Mathematical Subject Classification: 11N25, 11S40 UDC 511

S. Varbanets

I. I. Mechnikov Odessa National University

PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL AND ALGORITHMS OF THE SUBLINEAR SUMMATION

Варбанець С. Лінійно-інверсний генератор псевдовипадкових чисел за модулем ступеня двійки. Розглянуто узагальнення інверсного конгруентного генератора псевдовипадкових чисел за модулем ступеня простого числа. Отримані оцінки експоненційних сум на послідовності псевдовипадкових чисел.

Ключові слова: інверсні конгруентні псевдовипадкові числа, експоненційна сума, дискрепансія.

Варбанец С. Линейно-инверсный генератор псевдослучайных чисел по модулю степени двойки. Рассмотрено обобщение инверсного конгруэнтного генератора псевдослучайных чисел по модулю степени простого числа. Даны оценки экспоненциальных сумм на последовательности псевдослучайных чисел.

Ключевые слова: инверсные конгруэнтные псевдослучайные числа, экспоненциальная сумма, дискрепансия.

Varbanets S. Linear-inversive prn's generator with power of two modulus. Generalization of the inversive congruential generator of pseudorandom numbers with prime-power modules is considered and the trigonometrical sums on sequence of pseudorandom numbers are estimated.

Key words: inversive congruential pseudorandom numbers, exponential sum, discrepancy.

INTRODUCTION. Nonlinear methods of generating uniform pseudorandom numbers in the interval [0, 1) have been introduced and studied during the last twenty five years. The development of this attractive fields of research is described in the works of Lehn, Eichenauer, Niederreiter, Emmerich etc. A particularly promising approach is the inversive congruential method. Four types of inversive congruential generators can be distinguished, depending on whether the modulus is a prime, an odd prime power, a power of two or a product of distinct prime numbers. In the case of prime-power modulus the inversive congruential generator is defined in the following way:

Let p be a prime, $p \geq 3$, m be a natural number. For given $a, b \in \mathbb{Z}$ we take an initial value y_0 , and let y_n^{-1} denotes a multiplicative inverse for y_n in $\mathbb{Z}_{p_m}^*$ if $(y_n, p) = 1$, and $y_n^{-1} = 0$ if m = 1 and $y_n \equiv 0 \pmod{p}$. Then the recurrence relation

$$y_{n+1} \equiv ay_n^{-1} + b \pmod{p^m} \tag{1}$$

generates a sequence y_0, y_1, \ldots which we call the inversive congruential sequence modulo p^m .

The case $p \ge 3$, m = 1 studied in [2],[6]. For the case p = 2, m > 3 the relevant investigation presented in [1, 3, 4].

In 1996 T. Kato, L.-M. Wu and N. Yanagihara[4] studied a non-linear congruential generator for the modulus $M=2^m$ defined by the congruence

$$y_{n+1} \equiv a\overline{y}_n + b + cy_n \pmod{M}, \ n = 0, 1, \dots$$
 (2)

with the conditions

$$(y_0, 2) = (a, 2) = 1, \ b \equiv c \equiv 2 \pmod{2}.$$
 (3)

Note that the conditions (3) guarantee infinity of the process of generation. This authors obtained the condition whereby the recursion (2) generates the sequence $\{y_n\}$ with the maximal period $\tau = 2^{m-1}$. They also give the estimate for the discrepancy of the sequence $\{x_n\}$, $x_n = \frac{y_n}{p^m}$.

In the present note we give the representation of elements y_n as polynomials of n and y_0 and that permits to improve the results from [7].

The essential nature of our method consists in the construction of representations of y_n as the polynomial on initial value y_0 and number n.

It is purpose of the present work to demonstrate that the sequence of PRN's $\{x_n\} = \{\frac{y_n}{2^m}\}, n = 0, 1, \ldots$, generated by the recursion (2), satisfies the requirements of equidistribution on [0, 1) and passes the serial test on unpredictability.

NOTATION. Variables of summation automatically range over all integers satisfying the condition indicated. For $m \in \mathbb{N}$ and $M = 2^m$ the notation \mathbb{Z}_M (respectively, \mathbb{Z}_M^*) denotes the complete (respectively, reduced) system of residues modulo M. We write gcd(a,b) = (a,b) for notation a great common divisor of a and b. For $z \in \mathbb{Z}$, (z,2) = 1 let z^{-1} be the multiplicative inverse of a modulo M. We write $\nu_2(A) = \alpha$ if $2^{\alpha}|A$, $2^{\alpha+1}$ A. For real b, the abbreviation b is used.

AUXILIARY RESULTS. We need the following two simple statements.

