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FRACTIONAL BOUNDARY-VALUE PROBLEM

Muxaiisienko A. B. JIpoGoBi kpaiioBi 3agaui. B pob6ori orpumano jgocraTai ymo-
BU ICHYBaHHS Ta €IWHOCTI PO3B’#A3Ky KPailoBol 3aad4l Ay HeIiHINHOTO mudepeHIiaIbHOTO
piBHSHHS Ap0oBOBOTO TOPSAKY 3 moxigHoo Pimama—/liysimns.
Kuro4osi ciioBa: kpaiioBa 3a7adva, iCHYBaHHS, €QUHICTD, ApoOOBA MOXiTHA.

Muxaiinenko A. B. /IpoGHble KpaeBble 3a/iauu. B paboTe mOIydeHbl T0CTATOY-
HbIE YCJIOBUs CYyHIECTBOBAHUS U €IMHCTBEHHOCTH PEIeHUs KPAeBOU 3a/1a4u J1j1 HeJIMHEHHOTO
muddepeHmaapbHOT0 ypaBHeHU APOOHOr0 mopsaaKa ¢ npousBoanoil Pumana—/luyBuiiis.
KuroueBbie cjoBa: KpaeBas 3ajlada, CYIIECTBOBAHWE, €IMHCTBEHHOCTh, MPOOHAsT TTPOM3-
BOJTHAS.

Mykhailenko A. V. Fractional boundary-value problem. In this paper we es-
tablish sufficient conditions for the existence and uniqueness of solution of boundary-value
problem for fractional differential equation with Riemann—Liouville derivative.
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INTRODUCTION. Differential equations of fractional order have numerous appli-
cations to problems in electrochemistry, biology, electromagnetics, control, viscoelas-
ticity, ete. [11,3,7,4] Treatises of many autors are dedicated to the research of initial
value problems [10,11]. Boundary-value problem for fractional differential equations
have been considered in [1,10,14,2,15,13].

In [13] there are established the conditions of existence and uniqueness of positive
solution for a Dirichlet-type problem of the nonlinear fractional differential equation

Dgu(t) + f(t,u(t)) =0,0<t< 1,1 <a<?2
u(0) = u(l) =0,

where f : [0, 1] x [0,00) — [0, 00) is continuous and D§ is the fractional derivative of
Riemann—Liouville.
In [14] it was proved the existence of positive solutions of the problem

Dgu(t) = f(t,u(t),0<t<1,1<a<?2,
w(0) + u'(0) = 0,u(1) + v/ (1) = 0,

where Dg is the derivative of Caputo, and function f in [0, 1] x [0, 00) is nonnegative
and continuous.
In [15] it was considered the boundary-value problem

Dgu(t) = f(t,u(t), D5u(t),1 <a<20< B <1,

a1u(0) — azu’(0) = A, byu(1) + bou/(1) = B,

(©) Mykhailenko A. V., 2013



60 Mykhailenko A. V.

where a;,b; > 0,4 = 1,2,a1b1 + a1by + asb; >0, f : [0,1] x R x R — R is continuous
function. The existence of solution was proved.
In this paper we consider the boundary-value problem

Dyt u(e) = F (z,u(x), Diu(r)),0 < a < 1u(0) =u(a) =0, (L1)

where function F(z,y,z) : [0,a] Xx R x R — R is measurable with respect to x for
(y,2) € R x R and continuous with respect to (y,z) for € [0,a], and satisfies
Lipschitz condition with respect to y and z as well. It was proved the existence and
uniqueness of solution of this problem.

This paper is organized as follows. In Section 2 we introduce some preliminary
results needed in the next sections. In Section 3 we present an existence and uniqueness
result for the problem (1.1).

