Вісник Одеського національного морського університету N2 (45), 2015

УДК 532.012.2

В.Н. Глушко, В.П. Каян

ИССЛЕДОВАНИЕ ГИДРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЖЕСТКОГО КОЛЕБЛЮЩЕГОСЯ КРЫЛА

Приведены результаты экспериментальных исследований гидродинамики жесткого прямоугольного колеблющегося крыла при обращенном движении. В диапазоне величин относительной поступи колеблющегося крыла $\lambda_p = 0$ -4,5 графически представлены зависимости пропульсивных характеристик колеблющегося крыла (коэффициент тяги) от величины линейных и угловых амплитуд колебаний крыла и величины λ_p .

Ключевые слова: синусная установка, колеблющееся крыло, сила тяги Fcp, частота f колебаний крыла, коэффициенты тяги C_T , K_t , относительная поступь λ_p .

Приведені результати експериментальних досліджень гідродинаміки жорсткого прямокутного крила, що коливається, при оберненому русі. У діапазоні величин відносної ходи крила λ_p =0-4,5, що коливається, графічно представлені залежності пропульсивных характеристик крила (коефіцієнт тяги), що коливається, від величини лінійних і кутових амплітуд коливань крила і величини λ_p .

Ключові слова: синусна установка, крило, що коливається, сила тяги Fcp, частота f коливань крила, коефіцієнти тяги C_T , K_b відносна хода λ_p .

Results over of hydrodynamics experimental researches of hard rectangular hesitating wing are brought at the turned motion. In the range of relative sizes step of hesitating wing of $\lambda_p = 0 - 4.5$ dependences of propulsive descriptions of hesitating wing (coefficient of traction) are graphically presented on the size of linear and angular amplitudes of wing vibrations and λ_p values.

Keywords: sine setting, hesitating wing, tractive of Fcp force, frequency of f vibrations of wing, coefficients of traction of C_T , K_b relative step λ_p .

Решения теоретической задачи об определении гидродинамических характеристик колеблющегося крыла в зависимости от изменения различных кинематических параметров имеются к настоящему времени с рядом существенных ограничений и приближений [1-3]. Дополнить такие теоретические исследования и определить пределы применимости предлагаемых решений должны систематические экспериментальные исследования, результаты которых будут весьма существенны для решения данной проблемы [4-12].

аннои проолемы [4-12].

Одеського національного морського університету № 3 (45), 2015

© Глушко В.Н., Каян В.П., 2015

Ниже рассматриваются результаты экспериментальных исследований гидродинамических сил, возникающих на колеблющемся в жидкости жестком крыле. Использовалось крыло прямоугольной формы в плане с симметричным профилем типа NACA-0015 [5, 6] (относительная толщина профиля (C=c/b=15%; хорда профиля; b=0,12 м/с с удлинением C=b/l $\lambda=3$, где l — размах крыла). Крыло выполнено из дюралюминия пустотелым, чтобы его масса равнялась массе вытесненной им воды [2; 3; 6].

Приводом для придания крылу гармонических колебаний служила экспериментальная синусная установка, состоящая из электродвигателя с муфтой и редуктором, а также двух синусных механизмов, размещенных на одной фундаментной раме [4]. При работе установки каретки синусных механизмов, опирающиеся роликами на вертикальные направляющие, совершают возвратно-поступательные вертикальные перемещения по закону

$$y_{1i} = A_0 \cos \omega t_i,$$

$$y_{2i} = A_0 \cos(\omega t_i - \varphi),$$
(1)

где y_i — мгновенная координата вертикального перемещения;

 A_0 — максимальная линейная амплитуда вертикальных колебаний;

 $\omega = 2\pi f$ — круговая частота;

f — частота колебаний;

 t_i — время;

И

 ϕ — угол сдвига по фазе колебаний одного синусного механизма относительно другого.