Let f(x) be a periodic function with period τ . For any $N \in \mathbb{N}$, $1 \leq N \leq \tau$, we denote

$$S_N(f) := \sum_{x=1}^{N} e(f(x)).$$

Lemma 1. In above notations we have

$$|S_N(f)| \le \max_{1 \le n \le \tau} \left| \sum_{x=1}^{\tau} e\left(f(x) + \frac{nx}{\tau}\right) \right| \cdot (1 + \log \tau). \tag{4}$$

This lemma is well-known.

 \mathbb{Z}

Lemma 2 ([7]). Let p be a prime number and let f(x), g(x) be polynomials over

$$f(x) = A_1 x + A_2 x^2 + 2(A_3 x^3 + \cdots),$$

$$g(x) = B_1 x + +2(B_2 x^2 + \cdots),$$

and let, moreover, $\nu_2(A_2) = \alpha > 0$, $\nu_2(A_j) \ge \alpha$, $j = 3, 4, \ldots$ Then we have the following estimates 96 S. Varbanets

$$\left| \sum_{x \in \mathbb{Z}_{2^m}} e\left(\frac{f(x)}{2^m}\right) \right| \le \begin{cases} 2^{\frac{m+\alpha}{2}+1} & if \quad \nu_2(A_1) \ge \alpha, \\ 0 & else; \end{cases}$$
 (5)

$$\left| \sum_{x \in \mathbb{Z}_{2m}^*} e\left(\frac{f(x) + g(x^{-1})}{2^m} \right) \right| \leq \begin{cases} 2^{\frac{m}{2} + 1} & \text{if } B_1 \text{ is odd,} \\ 2^{\frac{m + \alpha + 4}{2}} & \text{if } \nu_2(A_1) \geq \ell, \\ & \nu_2(B_j) \geq \alpha, \dots, \\ 0 & \text{if } \nu_2(A_1) < \alpha \leq \nu_2(B_j), \\ & j = 1, 2, 3, \dots, \end{cases}$$
 (6)

Now we will obtain the representation of y_n in the form of rational function on y_0 .

Let n = 2k. We put

$$y_{2k} = \frac{\sum_{\ell \ge 0} A_{\ell}^{2k} y_0^{\ell}}{\sum_{\ell \ge 0} B_{\ell}^{2k} y_0^{\ell}}, \ A_{\ell}^{2k}, B_{\ell}^{2k} \in \mathbb{Z}.$$
 (7)

After simple calculations by recursion (2) we infer

$$y_{2(k+1)} = \frac{\sum\limits_{\ell \ge 0} A_{\ell}^{2(k+1)} y_0^{\ell}}{\sum\limits_{\ell \ge 0} B_{\ell}^{2(k+1)} y_0^{\ell}},$$

where

$$\begin{split} A_{\ell}^{2(k+1)} &= \sum_{s+t=\ell} \sum_{i=0}^{s} \sum_{j=0}^{t} \left(aA_{i}B_{s-i}A_{j}B_{t-j} + abB_{i}A_{j}B_{s-i}B_{t-j} + \right. \\ &+ b^{2}A_{i}A_{j}B_{s-i}B_{t-j} + bcA_{i}A_{j}A_{s-i}B_{t-j} + a^{2}cB_{i}B_{j}B_{s-i}B_{t-j} + \\ &+ abcB_{i}A_{j}B_{s-i}B_{t-j} + ac^{2}B_{i}B_{s-i}A_{j}A_{t-j} + abcA_{i}B_{j}B_{s-i}B_{t-j} + \\ &+ b^{2}cA_{i}A_{j}B_{s-i}A_{t-j} + bc^{2}A_{i}A_{j}B_{s-i}A_{t-j} + ac^{2}A_{i}B_{j}A_{s-i}B_{t-j} + \\ &+ bc^{2}A_{i}A_{j}A_{s-i}B_{t-j} + c^{3}A_{i}A_{j}A_{s-i}A_{t-j} \right); \\ B_{\ell}^{2(k+1)} &= \sum_{s,t \geq 0} \sum_{i=0}^{s} \sum_{j=0}^{t} \left(aB_{i}A_{j}B_{s-i}B_{t-j} + A_{i}A_{j}B_{t-j} (bB_{s-i} + cA_{s-i}) \right) \end{split}$$

(Here, for the sake of comfort we write A_j , B_j instead $A_i^{(2k)}$, $B_j^{(2k)}$)

Let j'_n (respectively, j''_n) be a exponent of y_0 , for which $\left(A^{(2k)}_{j'_n},2\right)=1$ (respectively, $\left(A^{(2k)}_{j''_n},2\right)=1$).

