ISSN 2804-1579. Visnyk Odesk. Nats. Univers. Mat. i Mekh—~2018 .—V. 18,1s.1(17).—P.104—114

Mathematical Subject Classification: 11N25, 11540
UDC 511

A. V. Lelechenko
I. I. Mechnikov Odessa National University

PARITY OF THE NUMBER OF PRIMES IN A GIVEN INTERVAL
AND ALGORITHMS OF THE SUBLINEAR SUMMATION

Jlesmeuenko A. B. IlapHicTh KIJIBKOCTI IIPOCTUX YHCEJI HA 3aJJaHHOMY iHTepBa-
Ji Ta anropurmu cyGJiHIHOrO migcymMoByBaHHs. [IPONOHYETHCsH aaropuT™M BU3HAYE-
HHS TTAPHOCTI KiTPKOCTI IpocTx wnces wa [a, b] C [z, 2z], ne b—a < z*/?*¢ 1a c € (0,1/2], 3a
O (z™ax(e7/19)+2) orepamiit. AnropuTy GasyeThest Ha CyGIHIHIX METOIAX TTiICY MOBYBAHHSI,
po3pobKa KOTPUX CTAHOBUTH OCHOBHY YacTHHy cTarTi. /loBemeHO Teopemy mioo cyOstiHiii-
HOTO TIiICyMOBYBaHHS IMUPOKOTO KJIACCY MYIbTUILIIKATUBHUAX (DYHKITIHA.
KimrouoBi cioBa:  asropurmivda Teopis uucest, MYHKIS PO3MOILLY IPOCTUX UHUCE, i
CYMOBYBAaHHY MYJIbTUILIKATABHUX (DYHKIHH, cyOsiiHiiiHe 11i/1CyMOBYBaHHS.

Jleneuyenko A. B. HeTrHocTh KoJindecTBa IIPOCTBHIX YMCeJI HA 3aJJaHHOM WH-
TepBaJjle U aJIrOPUTMbl CyGJIMHEHHOro CyMMHMpOBaHHUsi. lIpejyjiaraercd ajropuTM
OTIpEIeIEHWsT IeTHOCTH WHC/IA TIPOCTHIX Ha oTpeske [a,b] C [z,2z], toe b —a < z/**° n
c € (0,1/2], 3a O(z™*(©7/15)+2) rarop. AropuT™ OCHOBAH Ha CyO/IMHEAHBIX METOIAX CyM-
MUpPOBaHKs, pa3paboTKa KOTOPHIX COCTaBJSET OCHOBHYIO YacTh cTaTbh. Jloka3aHa Teopema
0 cy6IMHEHOM CyMMHUPOBAHUH IHPOKOr0 KIacca MYy/TbTHILTAKATUBHBIX (DYHKIIUI.
KuroueBble cJIOBa: BbIYUC/IUTE/IbHAS TEOPUA 4uCes1, (DYHKIUSA PacCIpe/ieIeHIs IPOCTHIX
4KCes, CyMMUPOBAHUE MyJ/IbTUILIMKATUBHBIX DYyHKIUHA, cybmMHeiHOe Cy MMUPOBAHUE.

Lelechenko A. V. Parity of the number of primes in a given interval and
algorithms of the sublinear summation. An algorithm to determine the parity of
the number of primes in an interval [a,b] C [z,2z], where b — a < z'/?*¢ and ¢ € (0,1/2],
in O(a™ax(7/19)%¢) gteps is proposed. The algorithm is based on methods of the sublinear
summation, which the primary part of the paper is devoted to. A theorem on the sublinear
summation of a wide class of multiplicative functions is proven.

Key words: computational number theory, prime-counting function, summation of multi-
plicative functions, sublinear summation.

INTRODUCTION. How many operations are required to find any prime p > z (not
necessary the closest) for given x?

A direct approach is to apply AKS primality test [1], which was improved by
Lenstra and Pomerance [5] to run in time O(log®"® z), on consecutive integers starting
with z. Such method leads to an algorithm with average complexity O(log”s x),
because in average we should run AKS log x times before a next prime encounters.