2. Preliminaries. In this section we introduce definitions and preliminary facts
that will be used in this paper. Let C(.J), J = [0, a] be the Banach space of continuous
functions f : J — R with the norm

[f(@)llo = {max[f(z)]: 0 <z < a}

and lets denote by L(J) the Banach space of measurable functions f(z) that are
Lebesgue integrable with norm

|uumL:Aﬂﬂ@mm

By AC™(J) we denote the set of continuously differentiable till the (n — 1) order
in J functions , and f*~Y(z) € AC(J) .

Let v > 0 be a real number and n = [y] + 1 where [v] is the integer part of . For
a function f:J — R the expressions [1,2]

fy(z) =1j f(z) = F—) /Ow(x — t)(Wfl)f(t)dt, (2.1)

(v

Dyse) = o () [ -0 (22)

are called, respectively, the Riemann—ILiouville left-hand fractional integral and deriva-
tive of order 7.

Lemma 2.1. (3] Assume that (fr(x))pe, is a uniformly convergent to f(zx) se-
quence of continuous functions. Then limy_yo0 Iy fie(x) = Ij f(x).

Lemma 2.2. [12,3]. Let v > 0,n = [y] + 1. Assume that f(zx) is such that
fn—~y(x) € AC™(J). Then

"1x7k1

(n k 1)

I Dg f(x) = f(x) -

k=0

where f"-71(0) = lim 04 17 ().
Lemma 2.3. [9] Assume that f : J — R is measurable function and |f(x)] < M.
Then p(z) = Ij f(xz) € C(J) and pu(0) = 0.
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Lemma 2.4. [8] Let 01 and oo are any positive numbers and let 0 < u < 1. Then
oy —ab| < |or — oz
It is considered boundary-value problem

Dy*y(w) = f(x), (2.3)

y(0) = y(a) =0, (2.4)

where 0 < o <1, f: J — R is measurable function, and |f(x)| < M.

Definition 2.1 By solution of problem (2.8), (2.4) we name such function y :
J = R that: (i) y(z) € C(J),y1-a € AC?[J]; (ii) satisfies the boundary conditions
(2.4); (1) satisfies the differential equation (2.3) for a.a. x € J.

Lemma 2.5. Let f: J — R is measurable function and |f(x)| < M. Then the
boundary-value problem (2.3), (2.4) has a unique solution

o) = [ Gl (0, (2.5)
0
where (z(a—t))*—(a(z—t)*
_aca—a—aaf— 0<t<ux
G(»M)Z[ AL, - (2.6)
Twlrapt St e

Here G(x,t) is the Green’s function of boundary-value problem (2.3), (2.4).
Proof. Suppose that the solution of problem (2.3), (2.4) exists. Then correspond-
ing to (2.2)

D) = sy () [ 0= 0700t = o) € 200,

Consequently
Iy Dy*oy(a) = I f ().

As a consequence of Lemma 2.2

& xafl

Dyt y(x) = y(z) — myi—a(o) - @ylm(o)a

at that in accord with lemma 2.3 y;_,(0) = 0. Consequently

:L,Oé

y(z) — T Yi—a(0) = 17 f(2). (2.7)

1+ a)

As y(a) = 0, then from (2.7) at z = a it follows that

a

Y1—a(0) = L (a —t)*f(t)dt.

(e}
a= Jo
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Lets represent (2.8) as following:

o) =iy (] @0 [ onpoar) +

1 ’ N (] (@la—1)* = (a(z —1))”
+7F(1+a)/0 (x— 1) f(t)dt—A {— T ]f(t)dH—

+/:< iﬁ(lf(l_i)a) t)dt = /Gast

MAIN RESULTS. Lets consider the differential equation

Dy"y(z) = Fly()] = F(z,y(z), D§y(2)),0 < a < 1, (3.1)

which solutions satisfy boundary conditions (2.4). Let F(x,y,z) : J x Rx R — R
satisfies conditions: (a) continuous with respect to (y,z) € R x R for fixed « € J and
measurable with respect to « € J for fixed (y,z) € R x R; (b) |F(z,y,2)| < M for
(x,y,2) € J x R X R.