By induction we infer easy

$$i'_{2k} = \frac{2^{2k} + 2}{3}, \ j''_{2k} = j'_{2k} - 1.$$

Moreover,

$$\begin{split} &\nu_2\left(A_\ell^{(2k)}\right) \geq \left|\frac{j_{2k}' - \ell}{2}\right| \cdot \nu_2(b), \\ &\nu_2\left(B_\ell^{(2k)}\right) \geq \left|\frac{j_{2k}'' - \ell}{2}\right| \cdot \nu_2(b). \end{split}$$

Thus, the numerator and the denominator of fraction in (7) for $k \geq 2m_0 + 1$, $m_0 = \left\lceil \frac{m}{\nu_2(b)} \right\rceil$, over \mathbb{Z}_{2^m} contain at the most $4m_0 + 1$ summands, i.e.

$$y_{2k} \frac{\left(\sum_{\ell=j'_n-2m_0}^{j'_n+2m_0} A_{\ell}^{(2k)} y_0^{\ell}\right)}{\left(\sum_{\ell=j''_n-2m_0}^{j''_n+2m_0} B_{\ell}^{(2k)} y^{\ell}\right)}.$$
 (8)

Divide on a^k the numerator and the denominator in (8). Then we obtain the following representation

$$y_{2k} = \frac{\sum \overline{A}_{\ell} y^{\ell}}{\sum \overline{B}_{\ell} y^{\ell}}, \ \overline{A}_{\ell} \equiv a^{-k} A_{\ell}, \ \overline{B}_{\ell} \equiv a^{-k} B_{\ell} (mod \ 2^{m}).$$
 (9)

Now the coefficients \overline{A}_{ℓ} , \overline{B}_{ℓ} are polynomials on k with coefficients, which depend only on a, b_0 , c_0 , m, where $b = 2^{\nu_2(b)}b_0$, $c = 2^{\nu_2(b)}c_0$, and these coefficients have the indicated above properties of divisibility on power of 2.

By the congruence for every $t \in \mathbb{Z}$

$$\frac{1}{1-2t} \equiv 1 + 2t + 2^2t^2 + \dots + 2^{m-1}t^{m-1} \pmod{M}$$

and taking into account that in denominator of y_{2k} it has only one power y_0 (just $y_0^{i_{2k}^{"}}$) with coefficient $B_{j_{2k}^{"}}$, $(B_{j_{2k}^{"}}, 2) = 1$, we may write

$$y_{2k} \equiv F(k, y_0, y_0^{-1}) \pmod{2^m}, \ F(u, v, w) \in \mathbb{Z}[u, v, w].$$
 (10)

The analogous representation holds for y_{2k+1}

$$y_{2k+1} \equiv G(k, y_0, y_0^{-1}) \pmod{M}. \tag{11}$$

Let $\nu_2(b) \leq \nu_2(c)$. We make more precise the representations (10), (11). Using the principle of mathematical induction it is not difficult to check the correctness of the following relations for $k \geq 2m + 1$:

$$y_{2k} = kb + kacy_0^{-1} + (1 - k(k-1)a^{-1}b^2)y_0 + (-ka^{-1}b)y_0^2 + (-ka^{-1}c + k^2a^{-2}b^2)y_0^3 + 2^{\alpha}F_0(k, y_0, y_0^{-1}),$$
(12)

$$y_{2k+1} = (k+1)b + (a - k(k+1)b^2)y_0^{-1} + (-kab)y_0^{-2} + (-ka^2c + k^2ab^2)y_0^{-3} + (k+1)cy_0 + 2^{\alpha}G_0(k, y_0, y_0^{-1}),$$
(13)

where $\alpha := \min (\nu_2(b^3), \nu_2(bc));$

 $F_0(u, v, w), G_0(u, v, w) \in \mathbb{Z}[u, v, w], F_0(0, v, w) = G_0(0, v, w) = 0.$

Thus, we get the following result.

Lemma 3. Let $\{y_n\}$ is the sequence of PRN's generated by the recursion (2) with conditions $(y_0, 2) = (a, 2) = 1$, $0 < \nu_2(b) < \nu_2(c)$. There exist the polynomials $F_0(u,v,w)$, $G_0(u,v,w)$ over \mathbb{Z} , $F_0(0,v,w)=G_0(0,v,w)=0$ such that the relations (12) and (13) are right for any $k \geq 2m + 1$.