But in the worst case available estimates of the complexity are much bigger; they
depend on upper bounds of the gaps between primes. The best currently known result
on the gaps between primes is by Baker, Harman and Pintz: for large enough = there
exists at least one prime in the interval

[x’ T+ x0.525+5].
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Thus we obtain that the worst case of an algorithm may need up to
O(I’O'525+5) > ;L‘l/2

operations.

One can propose another algorithm, which is distinct from the pointwise testing.
Suppose that there is a test, which allows to determine whether a given interval
[a,b] C [x,2x] contains at least one prime in A(x) operations. Then (starting with
interval [z,2z]) we are able to find a prime p > x in A(z)logz operations using a
dichotomy.

A test to determine whether a given interval contains at least one prime can be
built atop Lagarias—Qdlyzko formula for 7(x) [6], which provides an algorithm with
O(x'/?*2) > /2 complexity. See [8] for more detailed discussion.

In [8] Tao, Croot and Helfgott offer a hypothesis that there exists an algorithm
to compute 7(z) in O(x'/27°F¢) operations, where ¢ > 0 is some absolute constant.
This implies that a prime p >  can be found in O(z'/27¢*¢) <« x/2 steps. Authors
prove the following weaker theorem [8, Th. 1.2].

Theorem 1 (Tao, Croot and Helfgott, 2012). There exists an absolute con-
stant ¢ > 0, such that one can (deterministically) decide whether a given interval

[a,b] in [z,22] of length at most x'/?T¢ contains an odd number of primes in time
O($1/2—c+0(1))‘

The aim of our paper is to prove the following result.

Theorem 2. Let [a,b] C [2,2x], b —a < 2'/2%¢, ¢ is arbitrarily constant such
that 0 < ¢ < 1/2. Then a parity of #{p € [a,b]} can be determined in time

O(xmax(c,7/15)+s).

MAIN RESULTS.
1. The general summation algorithm. Consider the summation
> fl@),
n<x
where f is a multiplicative function, from the complexity’s point of view.

Generally speaking, a property of the multiplicativity does not impose significant
restrictions on pointwise computational complexity. Multiplicative functions can be
both easily-computable (e. g., f(n) = n* for every k) and hardly-computable: e. g.,

o 2, if there are p® consecutive zeroes in digits of 7
Fv%) = 1, otherwise.

Luckily the vast majority of multiplicative functions, which have applications in
the number theory, are relatively easily-computable.

Definition 1. A multiplicative function f is called easily-computable, if for any
prime p, integer a > 0 and real € > 0 the value of f(p®) can be computed in time
O(pea™) for some absolute constant m, depending only on f.
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Example 1. The (two-dimensional) divisor function 75(p®) = « + 1, the (two-
dimensional) unitary divisor function 75 (p®) = 2, the totient function p(p*) = p*—
—p®~ 1 the sum-of-divisors function o(p®) = (p*t —1)/(p — 1), the Mébius function
w(p®) = [a < 2](—1)* are examples of easily-computable multiplicative functions for
any m > 0.

Example 2. Let a(n) be the number of non-isomorphic abelian groups of order
n. Then a(p®) = P(«), where P(n) is a number of partitions of n. It is known [4,
Note 1.19], that P(n) is computable in O(n®/?) operations. Thus function a(n) is an
easily-computable multiplicative function with m = 3/2.

The number of rings of n elements is known to be multiplicative, but no explicit
formula exists currently for a > 4. See OEIS [9] sequences A027623, A037289 and
A037290 for further discussions.

Example 3. The Ramanujan tau function 75 is a rare example of an important
number-theoretical multiplicative function, which is not easily-computable. The best
known result is due to Charles [2]: a value of 7(p®) can be computed by p and « in
O(p®/**+¢ + «) operations.

Surely pointwise product and sum of easily-computable functions are also easily-
computable ones. The following statement shows that the Dirichlet convolution

(f*g)(n) =Y _ f(d)g(n/d)

dln
also saves a property of easily-computability.
Lemma 1. If f and g are easily-computable multiplicative functions, then
h:=fxg
s also easily-computable.

Proof. By definition of easily-computable functions there exists m such that
f(p%) and g(p®) can be both computed in O(pa™) time.
By definition of the Dirichlet convolution

[e3%
= F")gp*
a=0
This means that computation of h(p®) requires
[e%
> 0@ a™ +p(a—a)") < pTa™t

operations.

