Вісник ОНУ

УДК 54.128.13:541.124:542.943.7

Т. Л. Ракитская¹, Т. А. Киосе¹, А. М. Джига¹, С. В. Топоров² Одесский национальный университет имени И.И. Мечникова, ¹кафедра неорганической химии и химической экологии, ²кафедра аналитической химии, ул. Дворянская, 2, Одесса, 65082, Украина. E-mail: TLR@edu.onu.ua

ИК-СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ И ФАЗОВОГО СОСТАВА БЕНТОНИТОВ УКРАИНЫ

Проведено сравнительное ИК-спектральное исследование трех образцов бентонитов Дашуковского, Горбского и Кировоградского месторождений. Показаны возможности ИК-спектроскопии не только для идентификации структуры основной фазы бентонитов — монтмориллонита, но и определения примесных минералов.

Ключевые слова: ИК-спектральное исследование, бентониты, фазовый состав.

Бентониты не являются истинными минералами и наряду с основной фазой монтмориллонита в них присутствуют α-кварц, а в зависимости от месторождения – примеси каолинита, гетита, анатаза и другие. Кроме того, необходимо принять во внимание способность монтмориллонита подвергаться в природных условиях разрушению, в результате чего снижается кристалличность образца, увеличивается содержание аморфного кремнезёма. В этой связи, исследование образцов бентонитов из разных регионов демонстрируют не только общие ИК-спектральные характеристики, но и свойственные каждому образцу особенности.

Цель работы – на основании анализа литературных данных обобщить ИК-спектральные характеристики бентонитов разного происхождения и провести сравнение ИК-спектров образцов бентонитов трех месторождений Украины.

Методика эксперимента

В работе использовали образцы природных бентонитов из трех месторождений Украины: Горбское – Bent(G) (ТУ У 26.8 05792908.005.: 2005), Дашуковское – Bent(D) (ТУ У 14.2-00223941-006:2010), Кировоградское – Bent(K) (ТУ У 14.2-23231149-001-2002). Образцы исследовали методом ИК-спектроскопии (Perkin Elmer FT-IR Spectrometer Frontier (400-4000 см⁻¹, с разрешением 4 см⁻¹). Спектры полученных образцов снимали в прессованных таблетках с КВг, которые готовили при соотношении 1 мг вещества на 200 мг КВг и прессовали под давлением 7 т/см² в течении 30 с.

Результаты эксперимента и их обсуждение

ИК-спектроскопия является очень чувствительной к природе и содержанию октаэдрических атомов (Al, Fe, Mg) в структуре слоистых силикатов, а, следовательно, и к тем изменениям, которые происходят на разных стадиях предварительной обработки минералов [1]. Кроме того, этот метод является весьма продуктивным для определения основного минерала и примесей в нем, а именно кварца и каолинита [1, 2], а также незаменим при исследовании структурных изменений,

© Т. Л. Ракитская, Т. А. Киосе, А. М. Джига, С. В. Топоров, 2012

происходящих в слоистых силикатах при их модифицировании разными способами (гидротермальная, кислотно-термальная обработка, прокаливание и др.) [1-17].

При анализе ИК-спектров природных и модифицированных бентонитов выделяют две основные области. В первой области 4000-3000 см⁻¹ находятся полосы валентных колебаний ОН-групп, связанных с октаэдрическими катионами, а также молекул воды, ассоциированных посредством водородных связей. Во второй области 1400-400 см⁻¹ сосредоточены полосы силикатной структуры. При этом однозначно идентифицируются полосы, относящиеся к валентным и деформационным колебаниям ОН-групп и молекул воды, а также к валентным колебаниям силикатной структуры. Область деформационных колебаний силикатной структуры идентифицируется неоднозначно.

В таблице 1 обобщены далеко не все литературные данные, касающиеся идентификации спектров природных бентонитов. Видно, что только авторы [15] разделили отнесение полос валентных колебаний ОН-групп, связанных с октаэдрическими (Al, Fe, Mg) катионами. В остальных случаях эти полосы не конкретизируются. Полосу при 3697 см⁻¹, которая является характерной для фазы каолинита, также без уточнения относят к валентным колебаниям ОН-групп, координированных октаэдрическими катионами (в табл. обозначены M-OH).