Corollary 1. Let $m \geq 3$. Then the sequence $\{y_n\}$ defined by recursion (2) is purely periodic, where $b = 2^{\nu}b_0$, $(b_0, 2) = 1$, $c = 2^{\mu}c_0$, $(c_0, 2) = 1$, $\mu > \nu > 0$; $\nu_2(a-y_0^2)=\nu_0\geq 1$. And its period τ is equal

(i)
$$2^{m-2\nu+1}$$
 if $m \ge 2\nu, \ \nu_0 > \nu$;

$$\begin{array}{lll} (i) & 2^{m-2\nu+1} & if & m \geq 2\nu, \ \nu_0 > \nu; \\ (ii) & 2^{m-2\nu-\beta_0+1} & if & m > 2\nu, \ \nu_0 = \nu, \beta_0 = \nu_2 \left(\frac{y_0^2-a}{2^{\nu_0}} + b_0 \right); \\ (iii) & 2^{m-\nu-\nu_0+1} & if & m \geq \nu + nu_0, \ \nu_0 < \nu. \end{array}$$

(iii)
$$2^{m-\nu-\nu_0+1}$$
 if $m \ge \nu + nu_0, \ \nu_0 < \nu$

Proof. The first part of corollary follows as in [7].

To prove the second part, we have

$$y_{2k} \equiv y_0 \pmod{2^m} \iff kb(1 - a^{-1}y_0^2) - k(k-1)a^{-1}b^2y_0 + ka^{-1}cy_0^{-1}(a^2 - y_0^4) + 2^{\alpha}F_0(k) \equiv 0 \pmod{2^m}.$$
(14)

It follows that k must be a least positive integer for which the congruence $k \equiv$ $0 \pmod{2^{\ell}}$ holds, where

$$\ell = \begin{cases} \nu_2(b) + \nu_2(a - y_0^2) & if \quad \nu_2(a - y_0^2) < \nu_2(b) \le \frac{1}{2}m; \\ 2\nu_2(b) & if \quad \nu_2(b) \le \frac{1}{2}m, \ \nu_2(a - y_0^2) > \nu_2(b). \end{cases}$$

Remark 1. From (i), (ii) of Corollary 2 we obtain that for $\nu_0 \geq \nu$ the maximal period $\tau = 2^{m-2\nu+1}$ achieves, if and only if, $\nu_0 > \nu$ and $m \ge 2\nu$. In the work [4] this assertion was obtained only for $\nu = 1$.

EXPONENTIAL SUMS ON SEQUENCE OF PRN'S. In this section we determine the estimates of certain exponential sums over the linear-inversive congruential sequence $\{y_n\}$ which was defined in (2).

For $h_1, h_2 \in \mathbb{Z}$ we denote

$$\sigma_{k,\ell}(h_1, h_2; M) := \sum_{y_0 \in \mathbb{Z}_M^*} e\left(\frac{h_1 y_k + h_2 y_\ell}{M}\right), \ (h_1, h_2 \in \mathbb{Z}).$$
 (15)

Here we consider y_k , y_ℓ as a functions at y_0 generated by (2) (see, formula (13)).

Theorem 1. Let $(h_1, h_2, 2) = 1$, $\nu_2(h_1 + h_2) = \beta$, $\nu_2(h_1 k + h_2 \ell) = \gamma$. The following estimates

$$|\sigma_{k,\ell}(h_1,h_2;M)| \leq \begin{cases} 2^{\frac{m+2}{2}} & if & k \not\equiv \ell (mod\ 2);\\ 0 & if & k \equiv \ell (mod\ 2)\\ & and & \beta < \gamma + \nu, \ m - \beta - \nu > 0;\\ 2^{m-1} & if & k \equiv \ell (mod\ 2)\\ & and & \beta \geq \gamma + \nu, \ m - \nu - \gamma \leq 0;\\ 2^{\frac{m+\nu+\gamma+2}{2}} & if & k \equiv \ell (mod\ 2)\\ & and & \beta \geq \gamma + \nu, \ m - \nu - \gamma > 0. \end{cases}$$

hold.

Proof. We consider two cases:

- (I) If k and ℓ be non-negative integers of different parity, we obtain the statement of theorem by (12), (13) and Lemma 2.
- (II) Let k and ℓ be integers of identical parity. Then for $k := 2k, \ell := 2\ell$, we have modulo M:

$$h_1 y_{2k} + h_2 y_{2\ell} =$$

$$= B_0 + B_1 y_0 + B_2 y_0^2 + B_3 y_0^3 + B_{-1} y_0^{-1} + 2^{\alpha} K(y_0, y_0^{-1}) := F_2(y_0, y_0^{-1}),$$

where $B_1 = h_1 + h_2 + 2^{2\nu} B_1'$,

$$B_2 = -ab(h_1k + h_2\ell) + 2^{\alpha}B_2',$$

$$B_2 = -ab(h_1k + h_2\ell) + 2^{\alpha}B_2',$$

$$B_3 = -a^{-2}b^2(h_1k^2 + h_2\ell^2) - a^{-1}c(h_1k + h_2\ell) + 2^{\alpha}B_3',$$

$$B_{-1} = ac(h_1k + h_2\ell) + 2^{\alpha}B'_{-1},$$

moreover, B_1' , B_2' , B_3' , B_{-1}' and coefficients of $K(y_0, y_0^{-1})$ contain multipliers of form $h_1k^j + h_2\ell^j$, $j \ge 0$.