Firstly, consider a trivial summation algorithm: calculate values of function point-
wise and sum them up. For an easily-computable multiplicative function the major-
ity of time will be spend on the factoring numbers from 1 to x one-by-one. But no
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sum(ff,z) =
X=0
A A{k}i,
B« {1},
for prime p < /x
F — {ff(p, 0)}o1 "
for k < p,2p,...,|z/plp
a « max{a | p*|k}
Alk] < A[k]/p*
B[k] «+ B[k] - Fa]
forn«1,...,x
if A[n] # 1= B[n] + Bin]- ff(n,1)
forn<1,...,z
Y < X+ B[n]
return X

Listing 1: Pseudocode of Algorithm M. Here ff(p, «) stands for the routine
that effectively computes f(p®).

polynomial-time factoring algorithm is currently known; the best algorithms (e. g.,
GNFS [10]) have complexities about

exp ((c + ¢)(log n)% (log log n)g) ,

which is very expensive.

We propose a faster general method like the sieve of Eratosthenes. We shall refer
to it as to Algorithm M.

Algorithm M. Consider an array A of length z, filled with integers from 1 to z,
and an array B of the same length, filled with 1. Values of f(n) will be computed in
the corresponding cells of B.

For each prime p < /z cache values of f(p), f(p?),..., f(pl°8®/1°eP]) and take
integers

k=p,2p,3p,...,|z/p|p

one-by-one; for each of them determine « such that p® || k and replace A[k] by A[k]/p“
and BIK] by BIK] - /(p°).

After such steps cells of A contain 1 or primes p > /z. So for each n such
that A[n] # 1 multiply Bln| by f(A[n]).

Now array B contains computed values of f(1),..., f(n). Sum up its cells to end
the algorithm.

Algorithm M can be encoded in pseudocode as it is shown in Listing 1.

Note that (similarly to the sieve of Eratosthenes) instead of the continuous array
of length x one can manipulate with the set of arrays of length Q(y/z). Inner cycles
can be run independently of the order; they can be paralleled easily. Also one can
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compute several easily-computable functions simultaneously with a slight modification
of Algorithm M.

Lemma 2. If f is an easily-computable multiplicative function then Algorithm M
runs in time O(x!e).

Proof. The description of Algorithm M shows that its running time is asymp-
totically lesser than

Y Y ame 3 4 ¥ p<a

p<yz a<logz/logp p<Vz Vo<p<w

2. The fast summation.

Definition 2. We say that function f sums up with the deceleration a, if func-
tion F(xz) =Y, o, [(z) can be computed in O(x*<) time.

Denote the deceleration of f as dec f. Notation dec f = a means exactly that
there exists a method to sum up function [ with the deceleration a (not necessarily
there is no faster method).

Example 4. Lemma 2 shows that any easily-computable multiplicative function
sums up with the deceleration 1.

Example 5. Function f(n) = n*, k € Z,, sums up in time O(1), because there
is an explicit formula for F'(z) using Bernoulli numbers. Thus its deceleration is equal
to 0. Note that Dirichlet series of f is {(s — k), including case ¢((s) when k = 0.

One can check that the same can be said about f(n) = x(n)n*, where y is an
arbitrary multiplicative character modulo m. We just split F(z) into m sums of
powers of the elements of arithmetic progressions. In this case Dirichlet series equals
to L(s — k, x).

Example 6. The characteristic function of k-th powers, k € N, sums up in O(1)
trivially, so its deceleration equals to 0. Dirichlet series of such function is {(ks).

Consider now f such that f(n*¥) = x(n) and f(n) = 0 otherwise, where y is a
multiplicative character. Then

S L s,
nS
n=1
Such function f also sums up in O(1), because F(z) = >, .1/ X(n) (see Example
5). -

Generally, if function f has Dirichlet series F(s) and function g has Dirichlet
series F(ks) then dec g = (dec f)/k.

Example 7. Consider Mertens function M (z) := >, ., #(n). In [3] an algorithm
of computation of M(z) is proposed with time complexity O(x2/3 log'/? log x) and
memory consumption O(z!/3 logQ/3 log ). We obtain dec y = 2/3.

Note that Dirichlet series of p equals to 1/¢(s).

