УДК 541:183

Е. А. Стрельцова, А. А. Гросул, О. В. Волювач

Одесский национальный университет имени И. И. Мечникова, кафедра физической и коллоидной химии, ул. Дворянская, 2, Одесса, 65082, Украина, E-mail: A.Grosul-11@yandex.ua

ИНТЕНСИФИКАЦИЯ ФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ НЕИОНОГЕННЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

Изучены закономерности флотационного извлечения неионогенных ΠAB (Н ΠAB) с помощью добавок полиэтиленгликоля ($\Pi \Im \Gamma$) и неорганических солей. Определены параметры мицеллообразования и адсорбции на границе раздела фаз раствор—воздух Твина-21, $\Pi \Im \Gamma$ и их смеси. Предложен механизм взаимодействия и образования адсорбционных слоев в системе Твин-21 — $\Pi \Im \Gamma$. Определены оптимальные условия проведения процесса флотационного извлечения Н ΠAB (природа Н ΠAB , состав раствора, значение pH среды).

Ключевые слова: флотация, поверхностно-активное вещество, полиэтиленгликоль, гексацианоферрат (III) калия, гексацианоферрат (II) калия.

Рост производства и расширение областей применения поверхностно-активных веществ, относящихся к классу НПАВ [1] приводит к увеличению их содержания в сточных водах [2]. Актуальность создания экологически и экономически приемлемых технологий очистки воды от НПАВ обусловлена их низкой биологической разлагаемостью с образованием веществ, токсичных для окружающей среды [3]. К одним из наиболее эффективных методов извлечения ПАВ относятся флотационные методы [4], способные обеспечить необходимую степень очистки воды.

Данная работа посвящена выяснению возможности интенсификации флотационного извлечения НПАВ с помощью применения реагентов различной природы.

Объектами исследования служили НПАВ: Твин-21 (монолаурат полиоксиэтиленсорбитана со средним числом оксиэтильных групп (ОЭ) — $\frac{4}{M_r}$ =552,0 г/моль), ОП-7 (моноалкилфениловый эфир полиэтиленгликоля, $\frac{1}{M_r}$ =506 г/моль) и ОС-20 (смесь моноалкиловых эфиров полиэтиленгликоля на основе первичных жирных спиртов, $\frac{1}{M_r}$ =1122 г/моль). Растворы НПАВ готовили без дополнительной очистки из препаратов фирмы Acros Organics марки ч.д.а. на бидистиллированной воде.

Выбор в качестве реагента ПЭГ был обусловлен использованием последнего при получении ряда НПАВ и нахождением одновременно с ними в технологичных растворах [5], а гексацианоферратов (III, II) калия $(K_3[Fe(CN)_6], K_4[Fe(CN)_6])$ – относительной доступностью и хорошей флотируемостью образующихся осадков [6].

Флотационную обработку растворов проводили на установке, подробно описанной в работе [7]. Анализ растворов НПАВ выполняли по стандартной методике [8]. Об эффективности процесса флотационного извлечения НПАВ судили по степени (α) извлечения их из раствора и степени (β) перехода раствора в пену:

$$\alpha = \frac{C_0 - C}{C_0} \cdot 100\%, \tag{1}$$

$$\beta = \frac{V_0 - V}{V_0} \cdot 100\%,$$
 (2)

где C_0 и C – концентрация ПАВ в растворе, а V_0 и V – объем раствора в колонке, соответственно до и после флотации.

Для получения статистически достоверных результатов каждое измерение повторяли 5-6 раз. Погрешность измерений степени флотационного извлечения $H\Pi AB$ (α) при коэффициенте надежности 0,95 не превышала 5%.

Поверхностное натяжение водных растворов Твина-21, а также растворов, со-держащих ПЭГ, K_3 [Fe(CN)₆] и K_4 [Fe(CN)₆], определяли при комнатной температуре по методу Вильгельми [9].

