль и место ИТ при формировании информационного пространства (ИП) университета, разработка СЭО как неотъемлемой части СТЗ современного университета.

Цель работы – представить результаты выполнения задач 5 рабочего пакета международного проекта IRNet: установить место и роль технологий ДО в СТЗ современного университета; определить функциональные требования к компонентам компьютерноориентированной системы дистанционной подготовки современных специалистов; описать архитектуру, основные модули и действия академической МООС-платформы; определить ожидаемые результаты от ее использования; установить субъективные и объективные факторы, влияющие на эффективность ее функционирования как действенного инструментария оптимизации процессов ТЗ в системе «преподаватель-студент».

Изложение основного материала. Информационное пространство, в рамках которого формируются корпоративные знания университета — это совокупность [8]:

- информационных ресурсов различной направленности, которые движутся от источника к потребителю данных Информационные ресурсы университета это множество данных, представленных в виде документов, понятий, методик, участвующих в информационном обмене, в том числе и при использовании ПК [9];
- организационной структуры, обеспечивающей функционирование ИП. В рамках организационной структуры можно выделить действующие лица и систему административного руководства. Действующие лица это сотрудники, которые выполняют информационные операции и могут выступать в качестве источников, обработчиков и потребителей данных и знаний. К информационным операциям действующих лиц ИП отнесем: создание, сбор, хранение, обработку, поиск, распространение, анализ данных и принятие оперативных управленческих решений. Система административного руководства это набор операций и организационных мероприятий, проводимых с целью повышения эффективности функционирования университета и получения объективных данных относительно фактических показателей состояния учреждения в целом;

- среды информационного взаимодействия, включающей ИТ и программно-технические средства. Одним из способов реализации среды информационного взаимодействия является применение информационных систем (ИС). Разработка и внедрение ИС позволяет существенно сократить информационные операции действующих лиц ИП и выполнять автоматизированную обработку данных в режиме «запрос-ответ».

Формирование единого ИП университета как неотъемлемой части СТЗ позволяет [10]:

- объединить ИС подразделений;
- избежать избыточности данных при сборе первичной информации;
- уйти от дублирования операций обработки данных;
- улучшить обмен информации в целом;
- преодолеть проблемы взаимодействия распределенных источников информации и знаний;
- обеспечить доступ потребителей знаний к информационным ресурсам университета;
- повысить эффективности управления информационными ресурсами и знаниями в целом.

В общем случае знания университета генерируются в ходе выполнения трех видов работ [11]:

- учебной включает в себя организацию процесса обучения студентов в соответствии с установленными документами, такими как: учебные программы специальностей и специализаций для каждого квалификационного уровня;
- методической основного источника информационного обеспечения процесса подготовки квалифицированных специалистов (разработка учебных и рабочих программ дисциплин, конспектов лекций, методических указаний для выполнения всех видов работ и занятий, комплекты тестовых и экзаменационных заданий для проведения текущего и итогового контроля знаний). Распространение учебных материалов и их использование в процессе обучения можно рассматривать как особый вид ТЗ. Где под «поставщиком знаний» будем понимать любого преподавателя, разрабатывающего учебные пособия, а к потребителям знаний отнесем студентов, получающих знания в рамках выбранных специальностей;
- научной создание научных статей, тезисов и докладов на конференции, монографий, патентов, диссертационных работ, отчетов по бюджетным и внебюджетным научно-исследовательским работам, изобретений, инноваций, научных разработок. Особым видом научной работы является создание информационно-обучающей литературы: учебников и учебных пособий. ТЗ, полученных в ходе выполнения научной работы, может быть эффективным средством развития экономики страны в целом. Необходимо заметить, что в развитых странах именно университетам отводится ключевая роль экономичных двигателей в процессах создания новых знаний и их передачи в неакадемический сектор.