Definition 3.1 As the solution of boundary-value problem (3.1), (2.4) we name
functiony : J — R, which satisfies conditions (i), (it) of definition 2.1 and differential
equation (3.1) for a.a. x € J.

Theorem 3.1 Let function F(x,y,z) : J x R x R satisfies conditions (a), (b).
A function y(x) € C(J) will be the solution of boundary-value problem (3.1), (2.4) if
and only if it is a solution of the integral equation

y(z) = / "Gl )P (1, y(1), Dgy(0)) dr. (3.2)

Proof. Let y(x) € ( ) is a solution of boundary-value problem (3.1), (2.4).

Then function F'(z,y(z ) Sy(x)) : J — R is measurable and
|F(z,y(x), D§y(x))| < M By lemma 2.5 y(z) is the solution of integral equation
(3.2). Now let y(z) € C(J) be a solution of integral equation (3.2) and lets prove that

y(x) is the solution of boundary-value problem (3.1), (2.4). By (2.8) the solution of
integral equation (3.2) is representable as following:
x*9

Tt a) + Iy Fly()), (3.3)

y(z) = -
where § = [("(a — t)*F[y(t)]dt. Then

-ala) = 15 0(@) = riey Ji 2 = 07 (it ) dtr

(3.4)
LIt Ply(@)] = — 22 + BF(y())
where .
Pl = [ = 0Pl
Beside this, .
Dgy(@) =y} o(e) = ——+ [ Fly@ldt,ze (3.5)
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Dy y(x) = Fly(x)] = F(x,y(x), Diy(x)), (3.6)
for a.a. z € J.
From (3.4), (3.5) it follows that y;_,(z) € AC?(J) and from (3.6) it follows that
y(x) satisfies the equation (3.1) for a.a. z € J. From (3.3) follows that y(0) = y(a) = 0.
Theorem 3.2 Let function F(x,y,z) : J X R X R — R satisfies the conditions
(a), (b) and the condition of Lipschitz

\F(2,y,2) = 2,51, 20)| < Lnly — 1] + La|z — 2],

at that Lot
a7 a—+1
=AY fha< @
PO = prara TS
Then exists the unique solution of boundary-value problem (3.1), (2.4) at x € [0, a].
Proof. By C,(J) we denote the set of functions uw : J — R such that u(z) €

€ C(J), Dgu(x) € C(J) with the norm
a® o
(@)l = max (m;x )l gy Dou<x>|) |

Lets prove that the space Cy(J) with the norm || - ||o is full. Let (up(x))32,

)iz
fundamental sequence in C,(J). Then uniformly in J ug(xz) — u(x), D§ uk(m)
— v(x) at k — oo and u(x) € C(J),v(x) € C(J). By lemma 2.1 limy_, o0 Ug,1—a ()
= limg o0 Iy “ug(z) = Id"*u(z) = u1_o(x), at that by lemma 2.3 u;_,(z) € C(J),

Ul_a(O) =0. As
wpral(z) = / Do un(t)dt
0

o) = /0 "ot

Consequently v(z) = uj_,(z) = D§u(z). So the sequence (uy(z))ye; C CalJ) is
convergent by norm || - || to the function u(z) € Cy(J).
For u(z) € Co(J) lets define the operator T, supposed that

%

at k — oo will receive that

Tu(x) = / G(z,t)F(t,u(t), D§u(t))dt. (3.7)
0
Lets prove that T : Co(J) = Co(J). Let w(z) = Tu(x) and 0 < 1 < 29 < a. Then

T2

w<x2>_w<x1>|<M</O“|G(x2,t) G, Hldt + / (G2, ) — Glar, b)|dt+

Z1

+ / (G 2,t) — G(a1, £)|dt) = M(A; + Ag + As).