Проведенные исследования показали, что введение ПЭГ в растворы Твина-21, ОП-7 и ОС-20 увеличивает степень их флотационного извлечения на 15-25 % (рис. 1). При изменении количества введенного ПЭГ степень флотационного извлечения исследуемых НПАВ сначала уменьшается, затем увеличивается, достигая максимума при расходе 1 мг ПЭГ на 1 мг НПАВ, после чего вновь уменьшается. Увеличение содержания ПЭГ в растворе НПАВ приводит к структурным изменениям образующихся ассоциатов, способных адсорбироваться пузырьками воздуха и выноситься ими на поверхность раствора. Уменьшение степени флотационного извлечения НПАВ при добавлении большого количества ПЭГ связано, очевидно, с одной стороны с конкуренцией за поверхность раздела фаз жидкость — газ между НПАВ и ПЭГ, а с другой — укрупнением, гидрофобизацией и резким снижением поверхностной активности образующихся ассоциатов.

Рис. 1. Влияние добавок (q, $\frac{M\Gamma\Pi AB}{M\Gamma\Pi 3\Gamma}$) ПЭГ на степень (α) флотационного извлечения (сплошные кривые) Твина-21 (1), ОС-20 (2), ОП-7 (3) и степень (β) перехода (пунктирные кривые) раствора Твина-21 (4), ОС-20 (5), ОП-7 (6) в пену.

Полученная информация при анализе изотерм поверхностного натяжения индивидуальных растворов Твина-21, ПЭГ и их смеси (рис. 2) указывает на увеличение числа адсорбирующихся на межфазной поверхности молекул Твина-21 по сравнению с раствором чистого ПАВ и образование смешанных адсорбционных слоев на границе раздела фаз раствор ПАВ – воздух (рис.3).

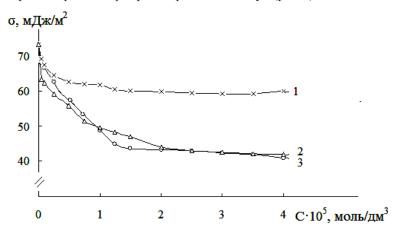


Рис. 2. Изотермы поверхностного натяжения растворов ПЭГ (1), Твина-21 (3), Твина-21 в присутствии ПЭГ при мольном соотношении (n) Твин-21:ПЭГ, равном 3:1 (2).

Поверхностная активность, определенная по формуле:

$$g = -\left(d\sigma/dC\right)_{C \to 0} \tag{3}$$

увеличивается на 8 %, возрастает и величина адсорбции, рассчитанная по уравнению Гиббса:

$$\Gamma = -\frac{C}{RT} \cdot \frac{d\sigma}{dC} \ , \tag{4}$$

где Γ – адсорбция ПАВ; C – концентрация ПАВ в объеме раствора; σ – поверхностное натяжение исследуемых водных растворов; R – универсальная газовая постоянная; T – абсолютная температура.

Одновременно происходит снижение значения площади, приходящейся на частицу в адсорбционном слое:

$$S_{\min} = 1/(N_A \cdot \Gamma_{\to \infty}), \tag{5}$$

где $N_{\rm A}$ – число Авогадро; $\Gamma_{\!\!\!\!-\infty}$ – величина адсорбции при концентрации, достаточно близкой к насыщению (табл. 1).

Полученные значения площади, приходящейся на частицу в поверхностном слое, позволили схематически изобразить ориентацию частиц на границе раздела фаз (рис.3).

Рис. 3. Схематическое изображение взаимодействия между Твином-21 и ПЭГ в объеме раствора и на поверхности (Твин-21: ПЭГ 2-3:1).

Наиболее вероятный механизм взаимодействия Твина-21 и ПЭГ заключается в равномерном распределении молекул Твина-21 по цепи ПЭГ. Другими словами ПЭГ можно рассматривать как «адсорбент» без выраженной межфазной границы, который связывает либо индивидуальные молекулы ПАВ, либо их мицеллы за счет водородных связей и гидрофобных взаимодействий [10].

Изменение свободной энергии Гиббса адсорбции Твина-21 из растворов, содержащих ПЭГ на границе раздела фаз раствор — воздух ($\Delta G^0_{a\partial c}$), рассчитанное по уравнению Лэнгмюра, характеризующего выигрыш энергии от перехода молекул ПАВ из объема раствора на его поверхность

$$\Delta G_{a\dot{\sigma}c} = -RT \ln \frac{\Gamma}{\delta \cdot c},\tag{6}$$

где δ — толщина поверхностного слоя ПАВ, равная в первом приближении $1\cdot 10^{-9}$ м [9], достаточно велико (табл. 1). При расчетах по уравнению (6) за стандартное принимали такое состояние, при котором активность (концентрация) ПАВ, как в объеме раствора, так и в поверхностном слое равнялась 1 моль/дм³. Полученные значения (ΔG_{adc}) экстраполировали к нулевой концентрации ПАВ, т.е. к идеальному раствору.