Результаты научно-методической работы каждого преподавателя образуют обобщенные показатели деятельности университета и характеризуют уровень его корпоративных знаний, что, в конечном счете, влияет на: общегосударственный рейтинг университета; конкурентоспособность университета на рынке образовательных услуг и в сфере реализации научных проектов; успешность проведения аккредитаций и лицензирования направлений обучения, специальностей и университета в целом. Повышение эффективности управления ИП и накопленными знаниями университета можно достигнуть, автоматизировав процессы управлении и внедрив автоматизированные ИС административного контроля и СЭО [12]. Их применение может обеспечить следующий положительный эффект:

- сокращение времени и трудозатрат обработки информации;
- повышение качества управления за счет более оперативного и полного использования накопленной базы данных (БД) и знаний;
- повышение достоверности информации, на основе которой принимаются решения руководством университета, и минимизация ошибок ввода данных;

- определение и эффективное использование комплексных показателей в системе административного руководства, что приведет к улучшению информационного обеспечения оперативного управления;
- построение единого ИП университета с реализацией функций электронного сбора, хранения, обработки и генерации данных для процесса принятия эффективных оперативных управленческих решений;
- повышение эффективности функционирования СТЗ за счет оптимизации процессов их сбора, накопления и распространения.
- В соответствии с видами информационных ресурсов и выделенными типами информационных работ, определим и охарактеризуем две группы автоматизированных ИС, призванных улучшить СТЗ университета: ИС, которые повышают эффективность информационно-образовательного пространства и ИС оптимизации информационных процессов системы административного руководства. К первым стоит отнести: системы дистанционного обучения, МООС-платформы, виртуальные классы, ІТ-инструментарии, такие как: системы управления обучением (LMS, Learning Management Systems), системы управления контентом (CMS, Contents Management Systems), виртуальные синхронные классы (VSCR, Virtual synchronous classrooms), облачные технологии и виртуальные среды обучения. Все перечисленные виды информационно-компьютерных средств относятся к технологиям ДО. Место системы передачи знаний в информационной среде университета представлено в графическом виде на рисунке 1.

Рис. 1. Место системы передачи знаний в информационной среде университета

Дистанционное обучение — это взаимодействие учителя и учащихся между собой на расстоянии, отражающее все присущие учебному процессу компоненты (цели, содержание, методы, организационные формы, средства обучения) и реализуемое специфичными интерактивными средствами [13]. Стремительное развитие ИТ позволяет использовать компьютеры не только для обработки, хранения или перемещения информационных ресурсов, но и в качестве средства организации образовательной среды. Системы обучения, использующие ИТ и предоставляющие обучающие материалы через Интернет, получили название e-Learning System.

Определение функциональных особенностей академической МООС-платформы. Развитие технологий ДО прошло этапы от распространения учебных материалов через электронную почту и СЭО типа МООDLE (Modular Object-Oriented Dynamic Learning Environment) до академическим МООС-платформам. По объему предоставляемых функций и полноте поддержки участников обучения наиболее эффективным видом e-Learning System на сегодня являются МООС-платформы. МООС — это обучающий курс с массовым интерактивным участием, применением технологий ЭО и открытым доступом через Интернет. В качестве дополнений к традиционным материалам учебного курса, таким как видео, чтение и домашние задания, МООС дают возможность использовать интерактивные форумы пользователей, которые помогают создавать и поддерживать сообщества студентов и преподавателей.

Академическая МООС-платформа — это система, созданная средствами информационных или цифровых технологий, обеспечивающая процесс получения знаний, когда источник информации и студенты отделены временем и расстоянием. Слово «академическая» в представленном определении указывает на обязательное соответствие обучающих материалов платформы установленным нормативным документам специальностей университета, а именно: учебным программам специальностей и рабочим программам дисциплин.

Использования средств академической МООС-платформы может стать эффективным инструментарием самостоятельной работы студентов, большая часть которой сейчас уходит на поиск релевантной информации в заданной области. Использование сервисов академической МООС-платформы обеспечат следующие основные преимущества [14]:

- общеуниверситетский уровень:

- ✓ улучшение менеджмента формирования информационных научно-методических материалов;
- ✓ организация и контроль распространения электронной версии учебных материалов в различных видео, аудио и текстовых форматах;
- ✓ предоставление распределенного доступа к электронной версии учебнометодической литературы, созданной преподавателями, по циклам дисциплин, в рамках заданной формы обучения, квалификационного уровня и семестра;
- ✓ оптимизация процесса распространения и унификации представления электронных версий учебных материалов;
- ✓ позитивное влияние на творческую активность, уровень IT-компетенций и квалификацию преподавателей в соответствии с инновациями и нововведениями в сфере ИТ и прогрессивной педагогики;
- ✓ оптимизация процесса ТЗ за счет улучшения качества процессов обработки и передачи данных.