Таблица 1

Структурная группа	Валентные колебания	Деформационные колебания	
M-OH	3697[4]; 3689[6]	-	
Al-Al-OH	3625[3]; 3627[16]; 3620[15]; 3635[17]	915[3]; 915[15]; 919[8]	
Al-Fe ³⁺ -OH	3590[3]	870-890 [3,8,15]	
Al-OH-Mg	3670[3]	843-850 [1,3,8]; 836[4]	
Fe ³⁺ -Fe ³⁺ -Mg	3565[15]	820 [19]	
H ₂ O	3430[3,4];3434[17]; 3424[16]; 3430[15]	1640[3,4,17]; 1635[16]; 1630[15]	
Si-O (тетраэдр)	1050[3]; 1035[8]; 1045[8]	520-540 и 480[15]	
Si-O (аморфный)	1090[8]; 1113[4]; 1100[2]	795-800[2,8]; 529[4]; 417[16]; 513[17]; 460[16]	
Al-O-M (M = Al, Mg, Li)	-	625[8]; 621[2]	
Al-O-Si Si-O-Si	-	524; 469 [8]	
Si-O-Al	-	516[16]; 468[17]; 520[2,13]; 524[1,2]	
Si-O-Mg	-	670[13]; 435[6]	
α-SiO ₂ (α-кварц)	1050 [15]	799 и 779 (дублет)[1,2]; 780; 510; 470[15]; 692[4]	

Волновые числа (v, см⁻¹) максимумов поглощения в ИК-спектрах природных бентонитов (по литературным данным) При идентификации деформационных колебаний силикатной структуры наблюдаются некоторые несоответствия. Например, полосы при 670 и 435 см⁻¹ относят к колебаниям структурного фрагмента Si-O-Mg [5, 14]; в то же время авторы [15] полосу при 435 см⁻¹ относят к валентным Fe⁺³-O-колебаниям.

На рис. 1 представлен общий вид ИК-спектра природного бентонита Горбского месторождения (П-Bent(G)), который согласуется с описанным в литературе [1-14] и отражает характерные для основной фазы монтмориллонита полосы в области валентных и деформационных колебаний структурных групп, а также полосы явно обнаруживаемых примесей – коалинита и α-кварца. Результаты идентификации ИК-спектров трех образцов П-Bent обобщены в табл. 2, а на рис. 2 а, б представлены отдельные участки спектров, наглядно демонстрирующие общие свойства, а также особенности для каждого образца. Спектры указывают на то, что образцы являются полифазными.

Рис. 1 ИК-спектр природного бентонита Горбского месторождения – П-Bent(G)

Острая и интенсивная полоса с хорошим разрешением при 3697 см⁻¹ в области валентных колебаний ОН-группы, связанной с октаэдрическими катионами, наряду с полосой деформационных колебаний при 915 см⁻¹ для П-Bent(G) и П-Bent(K), указывает на присутствие в этих образцах кристаллического каолинита. В случае П-Bent(D) полоса 3697 см⁻¹ проявляется в виде плеча, что свидетельствует о малом содержании каолинита в этом образце бентонита. Таким образом, в исследуемых образцах содержание каолинита разное и уменьшается в ряду П-Bent(G) > П-Bent(K) >> П-Bent(D). Такая последовательность подтверждается также изменением интенсивности полосы при 748 см⁻¹, характерной для деформационных колебаний Si-O в каолините. Четкая средней интенсивности полоса при 748 см⁻¹ проявляется только в случае П-Bent(G), для которого содержание каолинита наибольшее. Для двух других образцов эта полоса проявляется в виде слабовыраженных изгибов. По характерному дублету при 798 и 779 см⁻¹ можно заключить, что образцы П-Bent(D) и П-Bent(K) содержат свободную фазу α -SiO₂ (α -кварца). В случае П-Bent(G) этот дублет перекрывается более широкой полосой аморфного SiO_2 около 800 см⁻¹, поэтому в спектре наблюдается широкая полоса при 797 см⁻¹ с плечом при 778 см⁻¹. По данным РФА образец П-Bent(G) более аморфный, чем два других образца бентонита; исследуемые образцы являются полифазными минералами [18].

Рис. 2. ИК-спектры образцов природных бентонитов: 1 – П-Bent(D); 2 – П-Bent(K);

 $3 - \Pi$ -Bent(G)

Анализ ИК-спектров образцов в области валентных и деформационных колебаний ОН-групп, связанных с октаэдрическими катионами, а также в ассоциированных молекулах воды указывает на четко фиксируемую полосу для Al-Al-OH при 3622 см⁻¹. В то же время полоса при 913-915 см⁻¹ наиболее интенсивной является для П-Bent(G), а для П-Bent(D) проявляется в виде изгиба. Полоса при 875 см⁻¹ соответствует деформационным колебаниям ОН-группы в структурном фрагменте Al-Fe-OH и наиболее четко выражена для П-Bent(D). Для двух других образцов эта полоса проявляется в виде изгиба. Полосы валентных колебаний ОН-групп молекул воды для трех образцов имеют одинаковую форму, однако отличаются значениями волновых чисел в точке максимума (рис. 16, табл. 2). Для П-Bent(D) эта полоса наиболее интенсивная, а максимум по сравнению с двумя другими образцами сдвинут в низкочастотную область: П-Bent(D) (3426 см⁻¹) < П-Bent(K) (3430 см⁻¹) < П-Bent(G) (3435 см⁻¹). Очевидно, можно говорить об ослаблении энергии водородных связей в указанном ряду. В тоже время, в области деформационных колебаний молекул воды проявляется симметричная по форме интенсивная полоса при 1632-1634 см⁻¹, при этом в случае Π -Bent(D) она наиболее интенсивная.