Таблица Параметры мицеллообразования и адсорбции на границе раздела фаз раствор-воздух Твина-21, ПЭГ и их смеси

n, <u>Твин – 21</u> ПЭГ	g , <u>Дж·м</u> моль	S_{\min} , A^2	$-\Delta G_{a\partial c}^{0},rac{\kappa \mathcal{J}\mathcal{H}c}{\mathit{моль}}$	$-\Delta G_{\scriptscriptstyle Muly}^0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$KKM \cdot 10^4,$ $\frac{MOЛb}{\partial M^3}$
1:0	28,9	31	33,9	22,4	1,0
3:1	31,3	28	36,6	26,8	0,16
0:1	19,2	72	31,0	22,9	0,8

Введение в растворы ПЭГ заметно сказывается и на поведении Твина-21 в объеме раствора. Величина критической концентрации мицеллообразования (ККМ) Твина-21 снижается в ~10 раз, что указывает на «облегчение» процесса мицеллообразования в присутствии ПЭГ.

Сравнение величин стандартной свободной энергии Гиббса мицеллообразования ($\Delta G^0_{\text{мил}}$), рассчитанных по уравнению [11]

$$\Delta G^0_{MHI} = RT \ln KKM. \tag{7}$$

и адсорбции на границе раздела фаз раствор ΠAB – воздух (ΔG^{θ}_{adc}) для системы Твин-21 — $\Pi \Im \Gamma$ показало, что адсорбция является более термодинамически выгодным процессом, а упаковка частиц в мицелле менее плотная, по сравнению с упаковкой в смешанном адсорбционном слое.

Экспериментальные исследования влияния pH раствора на флотационное извлечение показывают, что при добавление в растворы ОП-7 ПЭГ расширяется область оптимальных значений pH от 4 до 10. Это связано с образованием менее гидратированных, хорошо флотирующихся поверхностно-активных ассоциатов при взаимодействии ПЭГ с полиоксониевыми соединениями, входящими в состав ОП-7 (рис. 4). Введение ПЭГ в растворы Твина-21 увеличивает степень извлечения последнего, но существенно не изменяет область оптимальных значений pH.

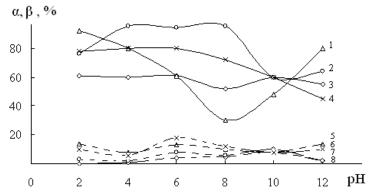


Рис. 4. Влияние концентрации ионов водорода (pH) на степень (α) флотационного извлечения Твина-21 и ОП-7 из растворов содержащих (2 и 4 соответственно), и не содержащих ПЭГ (3 и 1), и на степень (β) перехода растворов Твина-21 и ОП-7 содержащих (7 и 6), и не содержащих ПЭГ (5 и 8) в пену.

Исследования, посвященные флотационному извлечению катионных ПАВ (КПАВ) [6] позволили предвидеть возможность использования гексацианоферратов (II, III) калия, которые находятся в сточных водах предприятий текстильной и химической промышленности [12], в качестве неорганических осадителей НПАВ.

Проведенные исследования показали, что растворимость (ККМ) продуктов взаимодействия Твина-21 с гексацианоферратами (II, III) калия не зависит от заряда аниона и в 20 раз меньше растворимости Твина-21 (табл. 2).

Добавки гексацианоферратов (II, III) калия повышают степень флотационного извлечения как индивидуального Твина-21, так и технических ПАВ — ОС-20 и ОП-7 (табл. 3). Объем пенного продукта не превышает 3-5 % объема раствора, подвергаемого флотационной обработке. Степень флотационного извлечения НПАВ достигает своего максимального значения (92-94 %) при расходе гексацианоферрата калия (II) в количестве 0,5 мг на 1 мг технического НПАВ (ОП-7, ОС-20) и в количестве 0,65 мг на 1 мг индивидуального НПАВ (Твина-21).

