Mathematical Subject Classification: 70F15 УДК 521.1

А. Л. Рачинская

Одесский национальный университет имени И. И. Мечникова

БЫСТРОЕ ВРАЩЕНИЕ СПУТНИКА В СРЕДЕ С СОПРОТИВЛЕНИЕМ ПО КРУГОВОЙ ОРБИТЕ

Работа частично поддержана проектом №953.1/010 третьего совместного конкурса Государственного фонда фундаментальных исследований Украины и Российского фонда фундаментальных исследований 2013 года

Рачинська А. Л. Швидке обертання супутника в середовищі з опором по круговій орбіті. Досліджується швидкий обертальний рух відносно центру мас динамічно несиметричного супутника під дією гравітаційного моменту і моменту сил опору. Рух відбувається по круговій орбіті. Проведено чисельний аналіз зміни вектора кінетичного моменту твердого тіла і побудований годограф цього вектора.

Ключові слова: супутник, гравітаційний момент, опір, вектор кінетичного моменту, годограф.

Рачинская А. Л. Быстрое вращение спутника в среде с сопротивлением по круговой орбите. Исследуется быстрое вращательное движение относительно центра масс динамически несимметричного спутника под действием гравитационного момента и момента сил сопротивления. Движение происходит по круговой орбите. Проведен численный анализ изменения вектора кинетического момента твердого тела и построен годограф этого вектора.

Ключевые слова: спутник, гравитационный момент, сопротивление, вектор кинетического момента, годограф.

Rachinskaya A. L. The rapid rotation of the satellite in an environment with drag in a circular orbit. We study the rapid rotation of the center of mass dynamically asymmetric satellite by the gravitational moment and moment of forces resistance. Motion occurs in a circular orbit. The numerical analysis of change of the angular momentum solid body and built this hodograph vector.

Key words: satellite, gravity moment, resistance, the angular momentum vector, hodograph.

Введение. Рассмотрим движение спутника относительно центра масс под действием совместного влияния моментов сил гравитационного притяжения и сопротивления. Вращательные движения рассматриваются в рамках модели динамики твердого тела, центр масс которого движется по круговой орбите вокруг Земли. Задачи динамики, обощенные и осложненные учетом различных возмущающих факторов, и в настоящее время остаются достаточно актуальными. Исследованию вращательных движений тел относительно неподвижной точки под действием возмущающих моментов сил различной природы (гравитационных, аэродинамических, электормагнитных и др.), близкому к приводимому ниже, посвящены работы [1-8].

Основные результаты.

1. Постановка задачи. Введем три декартовые системы координат, начало которых совместим с центром инерции спутника [1-2]. Система координат Ox_i (i = 1, 2, 3) движется поступательно вместе с центром инерции: ось Ox_1 параллельна радиус-вектору перигея орбиты, ось Ox_2 – вектору скорости центра масс спутника в перигее, ось Ox_3 – нормали к плоскости орбиты. Система координат Oy_i (i = 1, 2, 3) связана с вектором кинетического момента **G**. Ось Oy_3 направлена по вектору кинетического момента **G**, ось Oy_2 лежит в плоскости орбиты (т.е. в плоскости Ox_1x_2), ось Oy_1 лежит в плоскости Ox_3y_3 и направлена так, что векторы \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_3 образуют правую тройку. Оси системы координат Oz_i (i = 1, 2, 3) связаны с главными центральными осями инерции твердого тела. Взаимное положение главных центральных осей инерции и осей Oy_i определим углами Эйлера. При этом направляющие косинусы α_{ij} осей z_i относительно системы Oy_i выражаются через углы Эйлера φ , ψ , θ по известным формулам [1]. Положение вектора кинетического момента **G** относительно его центра масс в системе координат Ox_i определяются углами λ и δ .