One can see that a function yy, such that jx(n*) = p(n) and px(n) = 0 otherwise
sums up with the deceleration 2/(3k). Its Dirichlet series is 1/{(ks).
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Example 8. In [8] an algorithm of computation of T3(z) == ., 72(n) in
O(atl/ 3+2) time is described. Another algorithm with the same complexity may be
found in [7], accompanied with detailed account and pseudocode implementation.

Thus dec o = 1/3.

Theorem 3. Let f and g be two easily-computable multiplicative functions, which
sums up with decelerations a := dec f and b := decg such that a +b < 2. Then
h := f x g sums up with the deceleration

1—ab
dech = Cpp—
Proof. Let
F(z):=Y f(n), G@):=Y gn), H(x):=> hn).

By definition of the Dirichlet convolution

H(I):Z Z f(di)g(d2) = Z f(d1)g(d2).

’I’Lgaldldz:’n dldggl
Rearrange items:

P DD D R

dyda<z dy <z° di<z/d> dy<z°

d2<z/d1  dy<zl™c  do<az'T®

where an absolute constant ¢ € (0,1) will be defined below in (2). Now

H@) =Y G (3)+ X 9@dF (3) - Fa)GE™). (1)

d<z¢ d<zgl—e

As far as we can calculate f(1),..., f(z¢) with Algorithm M in O(x¢"¢) steps, we can
compute the first sum at the right side of (1) in time

x b+e
O@")+ Y 0 (3) <ahe Ny dt <
d<zxc d<z¢
< xb+exc(1—b—s) < mc—i—b(l—c)—!—e.

Similarly the second sum can be computed in O(z!~¢T%*+¢) operations. The last item
of (1) can be computed in time O(z%¢+s 4 gb1-e)+e),
It remains to select ¢ such that ¢+ b(1 —c¢) =1 — ¢+ ac. Thus

1-b

p— @

C =

which implies the deceleration (1 — ab)/(2 —a — b).

Example 9. Function o;(n) maps n into the sum of k-th powers of its divisors.
Thus o (n) = >4, d*, which is the Dirichlet convolution of f(n) = n* and 1(n) = 1.
So Example 5 and Theorem 3 shows that dec oy = 1/2.
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Example 10. Consider r(n) = #{(k,1) | k? + [> = n}. It is well-known that
r(n)/4 is a multiplicative function, and ;R(z) := >, ., r(n)/4 is the number of
integer points in the first quadrant of the circle of radius /. Then R(z) can be
naturally computed in O(x'/2) steps, so decr = 1/2.

Dirichlet series of r(n)/4 equals to ((s)L(s,Xx4), where x4 is the single non-
principal character modulo 4. This representation shows that r(-)/4 = x4 1. Thus
Example 5 together with Theorem 3 gives us another way to estimate the deceleration
of r.

Example 11. By Mobius inversion formula for the totient function we have

p(n)=>_du(n/d).
d|n

This representation implies that decyp = 3/4 (see Example 7 for decp). Jordan’s
totient functions have the same deceleration, because

Jr(n) = Z d*pu(n/d).
d|n

Theorem 4. Let f be an easily-computable multiplicative function. Consider

foimfxen .
—_——

k factors
Then 1 d
dec frp, =1— —Tecf.

Proof. Follows from iterative applications of Lemma 1 and Theorem 3 and from
the identities

1—a? B 1—a
2—2a 2
l—ak+a—-1)/k l1—a
2—-1+(1—-a)/k—a k+1
Example 12. For the multidimensional divisor function 74 representations
T2k — T2%...%Ta,
L —
k factors
Tok41 = Tox...xTaxl
~—_——
k factors

imply that by Example 8 and Theorem 4 function 7o sums up with the deceleration
1—2/(3k), and 7o,41 with the deceleration 1 — 2/(3k + 2).
In other words
1—4/(3k ki
decry = /(3k), ?s even, 3)
1—-4/(Bk+1), kisodd.
Considering
Tog = [k K
——
k factors

we obtain by Example 7 and Theorem 4 that dec7_, =1 — 1/(3k).
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Theorems 3 and 4 cannot provide the deceleration lower than 1/2 even in the best
case. To overcome this barrier we should develop better instruments.