Let $\nu_2(h_1 + h_2) = \beta \ge \nu$, $\nu_2(h_1k + h_2\ell) = \gamma \ge 0$, $\delta = \min(\beta, \gamma)$.

The application of Lemma 1 gives

$$|\sigma_{2k,2\ell}(h_1, h_2; M)| \le \begin{cases} 0 & \text{if } \beta < \gamma + \nu, \ m - \beta - \nu > 0, \\ 2^{\frac{m+\nu+\gamma+2}{2}} & \text{if } \beta \ge \gamma + \nu, \ m - \nu - \gamma > 0, \\ 2^{m-2} & \text{if } \beta \ge \gamma + \nu, \ m - \nu - \gamma \le 0, \end{cases}$$

where $\varphi(2^{m-1})$ is the totient Euler function.

For $k \equiv \ell \equiv 1 \pmod{2}$ we have the analogous result.

This finishes the proof of Theorem 1.

Remark 2. The case $\nu_2((h_1, h_2, M)) > 1$ reduces easily to the case $\nu_2((h_1, h_2, 2)) =$ 0.

Let h be integer, $(h, M) = 2^s$, $0 \le s < m$, and let τ be a least period length of the sequence of PRN's $\{y_n\}$, $n=0,1,\ldots$, defined in (2). For $1 \leq N \leq \tau$ we denote

$$S_N(h, y_0) = \sum_{n=0}^{N-1} e\left(\frac{hy_n}{M}\right). \tag{16}$$

The sum $S_N(h, y_0)$ calls the exponential sum on the sequence of PRN's $\{y_n\}$. We shall obtain the bound for $S_N(h, y_0)$.

By the relation (12)-(13) we get for $k \ge 2m + 1$:

$$y_{2k} = A_0 + A_1 k + A_2 k^2 + A_3 k^3 := F(k), (17)$$

$$y_{2k+1} = B_0 + B_1 k + B_2 k^2 + B_3 k^3 := G(k), \tag{18}$$

100 S. Varbanets

where

$$A_{0} = A_{0}(y_{0}) \equiv y_{0}(mod\ 2^{\alpha})$$

$$A_{1} = A_{1}(y_{0}) \equiv b(1 - a^{-1}y_{0}^{2}) + a^{-1}b^{2}y_{0} + acy_{0}^{-1}(1 - a^{-2}y^{4})(mod\ 2^{\alpha})$$

$$A_{2} = A_{2}(y_{0}) \equiv -a^{-1}b^{2}y_{0} + a^{-2}b^{2}y_{0}^{3}(mod\ 2^{\alpha}) = -a^{-1}b^{2}y_{0}(1 - a^{-1}y_{0}^{2})$$

$$B_{0} = B_{0}(y_{0}) \equiv b + ay_{0}^{-1} + cy_{0}(mod\ 2^{\alpha})$$

$$B_{1} = B_{1}(y_{0}) \equiv b(1 - ay_{0}^{-2}) - b^{2}y_{0}^{-1} - y_{0}c(1 - a^{2}y_{0}^{-4})(mod\ 2^{\alpha})$$

$$B_{2} = B_{2}(y_{0}) \equiv -b^{2}y_{0}^{-1} + ab^{2}y_{0}^{-3}(mod\ 2^{\alpha}) = -b^{2}y_{0}^{-1}(1 - ay_{0}^{-2})$$

$$A_{3} = A_{3}(y_{0}, k) \equiv B_{3}(y_{0}, k) \equiv B_{3} \equiv 0(mod\ 2^{\alpha}),$$

$$\alpha = \min(3\nu, \nu + \mu).$$

$$(19)$$

After all this preliminary work, it is straightforward to prove two main result of this section:

Theorem 2. Let the linear-inversive congruential sequence generated by the recursion (2) has the period τ , and let $\nu_2(b) = \nu$, $\nu_2(c) = \mu$, $\nu < \mu$, $\alpha = \min(3\nu, \nu + \mu)$, $\nu_2(a - y_0^2) = \nu_0$, $2\nu \le m$. Then the following bounds

$$|S_{\tau}(h, y_0)| \leq \begin{cases} O(m) & \text{if } p = 2, \ \nu_0 < \nu, \ \nu_2(h) < m - 2\nu; \\ 4 \cdot 2^{\frac{m + \nu_2(h)}{2}} & \text{if } \nu_0 \geq \nu, \ \nu_2(h) < m - 2\nu; \\ \tau & \text{else}, \end{cases}$$

hold.