- уровень поставщика знаний:

- ✓ предоставление инструментария создания электронных заданий и тестов для оценки полученных знаний студентов (проведение промежуточных, итоговых контролей и самоконтролей):
- ✓ применение различных форм представления теоретических материалов: видео-лекции, мультимедийные ролики, он-лайн семинары;
- ✓ получение статистических данных относительно активности студентов, количества их обращений к учебным материалам, результатов оценивания знаний, их надежное накопление и ведение электронного журнала преподавателя.

- уровень потребителей знаний:

- ✓ получение знаний в любое время в любом месте обеспечение своевременной и круглосуточной доставки электронных учебных материалов;
- ✓ реализация персонализации и настройка системы к уникальным потребностям обучаемого получение информационной поддержки в виде консультаций, советов,

подсказок и эталонных решений; определение собственных контрольных точек обучения и проведение самоконтроля полученных знаний;

- ✓ самостоятельное обучение студентам предоставляется возможность установить собственный ритм обучения и объем получаемых знаний, что приводит к повышению интеллектуального потенциала за счет самоорганизации обучения; обеспечение доступности обучения для людей с особенностями психофизического развития;
- ✓ повышение уровня удовлетворенности от обучения предоставление агрегированных и обобщенных знаний в заданной области, освобождая студентов от необходимости проводить значительное время в поисках информации.

Архитектура академической МООС-платформы должна включать в себя следующие уровни [15]:

- уровень пользовательского доступа к данным включает графический интерфейс системы, передаваемый через браузер;
- уровень сервисов общие службы, которые обеспечивают хранение идентифицирующих данных пользователей, их взаимодействие между собой и управление событиями (календарь / планирование / напоминания) для поддержки рабочих процессов пользователей;
- уровень обучения обеспечивает основные функциональные возможности для создания и потребления обучающих ресурсов;
- уровень хранения всех данных, задействованных в системе в качестве БД системы могут использоваться в том числе и реляционные БД;
- уровень инфраструктуры включает в себя механизмы клиент-серверной обработки данных, осуществленной через сеть, физическое оборудование, стандартные Интернетпротоколы.

Основными функциональными требованиями академической МООС-платформы являются расширяемость и гибкость управления электронным контентом системы (ЭКС), представленным в виде набора массивных он-лайн курсов.

Однако, при этом, необходимо будет уделить особое внимание решению следующих проблем, а именно:

- необходимость эффективной реализации модулей для практических занятий, что особенно важно для специальностей с практической и технической направленностью;
- определение места и роли академической МООС-платформы в рамках традиционного обучения университета;
- решение вопроса об информационном обеспечении платформы, определения правил и требований к ЭКС;
- мотивация студентов и преподавателей к применению академической МООС-платформы, маркетинговое продвижение услуг ДО на разработанной платформе.

Ожидаемые результаты внедрения МООС платформы в университете Украины. В отличие от существующих платформ ДО, предложенная академическая МООС-платформа, обладает следующими преимуществами:

- бесплатность, низкие системные требования к программно-аппаратной платформе, отсутствие необходимости применения лицензионного ПО для функционирования;
- обеспечивает автоматизированный режим управления учебным процессом студентов всех форм обучения;
- предоставляет возможность автоматизированного оценивания качества полученных знаний и формирования статистических данных системы;
- воспроизводит традиционное взаимодействие преподавателя со студентом за счет механизма поддержки обмена данными и файлами и эффективной обратной связи;
- обеспечивает эффективную интерактивную навигацию по учебным материалам в зависимости от установленной траектории обучения;
- представляет ЭКС, электронных заданий и тестов в различных форматах и видах с применением средств мультимедиа.

От внедрения авторы ожидают следующий социальный эффект:

- поддержание надлежащего уровня высшего образования в условиях постоянного уменьшения аудиторной нагрузки;
 - повышение интеллектуального потенциала молодежи за счет самоорганизации обучения;
- обеспечение доступности обучения для людей с недостатками психофизического развития;
- положительное влияние на творческую активность и уровень ИТ-компетенций преподавателей в соответствии с инноваций и нововведений в сфере ИТ.

