УДК 543:543.054:536.7:543.544-414

А. Н. Чеботарёв, Е. М. Гузенко

Одесский национальный университет имени И. И. Мечникова, кафедра аналитической химии, ул. Дворянская, 2, Одесса, 65082, Украина e-mail: alexch@ukr.net, guzenkodom@yandex.ua

КИНЕТИКА И ТЕРМОДИНАМИКА СОРБЦИИ КОМПЛЕКСОВ ХРОМА С 1,5-ДИФЕНИЛКАРБАЗИДОМ И КАРМОАЗИНОМ ИОНИТАМИ КУ-2-8 И АВ-17-8

С помощью динамических и кинетических кривых, учитывающих изменение функции заполнения гранул ионообменника во времени, а также критерия Био и значений сорбционной обменной ёмкости проведена оценка механизма формирования адсорбционного слоя при извлечении комплексов (КС) дифенилкарбазоната хрома(III) и кармоазоната хрома (III) (КАОН-Ст(III)) поверхностью ионообменников КУ-2-8 и АВ-17-8, соответственно. Рассчитанные термодинамические параметры при извлечении КАОН-Ст(III) указывают на преобладание хемосорбционного механизма сорбции, сопровождающееся эффектом переориентации КС относительно поверхности ионита.

Ключевые слова: хром(VI), 1,5-дифенилкарбазид, кармоазин, сорбция, кинетика, термодинамика.

Сорбция микрокомпонентов различной природы в динамических условиях, как и любой физико-химический процесс массообмена, характеризуется кинетическими $(K\Pi)$ и термодинамическими параметрами $(T\Pi)[1-5]$. В тоже время, комплексный подход к исследованию термокинетики гетерогенных систем (ГС), содержащих в качестве сорбата органические вещества или комплексные соединения (КС) металлов с органическими лигандами и органополимерные иониты представляет особый интерес. Полученная информация используется при разработке методов выделения, разделения и очистки веществ, даёт возможность уточнить лежащие в основе теоретических представлений природу и механизм процессов сорбции, а также соответствие их структурным и сорбционным особенностям поверхности ионитов. При этом существенное влияние на достижение равновесия в системе оказывает режим извлечения вещества, т. е. статическое или динамическое концентрирование. На практике для описания реализующихся процессов учитывают, какой именно вклад оказывают все составляющие подобных сорбционных систем: масса ионита и его фракционный состав, объём и концентрация раствора сорбата, время его контакта с поверхностью ионита и т. д. При изучении сорбции в динамическом режиме с целью получения более полной и достоверной информации необходимо использовать максимально возможное число характеристических параметров процесса массопереноса [6]. Например, расчёт критерия Био (Ві) и построение кинетических кривых ионного обмена помогают охарактеризовать специфику заполнения гранул ионита молекулами КС во времени, а также выяснить: внешний или внутренний массоперенос определяет в конкретных условиях опыта кинетику адсорбции, т. е. отношение внутреннего сопротивления массопереносу в зерне адсорбента к внешнему сопротивлению массопереносу из жидкости путём диффузии через пограничный вязкий слой к поверхности зерна [1–2, 6]. Кроме того, при обработке и интерпретации экспериментальных данных нужно учитывать природу извлекаемого вещества. Так, при извлечении «простых» неорганических ионов в ГС реализуются процессы, описание которых возможно с помощью классических подходов теории и практики ионного обмена [1, 5, 6]. При сорбции сложных органических (комплексных) ионов [7] необходимо принимать во внимание не только их химическую природу и наличие заряженных центров, но и структурно-пространственные размеры сорбируемых частиц. В связи с этим, изучение КП и ТП позволяет оценить эффективность сорбции и сделать выводы о характере и механизме сорбции, а также оптимизировать процесс. С точки зрения аналитической химии результаты таких исследований могут быть положены в основу разработки тест-систем, работающих в проточном режиме при обнаружении веществ токсикантов, содержащихся в водах различных категорий.