Через две тензобалки крыло посредством двух пар тяг присоединялось к кареткам синусных механизмов. Тяги крепились шарнирно на торцах крыла таким образом, что оси шарниров совпадали с линиями передней и задней кромок крыла, т. е. расстояние между осями передней и задней тяг составляло b. Передняя тензобалка измеряла горизонтальную и вертикальную составляющие равнодействующей гидродинамических сил, а задняя только вертикальную (т. е. измерялись мгновенные величины силы тяги и поперечных сил P_{yli} и P_{y2i}). Исследования проводились в гидролотке при обращенном движении и скоростях набегающего потока $V_x = 0$; 0,3; 0,55; 0,75 м/с. Относительное погружение крыла составляло H = h/b = 1,55, где h — расстояние от нейтральной оси колебаний крыла до поверхности воды. Величина линейной амплитуды колебаний A_0 в экспериментах задавалась равной 0,04; 0,06; 0,08 и 0,10 м, величина угловой амплитуды колебаний β_0 в зависимости от задания угла ϕ составляла 0 °-21,4 °, с шагом около 3 °. Установка обеспечивала устойчивые колебания

крыла с частотой 0,5-2,5 Γu . Полученные на осциллограммах записи измерения величин F, P_{yl} и P_{y2} , в течение периода колебаний подвергались статистической обработке, интегрированием определялась средняя за период колебаний сила тяги F.

Создаваемая колеблющимся в жидкости крылом тяга, является основным пропульсивным параметром, определяющим эффективность колеблющегося крыла как движителя. Ниже, на рисунке 1, в качестве примеров представлен ряд зависимостей величин средней за период колебаний крыла тяги F_{cp} от различных кинематических параметров (скорости потока, частоты колебаний, амплитуд линейных и угловых колебаний A_0 и β_0).

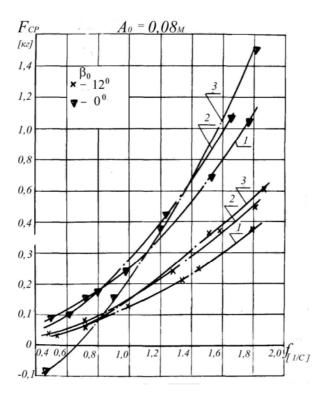


Рис. 1. Зависимость величины тяги от частоты, скорости потока, амплитуды угловых колебаний крыла при значении линейной амплитуды $A_0 = 0.08$ м

На рисунке 1 представлены зависимости величин тяги F_{cp} от частоты f, скорости потока V_x амплитуд угловых колебаний крыла β_0 при постоянном значении линейной амплитуды $A_0=0.08$ м. Значение величин β_0 в градусах указано на рисунках (см. таблицу).


Таблица

D 1			
Расшифровка	обозначений.	принятых н	а графиках

Амплитудо						da	κοπεδαμυά								
Ao = 0,04 M				A. = QO6 M			A. = 0,08 M			Ao = Q10 M					
<i>№ поз.</i>	кол-во зубь е в	β. [200∂]	Обоз- начен.	Nºnos.	Кол-Бо зубье с	,6° [8008]	ago sho	W2003.	Kan-60 3466 et	.A.o [2005]	Обозна- чение	Nºnos.	Кол-во зубъев	,B.o [2,PQ2]	Обозна чение
1	0	0	X	1'	0	0	×	1"	0	D	×	1'''	0	0	X
2	2	1029'	2	2'	3	3°22'		2"	2	2°58′		2"	2	3°43′	
3	4	2°59′		3'	5	5°37′	Φ	3"	4	5°58′	0	3‴	3	5°37′	Φ
4	6	4°30′	•	4'	8	9°01'	Δ	4"	6	9°01′	Δ	4"	5	9°24'	A
5	8	6°	0	5'	11	12°27	∇	5"	8	12°	₩.	5"	6	1194'	•
6	10	7°31°	Δ	6'	13	14°45'	$\mathbf{\nabla}$	6"	10	15°07′	∇	6"	8	1507	∇
7	12	901	Δ					7"	12	18°14′	•	7"	9	17°04′	•
8	14	10°35'	*					8"	14	21°27'	\Diamond	8"	11	21°	\Diamond
9	16	12°5'	•												
10	18	13°35′	\Q			7									