В области валентных колебаний силикатной структуры для трех образцов, кроме полосы валентных колебаний Si-O-Si (тетраэдрический Si) при 1039 см⁻¹, отчетливо проявляются колебания при 1087-1095 см⁻¹, а в случае П-Bent(D) и П-Bent(K) также при 1164 см⁻¹. Эти данные подтверждают наличие в природных образцах бентонитов свободного (аморфного) SiO₂. Структура их тетраэдрической сетки не изменяется, и доказательством этого являются данные РФА – происходит смещение только первого угла отражения для фазы монтмориллонита, остальные межплоскостные расстояния остаются без изменения [18]. Следует также отметить, что для образца П-Bent(D) все деформационные колебания Si-O, в том числе и относящиеся к α-кварцу (778, 779 и 694 см⁻¹), являются более интенсивными, чем для двух других образцов, что, очевидно, связано с более высокой степенью кристалличности этого образца.

Таблица 2

Структурные группы	М-ОН	Al-Al-OH	Al-Fe-OH	H ₂ O	Si-O-Si	Остальные частоты	
П-Bent(G)							
Валентные колебания	3697	3622	-	3435	1095 пл; 1039	431 пл; 376; 347	
Деформационные колебания	-	913	886 пл	1632	797; 778 пл; 748; 692; 535; 471		
II-Bent(D)							
Валентные колебания	3692 пл	3622	-	3426	1164 пл; 1095 пл; 1039	431 пл; 397; 372; 344 пл	
Деформационные колебания	-	913 изгиб	875	1634	798; 779; 694; 519; 467		
II-Bent(K)							
Валентные колебания	3697	3621	_	3430	1164 пл; 1087 пл; 1038	431 пл 397; 372; 347 пл	
Деформационные колебания	-	915	882 пл	1632	798; 779; 694; 518; 468		

Волновые числа (v, см⁻¹) максимумов поглощения в ИК-спектрах воздушно-сухих природных бентонитов Украины

Таким образом, ИК-спектральные исследования показали: природные бентониты трех месторождений Украины являются полифазными минералами – наряду с основной фазой монтмориллонита в разных количествах находятся каолинит, α-кварц и аморфный SiO₂; доминирующая фаза монтмориллонита, независимо от происхождения бентонита, характеризуется одинаковыми спектральными характеристиками структурных групп, относящихся к октаэдрической (Al-O) и тетраэдрической (Si-O) сеткам.

Литература

- Komadel P., Madejova J. Acid action of clay minerals // Develop. in Clay Scien. 2006. – Vol. 1. – P. 263-287.
- Madejova J., Bujdak J., Janek M., Komadel P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite// Spectrochimica Acta Part A – 1998. – Vol. 54. – P. 1397-1406.
- 3. *Тарасевич Ю.И., Овчаренко Ф.Д.* Адсорбция на глинистых минералах. К.: Наук. думка, 1975. 352 с.