Таблица 2 Связь растворимости (ККМ) продуктов взаимодействия Твина-21 с гексацианоферратами (II, III) калия и степенью (a) их флотационного извлечения

(11) III) Kalina ii etenendio (a) na quiotadionnoto iisdate tenna							
	ККМ, моль/дм ³	α,% эксп.	ү, % расч.				
Твин-21	1 · 10-4	60	-				
Твин-21+K ₃ [Fe(CN) ₆]	0,5·10-5	96	92				
Твин-21+K ₄ [Fe(CN) ₆]	0,5·10-5	92	89				

При использовании в качестве реагента гексацианоферрата калия (III) его оптимальный расход, при котором достигается наибольшее извлечение исследуемых как индивидуальных, так и технических НПАВ составляет 0,65 мг на 1 мг НПАВ. При степени флотационного извлечения НПАВ $\alpha = 90$ -96 % их остаточная концентрация в отработанных растворах соответствует нормам их сбрасывания в городскую канализацию (ПДК $_{\text{вола}} = 0,1$ мг/дм³).

Таблица 3 Влияние расхода K₃[Fe(CN)₆] и K₄[Fe(CN)₆] на степень флотационного извлечения НПАВ

		Исходная концентрация НПАВ – 100 мг/дм ³											
		Значения рН раствора – 5,6											
	q K ₃ [Fe(CN) ₆] мг на 1 мг НПАВ					q K₄[Fe(CN) ₆] мг на 1 мг НПАВ							
		0	0,1	0,5	0,65	1	6,5	0	0,1	0,5	0,65	1	6,5
степень извлече- ния α, %	Твин-21	60	88	91	96	96	92	60	85	88	94	92	90
	ОП-7	60	77	86	93	92	89	60	79	92	86	93	90
	OC-20	60	74	84	90	76	88	60	70	92	80	87	77

Кривые, показывающие влияние расхода осадителя на степень флотационного извлечения Твина-21 коррелируют с кривыми зависимости поверхностного натяжения от концентрации раствора (рис. 5).

Значения α , найденные экспериментально и рассчитанные теоретически по уравнению [13]

 $\gamma = 1 - \frac{nS}{C_0} \cdot 100\% , \qquad (8)$

где S — растворимость (ККМ); С $_0$ — исходная концентрация Твина-21 (1,87·10⁻⁴ моль/дм³); п — коэффициент, равный 3 при использовании гексацианоферрата калия (III) или 4 при использовании гексацианоферрата калия (II), велики и достаточно близки (табл. 2).

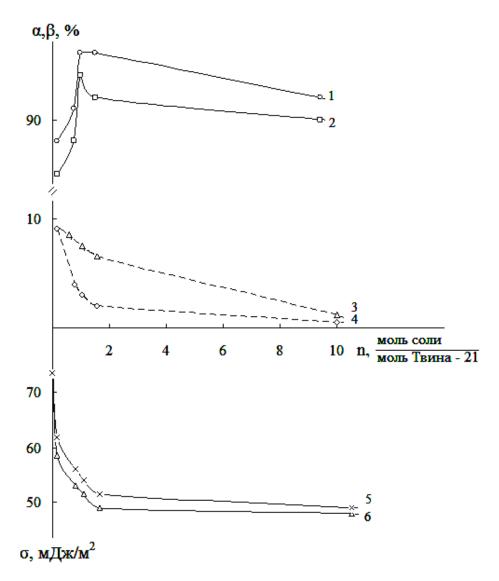


Рис. 5. Влияние расхода (n) $K_3[Fe(CN)_6]$ и $K_4[Fe(CN)_6]$) на: а — степень (α) флотационного извлечения Твина-21 (1,2) и степень (β) перехода раствора в пену (3,4); δ — поверхностное натяжение (σ) раствора (5,6), соответственно.

Таким образом, установлено, что введение в водные растворы НПАВ небольших количеств ПЭГ и гексацианоферратов (II, III) калия (0,5–1 мг реагента на 1 мг ПАВ) интенсифицирует процесс их флотационного извлечения. Отображено влияние ПЭГ на коллоидно-химические свойства НПАВ, а именно на ККМ, поверхностную активность и структуру адсорбционных слоев Твина-21, формирующихся в разбавленных водных растворах, что позволяет предсказывать и

контролировать флотационную активность в системах НПАВ- высокомолекулярное ПАВ и имеет значение для технологий, связанных с очисткой технологичных многокомпонентных растворов.