Одним из известных токсикантов, оказывающим негативное влияние на живые организмы и окружающую среду в целом, является хром (VI). Для его обнаружения часто применяют различные органические реагенты (**OP**), при этом в растворе образуются КС, которые используются в виде аналитических форм, как источники аналитического сигнала. В работах [8, 9] изучены особенности массообменных процессов извлечения хрома (VI) в виде его комплексных соединений с редоксреагентами 1,5-дифенилкарбазидом (**ДФК**) и кармоазином (**КАН**), используемых в качестве аналитических форм хрома (VI): дифенилкарбазонат хрома(III) (**ДФКАТ-Ст(III)**) и кармоазонат хрома (III) (**КАОН-Ст(III)**); носителями указанных форм служат органополимерные иониты – сильнокислотный катионообменник КУ-2-8 и сильноосновный анионообменник АВ-17-8. Выбор последних обусловлен зарядом извлекаемых КС, а также возможностью разработки методик, основанных на твёрдофазно-спектроскопическом детектировании аналитического сигнала в вариантах спектроскопии диффузного отражения и визуальной колориметрии.

С учётом выше изложенного настоящие исследования посвящены изучению влияния температуры на специфику заполнения гранул ионита комплексами хрома во времени, а также оценке термодинамических и кинетических параметров массопереноса в гетерогенных системах: (I) – KY-2-8 – $Д\Phi KAT$ -Cr(III) и (II) – AB-17-8 – KAOH-Cr(III).

Экспериментальная часть

Водные растворы комплексов ДФКАТ-Сг(III) и КАОН-Сг(III), готовили согласно методикам приведенным в [8, 9], с начальной концентрацией ($c_{\text{нач}}$) хрома(VI), изменяющейся в диапазоне от 0,10 до 0,65 мкг/мл. Концентрацию хрома (VI) в растворе контролировали фотометрически на КФК-2 при λ = 540 нм для ДФКАТ-Сг(III) и λ = 590 нм для КАОН-Сг(III) в кюветах с толщиной оптического слоя l = 5 см

Изучение динамики сорбции проводили в сорбционной колонке (**СК**) с внутренним диаметром 10 мм, содержащей катионит КУ-2-8 (H-форма) и анионит AB-17-8 (Cl-форма) с диаметром зёрен (d₃) различных фракций, полученных ситовым отбором (0,33÷0,40 мм; 0,40÷0,43 мм; 0,43÷0,50 мм; 0,50÷0,75 мм; 0,75÷1,00 мм). Через слой сорбента пропускали растворы комплексов ДФКАТ-Сг(III) и КАОН-Сг(III), регистрируя остаточную концентрацию ($c_{\text{ост}}$) на выходе из СК фотометрическим методом. Исследования в системе I проводились при следующих условиях: $c_{\text{нач}}$ =0,10÷0,30 мкг/мл, массе сорбента m $_{\text{c}}$ = 0,5 г, объёмная скорость

пропускания раствора сорбата $V_{o6} = 8,0$ мл/мин. Для системы II: $c_{\text{нач}} = 0,43 \div 0,65$ мкг/мл, $m_c = 1,0$ г, $V_{o6} = 6,0$ мл/мин. Для обеих систем температура (T) варьировалась от 293 К до 313 К (шаг 5 К).

При расчёте критерия Био использовали формулу $Bi = \frac{\beta \cdot R_0^2 \cdot c_{\text{ост}}}{c_{\text{нач}} \cdot D},$

где β – массообменный коэффициент, с⁻¹; R_0 – радиус гранулы ионита, мм;

D – коэффициент диффузии ионов в растворе, м²/с [6].

Численные значения функции заполнения гранул ионитов (F) и безразмерного времени ($T_{\text{безр}}$) рассчитывались по ниже приведенным формулам [10].

$$F = \begin{cases} 1 - \left(0.5 + \sin\left[\frac{\arcsin(1 - 12 \cdot T_{6exp.})}{3}\right]\right)^3, \text{при } T_{6exp.} \le \frac{1}{6} \\ 1, \text{ при } T_{6exp.} \ge \frac{1}{6} \end{cases}$$
 (1)

$$T_{\text{6esp.}} = \frac{t_0 \cdot D}{R_0^2 (1 + \Gamma_{\text{pacrip.}})} \tag{2}$$

$$\Gamma_{\text{pacrip.}} = \frac{\mathbf{Q} \cdot \mathbf{m}_{\text{c}}}{c_{\text{hav}} \cdot \mathbf{V}_{\text{copf}} \cdot \varepsilon} , \qquad (3)$$

где t_0 — время выхода на плато, с; $\Gamma_{\text{распр.}}$ — коэффициент распределения; Q — количество сорбированного вещества в фазе сорбента, мг/г; $V_{\text{сорб}}$ — объём сорбента в сорбционной колонке, л; ε — порозность слоя ионита; m_{c} — масса ионита, г.