Theorem 5. Let f and g be two easily-computable multiplicative functions, which
sums up with decelerations a := dec f and b := decg such that a +b < 2. Let

h(n) := Z f(d1)g(da). (4)
dlfld]2c2:7z
Then h sums up with the deceleration

1—ab

dech = .
T A ke - (1 Dk

Proof. Following the outline of the proof of Theorem 3 we obtain identity

Hz) = ¥ f(d)G(kW)+ 3 g(d)F(’“W)—

d<ze/k1 d<z(1=c)/k2

- F(xc/kl)G(x(l_c)/kQ).

Thus we need y(x) operations to calculate H(z), where

< $ () X (@)

d<ze/k1 d<g(1=e)/k2
_'_xac/kl +xb(1—c)/k2 <
< gtk t(=bk1/k2)c/kr y pa/kit(1—aks/k)-(1=c)/k2 4
+ xac/kl + mb(l—c)/kQ.
Substitution
(1 —b)k
(1 —a)ks+ (1 =b)k;

CcC =

completes the proof.
In terms of Dirichlet series identity (4) means that

H(S) = ]-'(k:ls)g(kgs)

where

n n n

n=1 1 n=1

n=

One can prove (similarly to Lemma 1) that convolutions of form (4) save a prop-
erty of the easily-computability.

Example 13. Function 75 sums up with the deceleration 7/15, because

75 (n) =) pld)ra(n/d?).

d?|n
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Example 14. As soon as

= 3" uld)ma(n/@),

d2|n
we obtain dec 3 = 5/9.

The discussion in Examples 5, 6, 7 leads to the following general statement.

Theorem 6. Let f be a multiplicative function such that

M, Mo

HC mS il Hzm ms_nm) (5)

where each of zy, is either ¢ or L(-,x), M1, Ma, kL, nm € N. Then f sums up in
sublinear time: its deceleration is strictly less than 1.

Theorem 6 clearly shows that the concept of fast summation can be easily gener-
alized over various quadratic fields. Following theorem is an example of such kind of
results.

Theorem 7. Consider the ring of Gaussian integers Z[i]. Let

be a k-dimensional divisor function on this ring. Let

Th(z) = Y tw(),

N(a)<z
where N(a +ib) = a® + b*. Then Ty(x) can be computed in sublinear time.
Proof. It is well-known that

,Z tk LkSX4

a€lli n=1

8

where

f) = > t(a).

N(a)=n

But by Theorem 4
decyg*---xxs=1—1/k.
—_—

k factors
By (3) we obtain that for even k
1-(1-1/k)(1—4/(3k
dec f = (L-1/k)(1-4/Bk) | 4
1/k +4/(3k) 7k
and for odd k
1-(1-1/k)(1-4/Bk+1)) 4

dec f =

1/k+4/(3k+1) T Tk+1
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3. Proof of the Theorem 2. The proof follows the outline of the proof of [8,
Th. 1.2], but uses improved bound for the complexity of the computation of

Ty (x):= > 73(n).

n<x

Proof. Trivially we have

> ) =T5(b) - Ty(a—1).
a<n<b
As soon as 73 (n) = 2" where w(n) = >_p|n 1, all summands in the left side are
divisible by 4, beside those, which corresponds to n = p?. Moving to the congruence
modulo 4, we obtain

O(log x

2 Z)#{pe[al/f,bl/f}}ET;(b)—T;(a—n (mod 4).

As far as a > x and b —a < O(z1/2¢), then for j > 1 interval [a'/7,b1/7] con-
tains O(z¢) elements; thus all such summands can be computed in O(z¢T¢) steps
using AKS primality test [1]. The right side of the congruence is computable in
O(x7/15+) operations due to Example 13.

The discussion above shows that the desired quantity

T3 (b) = T3(a 1)

#{p € [a,b]} = 5 —

O(log )

_ Z #{pe{al/j,bl/j}} (mod 2)

max(c,7/15)+s)

can be computed in O(z steps.

CONCLUSION. Further development of algorithms of the sublinear summation
(e. g., summation of p in arithmetic progressions) will lead to the generalization of
Theorem 6 over broader classes of functions. Also one can investigate summation of
f such that its Dirichlet series is infinite, but sparse product of form (5).
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