Литература

- 1. *Когановский А.М., Клименко Н.А.* Физико-химические основы извлечения ПАВ из водных растворов и сточных вод. К.: Наук. думка, 1978. 176 с.
- 2. Болдин А.А. Химическое загрязнение природных вод // Мир химии. 2004. № 9. С. 23.
- 3. *Клименко Н.А., Стародуб Н.Ф., Невинная Л.В.* Влияние продуктов деструкции неионогенных ПАВ на токсичность их водных растворов и эффективность биофильтрования на активном угле // Химия и технология воды − 2007. − Т. 29. № 3. − С. 207 − 225.
- Стрельцова О.О. Фізико-хімічні основи флотаційного виділення іоногенних поверхнево-активних речовин із водних розчинів і стічних вод. Одеса: Астропринт, 1997. 140 с.
- 5. Шенфельд Н. Поверхностно-активные вещества на основе оксида этилена. / Под ред. Н.Н. Лебедева. Изд. 2-е. М.: Химия, 1982. 752 с.
- 6. Флотационное выделение катионных ПАВ, предварительно осажденных ферри- и ферроцианидом калия / Скрылев Л.Д., Стрельцова Е.А., Скрылева Т.Л., Солдаткина Л.М. // Химия и технология воды. 1995. Т. 17, № 4. С. 347—352.
- 7. *Скрылев Л.Д., Стрельцова Е.А., Тымчук А.Ф.* / Изв. вузов. имия и хим.технология. 1993. Т. 36, вып.7. С.40-46.
- 8. Штыков С.Н., Сумина Е.Г., Чернова Р.К., Лемешкина Н.В. Новый экспрессный метод раздельного определения неионных и анионных поверхностно-активных веществ в сточных водах // Журн. аналит. химии − 1985 − Т.11, № 5. − С. 907- 910.
- 9. Абрамзон А.А., Зайченко Л.П., Файнгольд С.И. Поверхностно-активные вещества. Синтез, анализ, свойства, применение: Учеб. пособие для вузов. Л.: Химия, 1988. 200 с.
- 10. *Задымова М.Н., Ямпольская Г.П., Филатова Л.Ю.* Взаимодействие бычьего сывороточного альбумина с неионогенным Твин-80 в водных растворах: комплексообразование и ассоциация // Коллоидн. журн. 2006. –Т. 68, № 2. С. 187–197.
- 11. *Шинода К., Накагава Т., Тамамуси Б., Исемура Т.* Коллоидные поверхностно-активные вещества. М.: Мир, 1966. 319 с.
- 12. Химия ферроцианидов / Под ред. И.В. Тананаева, Г.Б. Сейфера, Ю.Я. Харитонова и др. М.: Наука, 1971. 320 с.
- 13. *Стрельцова О.О., Волювач О.В.* Вилучення броміду цетилпіридинію методом осаджувальної флотації // Укр. хім.. журн. 2001. –Т. 67, № 8. С. 89–93.

Стаття надійшла до редакції 03.09.12

О. О. Стрельцова, А. О. Гросул, О. В. Волювач

Одеський національний університет імені І. І. Мечникова, кафедра фізичної та колоїдної хімії, вул. Дворянська, 2, Одеса, 65082, Україна; E-mail: A.Grosul-11@yandex.ua

ІНТЕНСИФІКАЦІЯ ФЛОТАЦІЙНОГО ВИЛУЧЕННЯ НЕІОНОГЕННИХ ПОВЕРХНЕВО-АКТИВНИХ РЕЧОВИН

Резиме

Вивчено вплив полієтиленгліколю, гексаціаноферату (III) каліюта гексаціаноферату (II) калію на флотаційне вилучення неіоногенних поверхнево-активних речовин. **Ключові слова:** флотація, поверхнево-активна речовина, полієтиленгліколь, гексаціаноферат (III) калію, гексаціаноферат (III) калію.

E. A. Streltsova, A. A. Grosul, O. V. Voliuvach,

I.I. Mechnikov Odessa National University, department of Physical and Colloidal Chemistry; Dvoryanskaya St., 2, Odessa, 65082, Ukraine; E-mail: A.Grosul-11@yandex.ua

INTENSIFICATION OF FLOTATION EXCEPTION OF NON-IONIC SURFACTANT

Summary

The influence of polietilenglikol, geksacianoferat (III) potassium and geksacianoferat (II) potassium on the flotation exception of non-ionic surfactant are studied. **Keywords:** flotation, surfactant, polietilenglikol, geksacianoferat (III) potassium, geksacianoferat (II) potassium.