Proof. From the formulas (17)-(18) we have

$$|S_{\tau}(h, y_{0})| = \left| \sum_{n=0}^{\tau-1} e\left(\frac{hy_{n}}{M}\right) \right| = \left| \sum_{n=0}^{2^{\ell}-1} e\left(\frac{hy_{n}}{M}\right) \right| \leq$$

$$\leq \left| \sum_{\substack{k_{1}=0\\k=2k_{1}}}^{2^{\ell}-1} e\left(\frac{hy_{2k_{1}}}{M}\right) \right| + \left| \sum_{\substack{k_{1}=0\\k=2k_{1}+1}}^{2^{\ell}-1} e\left(\frac{hy_{2k_{1}+1}}{M}\right) \right| =$$

$$= \left| \sum_{k=0}^{2^{\ell}-1} e\left(\frac{hF(k)}{M}\right) \right| + \left| \sum_{k=0}^{2^{\ell}-1} e\left(\frac{hG(k)}{M}\right) \right| + O(m).$$

$$(20)$$

In the last part of the formula (20) we into account that the representation y_n as a polynomial on k holds only for $k \ge 2m + 1$.

By (18), the Corollaries 1 and Lemma 2 (from (5)) we easy obtain

$$|S_{\tau}(h, y_0)| \le \begin{cases} O(m) & if & p = 2, \ \nu_0 < \nu, \ \nu_2(h) < m - 2\nu, \\ 2^{\frac{m + \nu_2(h) + 4}{2}} & if & \nu_0 \ge \nu, \ \nu_2(h) < m - 2\nu, \\ \tau & else. \end{cases}$$

The constants implied by the O-symbol are absolute.

Corollary 2. Let $1 \le N < \tau$. Then in the notations of Theorem 2 we have

$$|S_N(h, y_0)| \le \begin{cases} N & if \quad \nu + \nu_2(h) \ge m, \\ 2^{\frac{m+\nu(h)+4}{2}} \log \tau & if \quad \nu + \nu_2(h) < m. \end{cases}$$

This statement follows from Theorem 2 and Lemma 1. Let $N \leq 2^{m-1}$.

We will study $S_N(h, y_0)$ at the average over $y_0 \in \mathbb{Z}_M^*$.

Theorem 3. Let a, b, c be parameters of the linear-inversive congruential generator (2) and let (a, 2) = 1, $0 < \nu = \nu_2(b) < \nu_2(c)$, $1 \le N \le 2^{m-1}$, $\nu_2(h) = 2^s$, s < m. Then the average value of the $S_N(h, y_0)$ over $y_0 \in \mathbb{Z}_M^*$ satisfies

$$\overline{S}_N(h) = \frac{1}{2^{m-1}} \sum_{y_0 \in \mathbb{Z}_M^*} |S_N(h, y_0)| \le N^{\frac{1}{2}} 2^{-\frac{m}{4}} 2\sqrt{10} \cdot 2^{\frac{\nu+s}{4}},$$

where $s = \nu_2((h, M)), h = h_0 2^s$

Proof. First we will consider the case s=0, i.e. (h,2)=1. By the Cauchy-Schwarz inequality we get for $\sigma_{k,\ell}=\sigma_{k,\ell}(h,-h;M)$

$$\begin{split} |\overline{S}_{N}(h)|^{2} &\leq \frac{1}{2^{m-1}} \sum_{y_{0} \in \mathbb{Z}_{M}^{*}} |S_{N}(h, y_{0})|^{2} = \frac{1}{2^{m-1}} \sum_{k, \ell = 0}^{N-1} \sum_{y_{0} \in \mathbb{Z}_{M}^{*}} e\left(\frac{h(y_{k} - y_{\ell})}{M}\right) \leq \\ &\leq \frac{1}{2^{m-1}} \sum_{k, \ell = 0} |\sigma_{k, \ell}| = \frac{1}{2^{m-1}} \sum_{r=0}^{\infty} \sum_{\substack{k, \ell = 0 \\ \nu_{2}(k - \ell) = r}}^{N-1} |\sigma_{k, \ell}| = \frac{1}{2^{m-1}} \sum_{\gamma = 0}^{N-1} \sum_{\substack{k, \ell = 0 \\ \nu_{2}(k - \ell) = \gamma}}^{N-1} |\sigma_{k, \ell}| + \\ &+ \frac{1}{2^{m-1}} \sum_{k=0}^{N-1} |\sigma_{k, k}| = N + \frac{1}{2^{m-1}} \sum_{\gamma = 0}^{m-1} \sum_{\substack{k, \ell = 0 \\ \nu_{2}(k - \ell) = \gamma}}^{N-1} |\sigma_{k, \ell}|. \end{split}$$