Для построения изотерм адсорбции в координатах $A = f(c_p)$ (A - адсорбция, моль/г; $c_p -$ равновесная концентрация сорбата в растворе, моль/л), проводили обработку соответствующих выходных кривых, полученных при разных температурах, а затем рассчитывали термодинамические параметры адсорбции по участкам изотерм [4], отвечающих уравнению Ленгмюра в линейной форме (4).

$$\frac{1}{A} = \frac{1}{A_{\infty}} + \frac{1}{A_{\infty}K} \cdot \frac{1}{c_{p}},\tag{4}$$

где A_{∞} – предельная адсорбция, моль/г; K – константа адсорбционного равновесия, г/моль.

Значения дифференциальных стандартных термодинамических функций рассчитывались по уравнениям (5).

$$\Delta G^{\circ} = -RT \cdot lnK; \ \Delta H^{\circ} = RT^{2} \frac{dln K}{dT}; \ \Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T}.$$
 (5)

Результаты и их обсуждения

Как указано в работах [1, 2, 6] кинетические кривые выражаются зависимостями функции заполнения гранул ионитов молекулами комплексов от безразмерного времени при фиксированных фракциях сорбента, которым отвечают соответствующие значения критерия Био. При $Bi \rightarrow \infty$ — процесс внутридиффузионный, при

 $Bi \to 0$ — внешнедиффузионный. Зависимость критерия Bi от радиуса гранулы ионита в первую очередь позволяет экспериментально отличить внешнедиффузионное торможение от стадии стока ионов в твердую фазу. При относительно больших значениях Bi внешняя диффузия оказывает заметный вклад в кинетику процесса. Как видно из приведенных в табл. 1 значений Bi процесс, реализующийся в исследуемых сорбционных системах, контролируется только внешней диффузией, а значения критерия Bi колеблются в диапазоне $0,13\div1,32$.

Таблица 1 **Численные значения критерия Био от диаметра зёрен гранул сорбента**

		d ₃ , мм						
Система		0,33÷0,40	0,40÷0,43	0,43÷0,50	0,50÷0,75	0,75÷1,00		
I	Bi	0,13	0,29	0,59	0,92	1,32		
II		0,24	0,46	0,77	1,08	1,28		

Необходимо отметить, что проведенные ранее исследования в системах I и II [8, 9] позволили выбрать оптимальные параметры (m_c , d_s , V_{ob}) при которых осуществляли дальнейшие исследования. Построение кинетических кривых проводили путём обработки соответствующих выходных кривых с помощью формул (1–3). Графические зависимости, построенные в координатах $F = f \sqrt{T_{6esp.}}$, позволяют оценить, каким образом проходит процесс заполнения гранул ионита комплексными ионами во времени с учётом специфики режима концентрирования. Для понимания физического смысла $T_{6esp.}$ проведена аналогия с объёмом раствора сорбата, необходимого для достижения динамического равновесия в гетерогенных системах (рис. 1).

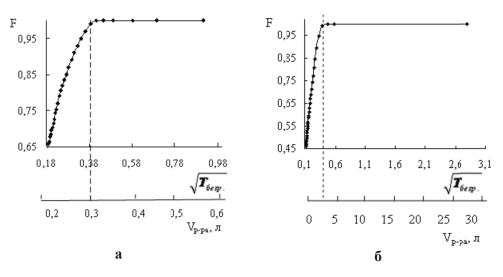


Рис. 1. Кинетические кривые: а – система I; б – система II.

Так как подобные зависимости $F = f \sqrt{T_{\text{безр.}}}$ при варьировании $c_{\text{нач}}$, $V_{\text{об}}$ и $d_{\text{з}}$ имеют идентичный вид, на рис. 1 представлены результаты только при фиксированных значениях указанных параметров. Необходимо отметить, что функция F является многофакторной, учитывающей, согласно формулам (1–3), влияние порядка десяти характеристических параметров оказывающих влияние на кинетику сорбции в гетерогенных системах [10].