Уравнения движения тела относительно центра масс запишем в форме [2]:

$$\frac{dG}{dt} = L_3, \qquad \frac{d\delta}{dt} = \frac{L_1}{G}, \qquad \frac{d\lambda}{dt} = \frac{L_2}{G\sin\delta}, \\
\frac{d\theta}{dt} = G\sin\theta\sin\varphi\cos\varphi\left(\frac{1}{A_1} - \frac{1}{A_2}\right) + \frac{L_2\cos\psi - L_1\sin\psi}{G}, \\
\frac{d\varphi}{dt} = G\cos\theta\left(\frac{1}{A_3} - \frac{\sin^2\varphi}{A_1} - \frac{\cos^2\varphi}{A_2}\right) + \frac{L_1\cos\psi + L_2\sin\psi}{G\sin\theta}, \\
\frac{d\psi}{dt} = G\left(\frac{\sin^2\varphi}{A_1} + \frac{\cos^2\varphi}{A_2}\right) - \frac{L_1\cos\psi + L_2\sin\psi}{G}ctg\theta - \frac{L_2}{G}ctg\delta.$$
(1)

Здесь L_i (i = 1, 2, 3) — моменты внешних сил относительно осей Oy_i , G – величина кинетического момента, A_i (i = 1, 2, 3) – главные центральные моменты инерции относительно осей Oz_i .

Центр масс спутника движется по круговой орбите с периодом обращения Q. Зависимость истинной аномалии ν от времени t дается соотношением

$$\nu = \frac{2\pi}{Q}t + \nu_0,\tag{2}$$

где ν_0 – начальное значение истиной аномалии.

Рассматривается динамически несимметричный спутник, моменты инерции которого для определенности удовлетворяют неравенству $A_1 > A_2 > A_3$, в предположении, что угловая скорость ω движения спутника относительно центра масс существенно больше угловой скорости орбитального движения ω_0 , т.е. $\varepsilon = \omega_0/\omega \sim A_1 \omega_0/G \ll 1$. В этом случае кинетическая энергия вращения тела велика по сравнению с моментами возмущающих сил.

Проекции L_i момента внешних сил, складывающихся из гравитационного момента L_i^g и момента сил внешнего сопротивления L_i^r на оси Oy_i , записываются в виде [2, 4]. Здесь приведена проекция на ось Oy_1 , на другие оси проекции имеют аналогичный вид:

$$L_{1} = L_{1}^{g} + L_{1}^{r} \equiv \frac{3\omega_{0}^{2} \left(1 + e \cos\nu\right)^{3}}{\left(1 - e^{2}\right)^{3}} \sum_{j=1}^{3} \left(\beta_{2}\beta_{j}S_{3j} - \beta_{3}\beta_{j}S_{2j}\right) - G\sum_{i=1}^{3} \left(\frac{I_{i1}\alpha_{1i}\alpha_{31}}{A_{1}} + \frac{I_{i2}\alpha_{1i}\alpha_{32}}{A_{2}} + \frac{I_{i3}\alpha_{1i}\alpha_{33}}{A_{3}}\right)$$
(3)
$$S_{mj} = \sum_{p=1}^{3} A_{p}\alpha_{jp}\alpha_{mp}, \quad \beta_{1} = \cos\left(\nu - \lambda\right)\cos\delta$$
$$\beta_{2} = \sin\left(\nu - \lambda\right), \quad \beta_{3} = \cos\left(\nu - \lambda\right)\sin\delta.$$

В работе предполагается, что момент сил сопротивления \mathbf{L}^r может быть представлен в виде $\mathbf{L}^r = I\omega$, где тензор I имеет постоянные компоненты I_{ij} в системе Oz_i , связанной с телом [1, 4]. Сопротивление среды предполагаем слабым порядка малости ε^2 : $\|I\|/G_0 \sim \varepsilon^2 \ll 1$, где $\|I\|$ норма матрицы коэффициентов сопротивления, G_0 – кинетический момент спутника в начальный момент времени.