Кривые 1, 2 и 3 соответствуют поступательным скоростям потока V_x , равным соответственно 0,05, 0,02 и 0,07 м/с. При небольших скоростях потока (кривые 1 и 2) увеличение угловой амплитуды β_0 ведет к существенному возрастанию величины силы тяги F_{cp} . При более значительном увеличении скорости и амплитуды угловых колебаний β_0 при малых частотах колебаний появляются режимы, при которых величина силы тяги падает и даже может стать отрицательной (кривая 3 при $\beta_0 = 2$ °).

Влияние амплитуды линейных колебаний A_0 на величину создаваемой колеблющимся крылом тяги F_{cp} характеризуется графиками на рисунках 2 и 4.

?????Puc. 2.

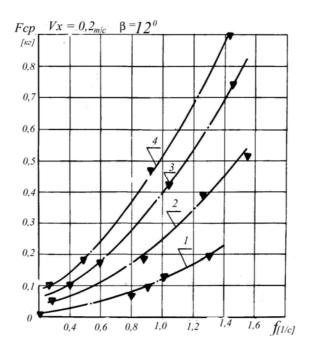


Рис. 3. Зависимость величины тяги от частоты, скорости потока, амплитуды угловых колебаний крыла при значении линейной амплитуды $A_0 = 0.08~\mathrm{M}$

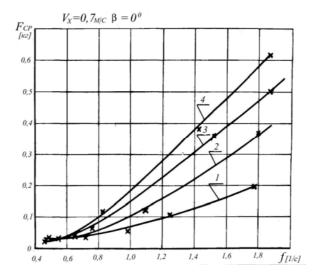


Рис. 4. Зависимость величины тяги от частоты, скорости потока, амплитуды угловых колебаний крыла при значении линейной амплитуды $A_0 = 0.08$ м

Одеського національного морського університету № 3 (45), 2015

Здесь величина тяги F_{cp} представлена в зависимости от частоты колебаний крыла при постоянной скорости потока $V_x = 0.2$ м/с и постоянных амплитуд угловых колебаний от $\beta_\theta =$ от 0,04 м до 0,10 м с шагом 0,02 м (кривые 1-4).

Следует отметить что в полученных экспериментальных зависимостях $F_{cp}(A_0)$ величина тяги F_{cp} не является строго пропорциональной величине A_0^2 , что следовало бы из теоретических выкладок, изложенных в работе [3]. Сравнение кривых 1 и 3 ($A_0 = 0.04$ м и 0.08 м) показывает, что при возрастании амплитуды в 2 раза, величина силы тяги F_{cp} увеличивается примерно в 3 раза при f > I. При меньших значениях частоты ($f \approx 0.6$ -0.9 Γ п) это увеличение несколько больше, особенно с возрастанием угловой амплитуды колебаний крыла β_0 (рисунок 3).

Сравнение графиков на рисунках 2 и 4 показывает, что увеличение скорости набегающего потока V_x при неизменной кинематике колебаний крыла незначительно влияет на приращение создаваемой колеблющимся крылом величины тяги F_{cp} . Так, при частоте $f=1,5\,$ Гц возрастание скорости потока в 3,5 раза дает увеличение силы тяги всего на 12 %-15 %.

Графики на рисунках 1-4 и обсуждение характера изменения зависимостей приведенных на них в размерном виде, были представлены для анализа влияния кинематических параметров колеблющегося крыла на создаваемую им тягу.

Однако, для более полного понимания полученных результатов с целью использования их для выбора определенных кинематических параметров волнового движителя (рабочий орган колеблющееся крыло) с необходимыми тяговыми характеристиками, более показательным будет представить результаты исследований в безразмерном виде.