Как видно из приведенных таких (рис. 1 **a**, **б**), максимальные численные значения величин $F\approx 1,00$ при $\sqrt{T_{\text{безр.}}}\approx 0,41$ для обеих систем практически совпадают. Последнее свидетельствует об идентичности процессов массопереноса комплексных ионов к поверхности сорбента, их распределении в момент равновесия независимо от природы поверхности ионита и пространственно-структурных особенностей КС, и может быть охарактеризовано с помощью классических принципот практически линейная область в координатах $F = f \sqrt{T_{\text{безр.}}}$ на кривых (до пунктирной линии) свидетельствует о том, что скорость адсорбции в момент формирования монослоя на поверхности ионита контролируется внешним массопереносом [7, 10]. В тоже время, объём растворов комплексов, необходимый для достижения динамического равновесия в гетерогенных системах, различный: для системы I - 0.3 л, а для системы II - 3.8 л. Следовательно, заполнение гранул сорбента КУ-2-8 молекулами комплекса ДФКАТ-Cr (III) осуществляется быстрее, чем в системе II. Последнее объясняется различными размерами молекул извлекаемых КС, что как правило, позволяет утверждать и о различной площади, занимаемой на поверхности сорбента, на что указывают существенно отличающиеся величины V_{p-pa} . Необходимо отметить, что иониты КУ-2-8 и AB-17-8 имеют идентичную матричную структуру, но различные плотность и расположение зарядов на поверхности, что может влиять на специфику адсорбционного взаимодействия КС с матрицей сорбентов. Учитывая это, для получения информации о расположении адсорбционных слоёв на адсорбенте необходимо знать термодинамические параметры системы.

Для этого на первом этапе получены выходные динамические кривые типа $c_{\text{ост}} = f\left(\mathbf{V}_{\text{p-ра}}\right)$ при изменении температуры проведения процесса концентрирования. В связи с тем, что независимо от $c_{\text{нач}}$ форма выходных кривых постоянна, на рис. 2 приведены данные, полученные только при одной $c_{\text{нач}}$ соответствующих КС и разных температурах.

На всех выходных кривых наблюдается два плато, кроме кривой *1* на рис. 2 (б) — с одним плато. Наличие второго плато у всех остальных выходных кривых можно объяснить следующим образом — уже при возрастании температуры на 5К, увеличивается скорость диффузии молекул КС в растворе и как следствие, время достижения поверхности сорбента этими молекулами значительно уменьшается. Вероятно, в случае адсорбции таких объёмных комплексов, как КАОН-Сг(III), числю активных центров на поверхности сорбента, принимающих участие в адсорбционном взаимодействии, будет резко возрастать при увеличении температуры, что связано с переориентацией распределения молекул КС относительно поверхности ионита с планарного расположения в вертикальное. Так, при +293К молекулы комплекса КАОН-Сг(III) блокируют часть активных центров на поверхности сорбента, что приводит к сокращению времени формирования монослоя. При +298К и выше появление двух плато позволяет утверждать об образовании монослоя комплекса, сопровождающееся постепенной переориентацией КС на поверхности анионообменника АВ-17-8 во времени.

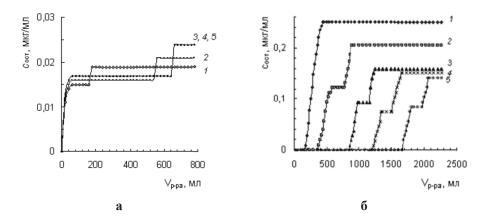


Рис. 2. Выходные кривые, полученные при разных температурах проведения процесса концентрирования Т, К: 1-293; 2-298; 3-303; 4-308; 5-313; a- система I; 6- система II.

При дальнейшем сравнительном анализе выходных кривых видно, что исследуемые системы достигают динамического равновесия при разных $V_{_{\text{p-pa}}}$, прошедших через слой сорбента. Например, в системе I при $c_{\text{\tiny нач}} = 0.10$ мкг/мл выход на второе плато при температуре +293К осуществляется при объёме 180 мл, для +298К – 560 мл, а начиная с +303К и дальнейшее повышение температуры приводит к совпадению выходных кривых (рис. 2 а, кривые 3-5), что соответствует $V_{n-n} = 600$ мл. В системе II, при +293К образуется только одно плато при объёме 460 мл, а при повышении температуры на 5К, на выходных кривых наблюдается два плато: первое – при 580 мл, а второе – 900 мл, при +303К первое плато – 1000 мл, второе – 1240 мл и т. д. Аналогичная закономерность наблюдалась для всех исследуемых концентраций. Так, изменение объёма ΔV ($\Delta V = V_{T2} - V_{T1}$, где V_{T1} и V_{T2} – объёмы растворов КС в момент динамического равновесия в системе, т. е. начало формирования второго плато, полученные при изменении температуры на 5К) для системы I находится в пределах 100÷380 мл, а для системы II 340÷440 мл, что подтверждает влияние стереометрических факторов на специфику формирования адсорбционного слоя на поверхности ионита. В то же время известно, что повышение температуры ускоряет хемосорбцию и замедляет физическую соответственно [3, 4]. Кроме того, сдвиг образования второго плато в область больших объёмов при увеличении температуры указывает на преобладание хемосорбционного взаимодействия между поверхностью сорбента и соответствующим комплексным ионом.