- Tyagi B., Chudasama C.D., Jasra R.V. Determination of structural modification in activated montmorillonite clay FT-IR spectroscopy // Spectrochimica Acta Part A. – 2006. – Vol. 64. – P. 273-278.
- Komadel P., Janek M., Madejova J., Weekes A., Breen C. Acidity and catalytic activity of mildly acid-treated Mg-rich montmorillonite and hectorite // J. Chem. Soc., Faraday Trans. – 1997. – Vol. 93, Iss. 23. – P. 4207-4210.
- Vicente-Rodriguez M.A., Suarez M., Bafiares-Mufioz M.A., Lopez-Gonzalez J.D. Comparative FT-IR study of the removal and structural modifications during acid silicates of octahedral cations treatment of several // Spectrochimica Acta Part A – 1996. – Vol. 52. – P. 1685-1694.
- Komadel P., Madejova J., Janek M. Dissolution of hectorite in inorganic acid // Clays and Clay Minerals. – 1996. – Vol. 44, № 2. – P. 228-236.
- Komadel P., Schmidt D., Madejova J., Blahoslav C. Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions // Applied Clay Science – 1990. – Vol. 5. – P. 113-122.
- Rhodes C.N., Brown D.R. Surface Properties and Porosities of Silica and Acid-treated Montmorillonite Catalyst Supports : Influence on Activities of Supported ZnCI₂, Alkylation Catalysts // J. Chem. Soc., Faraday Trans. – 1993. – Vol. 89, Iss. 9. – P. 1387-1391.
- Rhodes C.N., Franks M., Parkes G. M. B., Brown D.R. The effect of acid treatment on the activity of clay supports for ZnC1₂ alkylation catalysts // J. Chem. Soc., Chem. Commun. – 1991. – Vol. 12. – P. 804-807.
- Rhodes C.N., Brown D.R. Structural Characterisation and Optimisation of Acid-treated Montrnorillonite and High-porosity Silica Supports for ZnCI₂, Alkylation Catalysts // J. Chem. Soc., Faraday Trans. – 1992. – Vol. 88, Iss. 15. – P. 2269-2274.
- Bodoardo S., Figueras F., Garrone E. IR study of bronsted acidity of Al-pillared montmorillonite // Journal of catalysis – 1994. – Vol. 147. – P. 223-230.
- Alabarse F.G., Conceicao R.V., Balzaretti N.M., Schenato F., Xavier A. In-situ FTIR analyses of bentonite under high-pressure // Applied Clay Science – 2011. – Vol. 51. – P. 202-208.
- Dellisanti F., Minguzzi V., Valdre G. Thermal and structural properties of Ca-rich Montmorillonite mechanically deformed by compaction and shear //Applied Clay Science – 2006. – Vol. 31. – P. 282–289.
- Cotica L.F., Freitas V.F., Santos I.A., Barabach M., Anaissi F.J., Miyahara R.Y., Sarvezuk P.W.C. Cobalt-modified Brazilian bentonites: Preparation, characterisation, and thermal stability // Applied Clay Science – 2011. – Vol. 51. – P. 187–191.
- Moraes D.S., Angelica R.S., Costa C.E.F., Rocha Filho G.N., Zamian J.R. Bentonite functionalized with propyl sulfonic acid groups used as catalyst in esterification reactions // Applied Clay Science – 2011. – Vol. 51. – P. 209-213.
- Nogueira F.G.E., Lopes J.H., Silva A.C., Lago R.M., Fabris J.D., Oliveira L.C.A. Catalysts based on clay and iron oxide for oxidation of toluene // Applied Clay Science 2011. Vol. 51. P. 385-389.
- Rakytskaya T.L., Kiose T.A., Zryutina A.M., Gladyshevskii R.E., Truba A.S., Vasylechko V.O., Demchenko P.Yu., Gryschouk G.V., Volkova V.Ya. The influence of structure-phase changes in natural and chemically modified bentonites on the catalytic activity of surface Pd(II)-Cu(II) complexes // International Conference on Oxide Materials for Electronic Engineering, 3–7 septem. 2012. : Book Conf. Proc. Lviv, 2012. P. 297–298.

ИК-спектральное исследование структуры и фазового состава бентонитов Украины

Т. Л. Ракитська¹, Т. О. Кіосе¹, Г. М. Джига¹, С. В. Топоров²

Одеський національний університет імені І.І. Мечникова, ¹кафедра неорганічної хімії та хімічної екології, ²кафедра аналітичної хімії, вул. Дворянська, 2, Одеса, 65082, Україна. E-mail: TLR@edu.onu.ua

ІЧ-СПЕКТРАЛЬНІ ДОСЛІДЖЕННЯ СТРУКТУРИ ТА ФАЗОВОГО СКЛАДУ БЕНТОНІТІВ УКРАЇНИ

Резюме

Проведено порівняльне ІЧ-спектральне дослідження трьох зразків бентонітів Дашуковського, Горбського та Кіровоградського родовищ. Показані можливості ІЧ-спектроскопії не тільки для ідентифікації структури основної фази бентонітів монтмориллоніту, але й для визначення домішкових мінералів. **Ключові слова:** ІЧ-спектральне дослідження, бентоніти, фазовий склад.

T. L. Rakytskaya¹, T. A. Kiose¹, A. M. Djiga¹, S. V. Toporov²

Odessa I.I. Mechnikov National University, ¹Department of Inorganic Chemistry and Chemical Ecology, ²Department of Analytical Chemistry,

2, Dvoryanskaya St., Odessa, 65082, Ukraine. E-mail: TLR@onu.edu.ua

IR SPECTRAL STUDY OF STRUCTURES AND PHASE COMPOSITIONS OF UKRAINIAN BENTONITES

Summary

A comparative IR spectral study of samples of three bentonites from Dashukovskoye, Gorbskoye, and Kirovogradskoye deposits was carried out. Capabilities of IR spectroscopy not only for the identification of a structure of montmorillonite – the main phase of bentonites, but also for the determination of impurity phases is shown. **Keywords:** IR spectral study, bentonites, phase composition.

Стаття надійшла до редакції 15.01.12