Для исследования влияния кинематических параметров колеблющегося крыла на величину создаваемой им тяги F_{cp} рассмотрим зависимости коэффициента тяги C_T от числа Струхаля K, где

$$C_T \frac{2F_{cp}}{\rho V_x^2} \frac{1}{S}; \tag{2}$$

$$K = \frac{\omega b}{V_x} \,. \tag{3}$$

Зависимости коэффициента тяги от числа Струхаля $C_T(K)$ для различных величин относительной амплитуды колебаний $\overline{A}=\frac{A_0}{b}$ представлены на рисунке 5 при постоянных величинах угловой амплитуды колебаний $\beta_0=0$ ° (рисунок 8) и $\beta_0=18$ ° (рисунок 9).

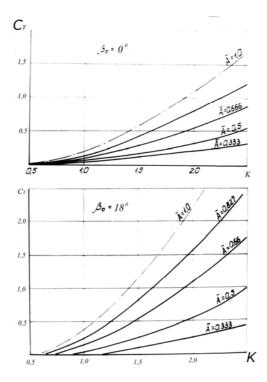


Рис. 5. Зависимости коэффициента тяги от числа Струхаля $C_T(K)$ для различных величин относительной амплитуды колебаний $\overline{A} = \frac{A_0}{b}$

Величина C_T прямо пропорциональна величине K и \overline{A} . Для более яркого представления как зависит коэффициент тяги C_T от относительной амплитуды \overline{A} построены графики зависимостей $C_T(\overline{A})$ при постоянных значениях угловой амплитуды β_0 и числа Струхаля K (рисунок 6).

Зависимость коэффициента тяги $C_T(\overline{A})$ очень близка к квадратичной. Пунктирными линиями на графике показаны кривые описываемые уравнением (4), которые довольно близки экспериментальным зависимостям $C_T(\overline{A})$, показанным на графике сплошными линиями.

$$C_T = C_1 \cdot \overline{A}^2 \,. \tag{4}$$

Характерно, что при малых значениях величин относительной амплитуды колебаний \overline{A} и при отсутствии угловых колебаний (рисунок 6) наблюдается существенное превышение экспериментально полученных значений C_T над величинами C_T , полученными расчетным путем с помощью уравнения 5, что объясняется существенным вкладом возникающей на закругленной кромке толстого колеблющегося профиля подсасывающей силы.

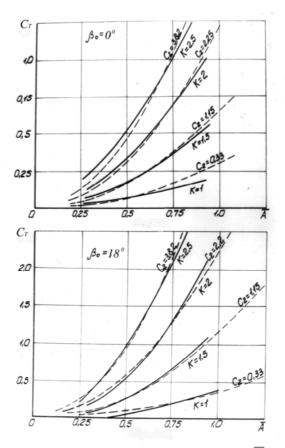


Рис. 6. Графики зависимостей $C_T(\overline{A})$ при постоянных значениях угловой амплитуды β_0 и числа Струхаля K

Величина коэффициента C_T в уравнении 6 не является постоянной, а зависит от величины числа Струхаля K и от угла амплитуды β_0 . Зависимость $C_T(K,\beta_0)$ представлена на рисунке 7.

Кривыми 1-4 представлены зависимости $C_T(K)$ для угловых амплитуд $\beta_0=0$ °, 6°, 12°, 18° соответственно. Все указанные кривые лежат в области между пунктирными кривыми 5 и 6, которые соответствуют зависимостям $C_T=0,3(K^2)$ — кривая 5, и $C_T=0,3(K^3)$ — кривая 6. Таким образом, в первом приближении коэффициент C_T можно описать эмпирической формулой (5)

$$C_T = 0.3(K^n), \tag{5}$$

где 3>n>2, причем величина n возрастает от 2 до 3 при возрастании величины угловой амплитуды β_0 .