Таким образом, из анализа полученных выходных кривых можно высказать предположение об идентичности механизма сорбции в системах I и II с учётом кинетики формирования монослоя соответствующих КС во времени. Для подтверждения последнего проведена сравнительная характеристика значений сорбционной обменной ёмкости (\mathbf{COE}) систем I и II, а также оценка термодинамических параметров системы II (табл. 2). Необходимо отметить, что предпринятые попытки расчёта ТП для системы I с помощью уравнения Ленгмюра не представлялось возможным, что вероятно связано с наличием вклада различных сил взаимодействия между комплексными ионами и поверхностью ионита.

Таблица 2 Термодинамические параметры системы II и численные значения СОЁ систем

replacement recent impasserph energing in inchemble sharement continued the										
T, K	Значения СОЁ, моль/г		Термодинамические параметры системы II							
	Система		K ⋅10-3,	ΔG°,	ΔS°,	ΔH°,				
	I	II	л/ммоль	кДж/моль	Дж/(моль·К)	кДж/моль				
293	2,2	2,5	0,11	-28,2	505	119				
298	5,2	5,0	0,19	-30,1	503	119				
303	6,0	9,0	0,36	-32,2	502	119				
308	6,0	12,0	0,38	-35,9	500	119				
313	6,0	18,0	1,24	-33,5	489	119				

Как видно из табл. 2, с повышением температуры наблюдается увеличение значений СОЁ до достижения некоторого постоянного значения (для системы I), что связано с завершением переориентации КС ДФКАТ-Сг(III) относительно поверхности КУ-2-8 и отсутствием свободных активных центров, принимающих участие в дальнейшем адсорбционном процессе, а также наличием смешанного механизма сорбции. Для системы II при увеличении температуры процесс переориентации молекул КС КАОН-Сг(III) от планарного до вертикального характеризуется появлением большего количества активных сорбционных центров, сопровождающееся преобладанием хемосорбционных взаимодействий и значительным увеличением СОЁ. Указанные отличия, кроме размеров комплексных ионов, можно объяснить различной локализацией зарядов, а именно внешнесферного в КС КАОН-Сг(III), внутрисферного в КС ДФКАТ-Сг(III), что объясняется наличием для последнего смешанных сил взаимодействий, участвующих в формировании адсорбционного слоя.

Анализируя данные термодинамических расчётов для системы AB-17-8 — KAOH-Cr(III) (табл. 2), можно сделать вывод о реализации самопроизвольного процесса, сопровождающегося увеличением упорядоченности в ГС. Кроме того, положительные и достаточно большие значения энтальпии свидетельствуют о достаточно сильном и необратимом процессе, характеризующем преобладание хемосорбционного механизма взаимодействия. Последнее утверждение находится в полном согласии с изложенными ранее рассуждениями о специфике формирования адсорбционных слоёв в системе II.

Таким образом, рассмотренные в данной работе кинетические критерии (F, $\sqrt{T_{\text{безр.}}}$), динамические ($c_{\text{нач}}$, $c_{\text{ост}}$, $V_{\text{р-ра}}$ и др.) и термодинамические (K, ΔG° , ΔS° , ΔH°) параметры позволили сделать вывод о механизме сорбционного взаимодействия комплексов дифенилкарбазоната хрома(III) и кармоазоната хрома(III) с органополимерными ионитами KУ-2-8 и AB-17-8. Необходимо отметить, что существенное влияние на указанные процессы оказывают такие факторы как: заряд и размер комплексного иона, а также число и расположение активных центров на поверхности носителя [8–10]. С учётом сказанного, всё же можно утверждать, что подобие механизмов массопереноса в системах КУ-2-8 — ДФКАТ-Сг(III) и AB-17-8 — КАОН-Сг(III) в целом будет определяться соответствием плотности зарядов поверхности сорбента к плотности зарядов извлекаемых комплексов.