Несмотря на довольно обширные позитивные стороны использования, внедрение академической МООС-платформы неизбежно столкнется с рядом проблем, а именно:

- отсутствие мотивации среды для функционирования платформы на начальной стадии необходимы существенные трудоемкие действия преподавателя по созданию электронных версий учебных материалов в различных форматах и размещение их в системе;
- отсутствие нормативно-правовой основы действия преподавателя в рамках МООСплатформы являются инициативными, т.к. использование ИТ, обеспечивающих дистанционных режим доступа к учебным материалам, не является обязательным, а может быть установлено только на уровне корпоративных правил ВУЗа;
- проблема авторских прав отсутствие действующих механизмов защиты авторских прав, что приводит к проблемам организации доступа к информационным ресурсам;
- низкий уровень IT-компетенций субъектов ДО высокий порог входа в современные ИТ формируют барьер и субъективную неготовность освоения новых средств обучения как у студентов, так и у преподавателей.

Для успешного использования академической MOOC-платформы в современном университете Украины, необходимо выполнить следующие организационные действия:

- определить организационную и функциональную структуры системы управления контентом, задать права и обязанности всех участников процесса обучения, описать роли преподавателей и администраторов системы;
- разработать шаблоны для создания электронных версий учебных материалов, которые будут задавать правила единого стиля и состава ЭКС;
 - установить формат и структуру видео-материалов и элементов мультимедиа;
 - создать корпоративные правила и рекомендации относительно использования системы;
 - установить временные интервалы обновления обучающих материалов системы;
- провести обучение студентов и преподавателей относительно использования электронных компьютерных средств, которые будут использоваться для разработки ЕКС.

Выводы и предложения. Программная реализация академической МООС-платформы с учетом сформированных авторами функциональных требований обеспечит положительное влияние на СТЗ в университете за счет:

- предоставления распределенного доступа к электронным версиям учебно-методической литературе, созданной преподавателями в рамках заданной формы обучения и квалификационного уровня, что реализуется путем введения ролей для пользователей с разграничением их доступа к данным;
- оптимизации структуры представления знаний с обеспечением возможности добавления, редактирования и удаления информационных ресурсов;
- внедрение виртуального инструментария создания электронных заданий и тестов для оценки полученных знаний с возможностью отладки параметров их проверки;
- повышение качества мониторинговых и руководящих функций преподавателей благодаря получению статистических данных относительно активности студентов, популярности дисциплин, количества обращений к теоретическому материалу, результатов оценочных задач и проведения самоконтроля.

К перспективным вопросам дальнейшего научного исследования можно отнести следующее:

- методы, способы, механизмы и технологии создания виртуальных лабораторий для дистанционного приобретения практических навыков и умений;
 - методы оценки качества полученных знаний;
 - способы реализации модуля самоконтроля качества полученных знаний;
 - организация дистанционного повышения квалификации преподавателей;
 - эффективные способы хранения графических и мультимедийных данных в БД;
 - вопросы защиты данных.

По результатам проведенного исследования авторы видят возможность применить технологии ДО в виде академической МООС-платформы, в качестве действующего инструментария повышения качества СТЗ современного университета. Представленные результаты работы по определению функциональных требований к МООС-платформе, ее сервисов, архитектуры и ожидаемых эффектов от ее использования, получены в ходе выполнения задач пятого рабочего пакета международного проекта IRNet.