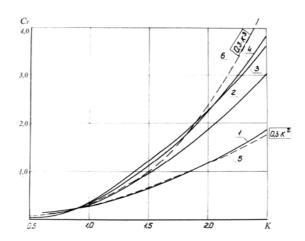


Рис. 7. Зависимость величины коэффициента C_T от величины числа Струхаля K и от угла амплитуды β_0

На рисунке 8 для случая поступательных колебаний ($\beta_0 = 0$) показаны зависимости приведенного коэффициента тяги K_T , обезразмеренного по квадрату безразмерной амплитуды \overline{A}^2 и квадрату числа Струхаля.

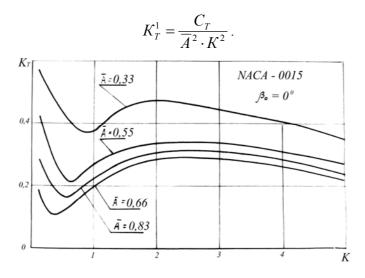


Рис. 8. Зависимости приведенного коэффициента тяги K_T , обезразмеренного по квадрату безразмерной амплитуды \overline{A}^2 и квадрату числа Струхаля для случая поступательных колебаний (β_0 =0)

Из рисунка видно, что в диапазонах чисел Струхаля K<1,5 и K>3,5 существенно нарушается квадратичная зависимость силы тяги от K. В диапазоне $1,5 \le K \le 3,5$ эта зависимость близка к квадратичной.

На рисунке 9 проведено сопоставление экспериментальных данных с теоретическими результатами [6, 7]. Теоретическая кривая получена на основе численных расчетов по линейной теории для тонкого прямоугольного крыла удлинения $\lambda=3$. Как и следовало ожидать, линейная теория дает завышенные результаты. Кроме того наглядно виден установленный в эксперименте факт отличия квадратичной зависимости коэффициента тяги от K^2 в отмеченных диапазонах, чего не учитывает линейная теория. Следовательно, при малых числах Струхаля K<1,5 и при K>3,5 в расчетах необходимо учитывать нелинейные эффекты, возникающие при конечных значениях \overline{A} .

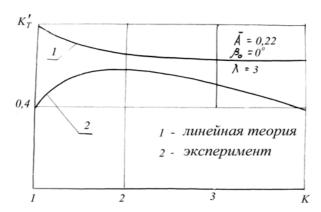


Рис. 9. Сопоставление экспериментальных данных с теоретическими результатами

Если рассматривать колеблющееся крыло в качестве движителя, то изменение его пропульсивных характеристик (коэффициента тяги) более интересным будет рассмотреть в зависимости от величины относительной поступи движителя (6)

$$K_T = \frac{2F_{cp}}{\rho V^2 S},\tag{6}$$

где ρ – плотность воды;

S – площадь крыла ($S = 0.043 \,\mathrm{m}^2$);

 $V=\sqrt{V_x+(A_0\omega)^2}$ — средняя действительная скорость обтекания крыла потоком жидкости, м/с. Действительная скорость обтекания крыла (постоянно изменяющаяся в течении периода колебаний, т.к. $\omega=2\pi f$) применена для того, чтобы избежать бесконечных и сверхбольших значений коэффициента тяги K_T при нулевых и очень малых скоростях горизонтально набегающего потока воды V_x .

На рисунке 10 a, δ коэффициент тяги K_T колеблющегося крыла представлен в зависимости от величины относительной поступи λ_p , где λ_p имеет вид

$$\lambda_p = \frac{V_x}{A_0 \omega},$$

где $\,V_{_{x}}\,$ – скорость потока набегающего на колеблющееся крыло;

 A_0 — заданная максимальная вертикальная амплитуда колебаний крыла;

 $\omega = 2\pi f$ – круговая частота.