Литература

- 1. Веницианов Е. В., Ковалев И. Б., Цизин Г. И. Оптимизация динамического сорбционного концентрирования в аналитической химии. Теор. и пр. сорбц. процессов. Межвузовский сб. науч. трудов. 1998. № 23. С. 24.
- 2. *Корольков Н. М., Михайлов Ю. А.* Массообменные процессы химической технологии. Жидкостная сорбция. Рига.: Наука, 1976. 246 с.
- 3. Полторак О. М. Термодинамика в физической химии. М.: Высш. шк. 1991. 319 с.
- 4. *Фролов Ю. Т.* Курс коллоидной химии. Поверхностные явления и дисперсные системы. М.: Химия, 1988.-464 с.
- 5. *Бондарёва Л. П., Перегудов Ю. С., Овсянникова Д. В. и др.* Тепловые эффекты сорбции на ионообменных материалах (обзор) // Сорбционные процессы. 2009. Т. 9, Вып. 4. С. 477–498.
- 6. *Сенявин М. М., Рубинштейн Р. Н., Веницианова Е. В. и ∂р.* Основы расчёта и оптимизации ионообменных процессов. М.: Наука, 1972. 170 с.
- 7. *Когановский А. М., Клименко Н. А., Левченко Т. М., Рода И. Г.* Адсорбция органических веществ из воды. Л.: Химия, 1990. 256 с.
- 8. *Чеботарёв А. Н., Гузенко Е. М., Ефимова И. С.* Основные закономерности сорбции комплекса хрома(VI) с кармоазином на анионообменнике AB-17-8. Вопросы химии и хим. технологии. 2007. № 5. С. 10–14.
- 9. *Чеботарьов О. М., Гузенко О. М., Щербакова Т. М.* Вивчення кінетики сорбції комплексу дифенілкарбазонату хрому (III) на катіоніті КУ-2-8 // Віснік ОНУ. Серія Хімія. 2002. Т.б. Вип.7–8. С.73–78.
- 10. *Кольшикин А. С.* Кинетика ионного обмена на неорганических ионитах: дис. ... кандидата хим. наук: 02.00.04 / Антон Сергеевич Кольшкин. Пермь, 2005. 144 с.

Стаття надійшла до редакції 10.04.12

О. М. Чеботарьов, О. М. Гузенко

Одеський національний університет ім. І.І. Мечникова, кафедра аналітичної хімії, вул. Дворянська, 2, Одеса, 65026, Україна e-mail: alexch@ukr.net, guzenkodom@yandex.ua

КІНЕТИКА ТА ТЕРМОДИНАМИКА СОРБЦІЇ КОМПЛЕКСІВ ХРОМУ З 1,5–ДИФЕНІЛКАРБАЗИДОМ І КАРМОАЗИНОМ ІОНІТАМИ КУ-2-8 ТА АВ-17-8

Резюме

За допомогою динамічних і кінетичних кривих, що враховують зміну функції заповнення гранул йонообмінника у часі, а також критерію Біо й значень сорбційной обмінної ємності проведена оцінка механізму формування адсорбційного шару при вилученні комплексів (КС) дифенілкарбазонату хрому(ІІІ) і кармоазонату хрому(ІІІ) (КАОН—Сг(ІІІ)) поверхнею йонообмінників КУ-2-8 і АВ-17-8, відповідно. Розраховані термодинамічні параметри при вилученні КАОН—Сг(ІІІ) указують на перевагу хемосорбційного механізму сорбції, що супроводжується ефектом переорієнтації КС відносно поверхні іоніту.

Ключові слова: хром(VI), 1,5-дифенілкарбазид, кармоазин, сорбція, кінетика, термодинаміка.

A. N. Chebotaryov, H. M. Guzenko

Odessa I. I. Mechnikov National University, Department of analytical chemistry, Dvoryanskaya St., 2, Odessa, 65026, Ukraine e-mail: alexch@ukr.net, guzenkodom@yandex.ua

THE KINETIC AND THERMODYNAMIC OF CHROMIUM COMPLEXES SORPTIONS' WITH DIPHENYLCARBAZID AND CARMOAZINE USING ION-EXCHANGE RESINS CU-2-8 AND AV-17-8

Summary

There was organized estimation of the shaping sorption layer mechanism at extraction of coordination compounds (CC) chromium (III) diphenylcarmoazonate and chromium(III) carmoazonate (CAON-Cr(III)) by ion-exchanger resins CU-2-8 and AV-17-8 surface, by using dynamic and kinetic curves, that consider functions of the filling the granules ion-exchange resins' change at time, Biot number and sorption exchanging capacity value. The calculated thermodynamic parameters at CAON-Cr(III) extraction point to chemosorption sorption's mechanism prevalence, that is accompanied by the reorientations CC effect for ion-exchangers resins' surfaces.

Keywords: chromium(VI), 1,5-diphenilcarbazide, carmoazine, sorption, kinetics, thermodynamics.