ЛИТЕРАТУРА

- 1. IRNET, http://www.irnet.us.edu.pl/work-packages/wp5 (accessed 01 May 2016).
- 2. Alfadly A. A. (2013). The efficiency of the "Learning Management System (LMS A communication tool in an e-learning system. International Journal of Educational Management, 27(2), 157-169.
- 3. Вербицкий А. А., Ларионова О. Г. Личностный и компетентностный подходы в образовании. Проблемы интеграции. М.: Логос, 2009. 336 с.
- 4. Гильмутдинов А. Х., Ибрагимов Р. А., Цивильский И. В. Электронное образование на платформе MOODLE. Казань: КГУ, 2008. 169 с.
- 5. Гриценко В. И., Кудрявцева С. П., Колос В. В., Веренич Е. В. Дистанционное обучение: теория и практика. К.: Наукова думка, 2004. 360 с.
- 6. The Bologna Process and the Lisbon Agenda: the European Commission's expanding role in higher education discourse, European Journal of Education, 2006, Vol.41, no. 2.
- 7. Баранова Ю. Ю., Методика использования электронных учебников в образовательном процессе / Ю. Ю Баранова, Е. А Перевалова., Е. А Тюрина. А. А Чадин.// Информатика и образование. − 2000. № 8. С.32.
- 8. Иванов В. А. О концепции формирования единого информационного пространства университетского комплекса / В. А. Иванов, В. М. Соловьев // Инновационные методы и технологии в условиях новой образовательной парадигмы: Сб. науч. тр. Саратов: СУ. 2008. С. 52-56.
- 9. Жулябин П. В. Информационное пространство университета как важный фактор развития образовательного процесса и оптимизации работы ВУЗа // Вестник КГУ им. Н. А. Некрасова. Кострома: КГУ. №4. 2011. С. 111-113.
- 10. Карпенко О. А. Формирование системы трансфера знаний в высших учебных заведениях Украины / О. А. Карпенко, К. В. Яшина // Актуальные проблемы экономики, №7 (169), 2015. С. 157-166.
- 11. Yalova K., Zavgorodnii V., 2015: Conceptual propositions of the modern university's information field development. Innovation in higher education modern communications and collaboration at the university using specific IT tools: [International collective monograph], DDTU, Dniprodzerhzinsk, 2015, P. 355-369, 376 pages. ISBN 978-966-175-114-8
- 12. Архипова 3. В. Современные информационно-телекоммуникационные системы как фактор повышения конкурентоспособности высших учебных заведений // Известия Иркутской государственной экономической академии. Иркутск: ИГЭА. №1. 2014. С. 126-130.
- 13. Fisher A., Exley K., 2014: Using Technology to Support Learning and Teaching. Dragos Ciobanu Routledge, 2014, 238 pages
- 14. Johnson A., Reisslein J., Reisslein M., 2014: Representation sequencing in computer-based engineering education. Computers & Education, №72, 2014, P. 249–261.
- 15. Design Solution, http://www.cognitivedesignsolutions.com/ ELearning/ Architec-ture.htm (accessed 23 April 2016).

Завгородній В.В., Ялова К.М., Яшина К.В. ТЕХНОЛОГІЇ ДИСТАНЦІЙНОГО НАВЧАННЯ В СИСТЕМІ ТРАНСФЕРУ ЗНАНЬ СУЧАСНОГО УНІВЕРСИТЕТУ

Представлені результати виконання 5-го робочого пакету міжнародного проекту IRNet. Визначені основні функціональні вимоги до академічної MOOC-платформи як до дієвого інструментарію оптимізації процесів трансферу знань у системі викладач-студент. Результати, що представлені у статті, дозволяють більш поглиблено вивчати процеси взаємодії учасників системи трансферу знань з метою оптимізації інформаційних процесів.

Ключові слова: дистанційне навчання, інформаційні технології, трансфер знань, прогресивна педагогіка

Zavgorodnii V., Yalova K., Yashina K. DISTANCE LEARNING TECHNOLOGIES IN KNOWLEDGE TRANSFER SYSTEM OF THE MODERN UNIVERSITY

The article is provided results of the work package 5 in the framework of the international project IRNet. The authors identified the basic functional requirements for academic MOOC-platform as an effective toolkit to optimize the processes of knowledge transfer in the system of teacher-student. The article is allowed results for a more in-depth study of processes of interaction of participants of knowledge transfer system in order to optimize information processes.

Keywords: distance learning, information technology, knowledge transfer, progressive pedagogy

УДК 004.9

Овчарук І.В., Желєзний В.В.

ДОСЛІДЖЕННЯ ПЕРЕРОЗПОДІЛУ ПАСАЖИРОПОТОКІВ КИЇВСЬКОГО МЕТРОПОЛІТЕНУ

В статті розглянуто інформаційну систему, яка враховує вимоги пасажирів та перенаправляє пасажиропотоки; наведено типизацію методів аналізу пасажиропотоків; зроблено розрахунок необхідної кількості поїздів, враховуючи завантаженість ліній.

Ключові слова: інформаційна система, пасажиропотік, перерозподіл пасажиропотоків, програмний інтерфейс, база даних.

Постановка проблеми. Київ має розвинену транспортну інфраструктуру. Одним з найважливіших видів транспорту для великих міст є метрополітен. Київський метрополітен — швидкісна транспортна система Києва. Деякі лінії метрополітену постійно або в «годину пік» мають дуже великі пасажиропотоки. Тому розробка інформаційної системи (ІС), функціональні можливості якої забезпечували б розрахунок пасажиропотоків та їх перерозподіл між різними видами транспорту чи різними маршрутами, в тому числі й при введенні в експлуатацію нових ліній метрополітену, є актуальною.