Applying lemma 2.4 and (2.6) will receive that

1

A = m/o | = (z2(a—=1))" + (a(z2 — )" + (21(a = )" — (a(z1 —1))*[dt <
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1 1 N N
< | (e =0 — @ -0+

+(a(zz — 1) — (a(z1 — 1)*|)dt <
<;/T1 ((a—t>a($a—$a)+aa|($ _t)oé_(x _t)a|)dt<
~aT(1+ ) Jy 2 7 2 1 <

2a(xy — x1)%
- I'(l+a)

By analogy we prove that Ay < %, k = 2,3. Consequently

6Ma(ze — x1)”

) = wa)| < oS

Q=

Therefore if |z — 21| < 01,61 = (%) , then |w(z2) — w(x1)| < e. So,
w(z) € C(J).
In accord with (3.4), (3.5) will receive that

wl—a(x) = _% + IgF[u(x)],Dgw(x) = U}iia(.’E) =

(3.8)
=2 + [y Flu(®)dt,

where A = [ (a—t)*F[u(t)]dt. From (3.8) follows that D§w(z) € C(J). Lets note that
corresponding to (3.8) wi_q(z) € AC(J), D§w(z) € AC(J). Therefore the fixed point
of operator T" will be the solution of boundary-value problem (3.1), (2.4). We need only
to prove that the operator T is the contraction mapping in C,(J). Suppose u(z) €

C}'la(J),vk(x) = Dgug(x), wg(z) = Tug(x), k =1, 2. Since |G(x,t)| < a®/(4°T(1+a)),
then

w1 (2) — wa(2)] < /Oa |G (2, t)[[Flui(t)] = Fluz(t)]]dt <

a()t

< e, (O O]+ el () @) <

[e3

a®t1ir, a
< 44 - Loa(——n
S T 1 oy M lun @) — e (@)l 4 Laa <4ar(1 +a)

< pa)|lur(@) — uz(2)(a-
Lets write wg(z) in the form (3.3) wy(z) = _% + Ié+aF[uk(a;)], where
Ak = [y (@ — t)*Flux(t))dt, k = 1,2. Then

max o () — vg(z>|) <

DSwp(z) = 2% + / Flup(O]dt, k = 1,2,
0
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1 anrl

< — — —

<= <L1 max lui(z) — ua(z)| + Lo max |v1(z) vg(x)|> o 7t
+a <L1 max |ug (z) — uo(x)| + Lo max vy (z) — vg(x)|) <

2
< a(aai—:rl) (L1 m?x |ui(x) — us(z)| + Lo m}x vy (z) — vz(x)|) )
a® o+ 2
S — - Dg S
49 T(a + 1)| pwi(@) = Diwa(e)] < Sm
a+1L &
(T (o) = ()] + Lo gy mx o) — ) <
2
< O s )~ wa@)le
Consequently [[wy(z) — wa(z)[la = [|Tus(x) — Tus(z)lla < 7llur(@) — ua(@)]a,
7= 2£2p(a). Since 7 < 1, then operator T is a contracting mapping in Co(J). Then

by Banach contraction fixed point theorem, the boundary-value problem (3.1), (2.4)
has a unique solution.

Remark 1. Let boundary conditions (2.4) look like y(0) = 0,y(a) = B. Lets find
the solution of boundary-value problem DHO‘ () =0,2(0) = (a) B. Applying
lemma 2.2, we receive

x® ,
- 0)=0. 3.9
Z(.’E) ]_—‘(]_4»04),217&( ) ( )

From (3.9) at © = a follows that z;_,(0) = (B-T'(1 — «))/a*. Consequently

Z(;U):@ zl,a(x):w D(O)é ( ) w

a® ’ a® a®

The change of variable y(x) = u(x) + z(x) leads to boundary-value problem

Dy u(z) = g(x,u(x), D§u(z)), u(0) = u(a) = 0,

where g (z,u(2), Dgu(x)) = f (v, u(x) + 5, Diu(x) + ZLEL)

CoNcCLUSION. Sufficient conditions for the existence and uniqueness of solution of
boundary-value problem for fractional differential equation with Riemann—TLiouville
derivative were establised in this paper.
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