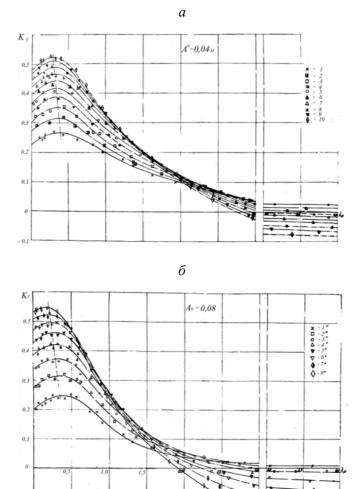


Рис. 10. Экспериментальные зависимости $K_T(\lambda_p)$ при различных значениях угловой амплитуды β_0 (с шагом 3 0): a – при значениях \overline{A} = 0,333; δ – при значениях \overline{A} = 0,667

Вісник Одеського національного морського університету $N\!\!_{2}$ 3 (45), 2015

С возрастанием величины λ_p происходит также изменение прямой зависимости величины K_T от величины β_0 (при $\lambda_p = 0$ -0,6) на обратную (при $\lambda_p > 1,5$ -3,0). Следует отметить, что точки пересечения двух соседних кривых $K_T(\lambda_p)$ (например, кривых $K_T(\lambda_p)$ для величин угловой амплитуды β_0 , равных 3 и 6°, 6 и 9°, 9 и 12° и т. д.) располагаются вдоль оси абсцисс графика $K_T(\lambda_p)$ в определенной последовательности и заключенные между этими точками отрезки кривой $K_T(\lambda_p)$ являются линией максимальных значений K_T (например, в диапазоне значений $K_T(\lambda_p) = 1,7$ -2,2 при $A_0 = 0,04$ м величины K_T будут максимальны при $\beta_0 = 6$ °, в диапазоне $\lambda_p = 1,05$ -1,35 — соответственно $K_T = \max$ при $\beta_0 = 12$ °).

СПИСОК ЛІТЕРАТУРИ

- 1. Алгазин В, А. Теоретическое исследование силы тяги колеблющегося крыла конечного размаха // Бионика. 1983. Вып. 18. С. 52-57.
- 2. Воробьев Н.Ф. О дискретной вихревой схеме крыла конечного размаха // Изв. СО АН СССР. Сер. техн. наук. С. 59-68.
- 3. Гребешов Э.П., Ручин А. П. Некоторые вопросы гидродинамики движителя типа «колеблющееся крыло» // Тр. ЦАГИ. — Вып. 2386. — 1988.
- 4. Глушко В.Н., Каян В.П., Козлов Л Ф. Гидродинамические характеристики прямоугольного колеблющегося крыла // Тр. ЦАГИ. 1984. Вып 18. С. 40-44.
- 5. Глушко В.Н., Каян В.П., Козлов Л.Ф. Исследование гидродинамики колеблющегося крыла с жестким и пассивно-деформируемым профилем // Математические методы механики жидкости и газа. – Днепропетровск. – 1986. – С. 21-29.
- 6. Каян В.П. Экспериментальное исследование гидродинамического упора, создаваемого колеблющимся крылом // Бионика. 1983. Вып. 17. С. 45-49.
- 7. Кравец А.С. Характеристики авиационных профилей / А.С. Кравец М.; Л.: Оборонгиз. 1939. 264 с.
- 8. Kayan V.P., Glushko V.N. Research of Hydrodynamics of a Fin Propulsor // In book: First International Industrial Conference: Bionic 2004 Hanover, Germany, 2004. P. 179-184.
- 9. Глушко В.Н. Исследование влияния параметров морского волнения на величину тяги, создаваемой волновым движителем в виде колеблющегося крыла с упругой заделкой // Прикладна гидромеханіка. 2009. Т.11. Вып. 4. С. 47-53.

Вісник Одеського національного морського університету № 3 (45), 2015

- 10. Козлов Л.Ф. Теоретическая биогидродинамика. К.: Вища икола, 1983.-236 с.
- 11. Глушко В.Н, Каян В.П. Исследование работы плавникового движителя с упругим закреплением лопасти // Прикладна гідромеханіка. T.11(83). N2 4. 2013. C. 13-18.
- 12. Патент на корисну модель № 81736 / В.Н. Глушко, В.П. Каян 10.07.2013.

Стаття надійшла до редакції 20.11.2015