Using Theorem 1 we, after simple calculations, obtain

$$|\overline{S}_{N}(h)|^{2} \leq N + \frac{1}{2^{m-1}} \sum_{\gamma=0}^{m-1} \left(\sum_{\substack{k,\ell=0\\k \not\equiv \ell \pmod{2}\\\nu_{2}(k-\ell)=\gamma}}^{N-1} |\sigma_{k,\ell}| + \sum_{\substack{k,\ell=0\\k \equiv \ell \pmod{2}\\\nu_{2}(k-\ell)=\gamma}}^{N-1} |\sigma_{k,\ell}| \right) \leq$$

$$\leq N^{\frac{1}{2}} 2^{-\frac{m}{4}} \left(2 + \sqrt{10} \cdot 2^{\frac{\nu}{4}} \right).$$

$$(21)$$

Now an argument similar to the one used to prove (21) leads to general bound

$$|S_N(h)| \le N^{\frac{1}{2}} 2^{-\frac{m-s}{4}} \left(2 + \sqrt{10} \cdot 2^{\frac{\nu}{4}}\right).$$
 (22)

The estimates of exponential sums obtained in this section we will use for study of properties of the sequence PRN's $\{y_n\}$.

DISCREPANCY. Equidistribution and statistical independence properties of pseudorandom numbers can be analyzed based on the discrepancy of certain point sets in $[0,1)^s$.

For N arbitrary points $\mathfrak{t}_0,\mathfrak{t}_1,\ldots,\mathfrak{t}_{N-1}\in[0,1)^s$, the discrepancy is defined by

$$D_N^{(s)}(\mathfrak{t}_0,\mathfrak{t}_1,\ldots,\mathfrak{t}_{N-1}) := \sup_I \left| \frac{A_N(I)}{N} - |I| \right|,$$

where the supremum is extended over all subintervals I of $[0,1)^s$, $A_N(I)$ is the number of points among $\mathfrak{t}_0,\mathfrak{t}_1,\ldots,\mathfrak{t}_{N-1}$ falling into I, and |I| denotes the s-dimensional volume I.

102 S. Varbanets

Let $\{y_n\}$ be the sequence of PRN's generated by (2) and let $x_n = \frac{y_n}{M}$, $n = 0, 1, \ldots$ From our sequence $\{x_n\}$ we derive the sequence $\{X_n^{(s)}\}$ of points in $[0,1)^s$ putting $X_n^{(s)} := (x_n, x_{n+1}, \ldots, x_{n+s-1})$.

We will say the sequence $\{x_n\}$ passes d-dimensional serial test on independence if for every $s \leq d$ the sequence $\{X_n^{(s)}\}$ has uniform distribution.

Theorem 4. The discrepancy $D_N^{(s)}$, s = 1, 2, 3, 4, of points constructed by linear-inversive congruential generator (2) with parameters a, b, c, which satisfy the condition

 $0<\nu_2(b)=\nu,\ 2\nu<\mu=\nu_2(c),\ \nu_2(a-y_0^2)=\nu_0\geq 1,\ m\geq 2\nu,\ \nu_0>\nu,$ the following bound

$$D_{\tau}^{(s)} \le \frac{s}{2^{m-\nu+1}} + 2^{-\frac{m-2\nu}{2}} \log^s M.$$
 (23)

holds.

Proof. Consider only the case s=3 (This case is the most complex). In order to apply Turan-Erdös-Koksma inequality in the Niederreiter's form[6] we must have an estimate for sum

$$\sum_{n=0}^{\tau-1} e\left(\frac{h_1 y_n + h_2 y_{n+1} + h_3 y_{n+2}}{M}\right).$$

Without loss of generality, we can suppose that $(h_1, h_2, h_3, 2) = 1$. From (17)-(19) we can write

$$h_{1}y_{2k} + h_{2}y_{2k+1} + h_{3}y_{2k+2} =$$

$$= (h_{1}y_{0} + h_{2}(ay_{0}^{-1} + b + cy_{0}) + h_{3}y_{0}) +$$

$$+k \left[h_{1}((1 - a^{-1}y_{0}^{2})b + ay_{0}^{-1}c(1 - a^{-2}y_{0}^{4}) + y_{0}b^{2}) +$$

$$+h_{2}(-((1 - a^{-1}y_{0}^{2})b + by_{0}^{-1} + a^{2}cy_{0}^{-1})) +$$

$$+h_{3}(b(1 - a^{-1}y_{0}^{2}) + bay_{0}^{-1}(1 - a^{-1}y_{0}^{2}) +$$

$$+y_{0}b^{2} + 2a^{-1}y_{0}b^{2}(1 - a^{-1}y_{0}^{2})) \right] +$$

$$+k^{2}b^{2}(h_{1}a^{2} - h_{2}y_{0}(a^{-1} - a^{-2}y_{0}^{2}) + h_{2}a^{2}) + 2^{\alpha}L(h_{1}, h_{2}, h_{3}, k) =$$

$$= C_{0} + C_{1}k + C_{2}k^{2} + 2^{\alpha}L(h_{1}, h_{2}, h_{3}, k),$$

$$(24)$$

say.

Since the congruences

$$C_1 \equiv 0 \pmod{2^{2\nu+1}}$$

 $C_2 \equiv 0 \pmod{2^{2\nu+1}}$

cannot be held simultaneously (taking into account that $1 - a^{-1}y_0^2 \not\equiv 0 \pmod{2^{\nu_0}}$) we obtain (by Lemma 2)

$$|\sum_{1}| \leq \begin{cases} 2^{\frac{m+\nu}{2}+1} & if & A_{1}(h_{1}, h_{2}, h_{3}) \equiv 0 \pmod{2^{2\nu}}, \\ 0 & else. \end{cases}$$
 (25)

Similarly, we have

$$|\sum_{2}| \le \begin{cases} 2^{\frac{m+\nu}{2}+1} & if \\ 0 & else, \end{cases} B_{1}(h_{1}, h_{2}, h_{3}) \equiv 0 \pmod{2^{2\nu}},$$
 (26)

where $B_1(h_1, h_2, h_3)$ defined by the representation

$$h_1 y_{2k+1} + h_2 y_{2k+2} + h_3 y_{2k+3} = B_0 + B_1 k + B_2 k^2 + 2^{\alpha} M(h_1, h_2, h_3, k).$$

Now, Lemma 4 and simple calculations give

$$D_{\tau}^{(3)} \le \frac{3}{2^{m-\nu+1}} + 2^{-\frac{m-2\nu}{2}} \log^3 M.$$

The assertions of theorem 4 stay held if write N instead τ for $N \leq \tau$.

The Theorem 4 shows that the sequence of PRN's $\{x_n\}$ passe the s-dimensional test on unpredictability (for $s \leq 4$) if this sequence generated by the linear-inversive generator (2) under indicated conditions on the parameters a, b, c, y_0 .

CONCLUSION. Since every nonlinear congruential generator passes also the s-dimensional lattice test for all $s \leq 4$ we conclude that the sequence of PRN's $\{x_n\}$ generated by (2) may be use in applications.

- 1. **Eichenauer-Herrmann J.** Inversive Congruential Pseudorandom Number Generator with Power of Two Modulus / Eichenauer-Herrmann J., Grothe H. // ACM Transactions of Modelling and Computer Simulation. 1992. 2(1). P. 1-11.
- 2. **Eichenauer J.** A non-linear congruential pseudorandom number generator / Eichenauer J., Lehn J. // Statist. Hefte. 1986. 27. P. 315-326.
- Eichenauer J. A nonlinear congruential pseudorandom number generator with power of two modulus / Eichenauer J., Lehn J., Topuzoğlu A. // Math. Comp. – 1988. – 51. – P. 757-759.
- Kato T. On a nonlinear congruential pseudorandom number generator / Kato T., Wu L.-M., Yanagihara N. // Math. of Comp. – 1996. – 65(213). – P. 227-233.
- Niederreiter H. Recent trends in random number and random vector generation / Niederreiter H. // Ann. Oper. Res. – 1991. – 31. – P. 323-345.
- Niederreiter H. Random Number Generation and Quasi-Monte Carlo Methods / Niederreiter H. – SIAM, Philadelphia, Pa., 1992.
- 7. Varbanets P. On a nonlinear congruential pseudorandom number generator / Varbanets P., Varbanets S. // Analytic and Probabilistic Methods in Number Theory, Proc. Fifth. International Conference in Honour of J. Kubilius, Palanga, Lithuania, 04-10 Semtember 2011. 2012. 17. P. 265-282.