В некоторых случаях удобно наряду с переменной θ использовать в качестве дополнительной переменной важную характеристику — кинетическую энергию T, производная которой имеет вид

$$\frac{dT}{dt} = \frac{2T}{G}L_3 + G\sin\theta \left[\cos\theta \left(\frac{\sin^2\varphi}{A_1} + \frac{\cos^2\varphi}{A_2} - \frac{1}{A_3}\right)(L_2\cos\psi - L_1\sin\psi) + \sin\varphi\cos\varphi \left(\frac{1}{A_1} - \frac{1}{A_2}\right)(L_1\cos\psi + L_2\sin\psi)\right].$$
(4)

Ставится задача исследовать решение системы (1)-(4) при малом ε на большом промежутке времени $t \sim \varepsilon^{-2}$. Для решения задачи будем применять метод усреднения [9].

2. Процедура метода усреднения. Рассмотрим невозмущенное движение $(\varepsilon = 0)$, когда моменты внешних сил равны нулю. В этом случае вращение твердого тела является движением Эйлера-Пуансо. Величины $G, \delta, \lambda, T, \nu$ обращаются в постоянные, а φ, ψ, θ — некоторые функции времени t. Медленными переменными в возмущенном движении будут $G, \delta, \lambda, T, \nu$, а быстрыми — углы Эйлера φ, ψ, θ . Рассмотрим движение при условии $2TA_1 \ge G^2 > 2TA_2$, соответствующем траекториям вектора кинетического момента, охватывающим ось наибольшего момента инерции A_1 [10]. Введем величину

$$k^{2} = \frac{(A_{2} - A_{3}) \left(2TA_{1} - G^{2}\right)}{(A_{1} - A_{2}) \left(G^{2} - 2TA_{3}\right)} \quad \left(0 \leqslant k^{2} \leqslant 1\right), \tag{5}$$

представляющую собой в невозмущенном движении постоянный модуль эллиптических функций [11], описывающих это движение.

Для построения усредненной системы первого приближения подставим решение невозмущенного движения Эйлера–Пуансо в правые части уравнений (1), (4) и проведем усреднение по переменной ψ , а затем по времени t с учетом зависимости φ , θ от t [2]. При этом для медленных переменных δ , λ , T, G сохраняются прежние обозначения. В результате получим

$$\begin{aligned} \frac{d\delta}{dt} &= -\frac{3\omega_0^2}{2G}\beta_2\beta_3N^*, \quad \frac{d\lambda}{dt} = \frac{3\omega_0^2}{2G\sin\delta}\beta_1\beta_3N^*, \\ \frac{dG}{dt} &= -\frac{G}{R(k)}\left\{I_{22}\left(A_1 - A_3\right)W(k) + \right. \\ &+ I_{11}(A_2 - A_3)\left[1 - W(k)\right] + I_{33}\left(A_1 - A_2\right)\left[k^2 - W(k)\right], \\ \frac{dT}{dt} &= -\frac{2T}{R(k)}\left\{I_{22}\left(A_1 - A_3\right)W(k) + I_{33}\left(A_1 - A_2\right)\left[k^2 - W(k)\right] + \right. \\ &+ \frac{A}{S(k)}\left\{\frac{I_{33}}{A_3}\left[k^2 - W(k)\right] + \frac{I_{22}}{A_2}\left(1 - k^2\right)W(k)\right\} + \\ &+ \frac{I_{11}}{A_1}\frac{(A_2 - A_3)R(k)}{S(k)}\left[1 - W(k)\right]\right\}, \end{aligned}$$
(6)
$$&+ \frac{I_{11}}{A_1}\frac{(A_2 - A_3)R(k)}{S(k)}\left[1 - W(k)\right]\right\}, \\ W(k) &= 1 - \frac{E(k)}{K(k)}, \quad A = (A_1 - A_2)(A_1 - A_3)(A_2 - A_3), \\ R(k) &= A_1\left(A_2 - A_3\right) + A_3\left(A_1 - A_2\right)k^2, \quad S(k) = A_2 - A_3 + (A_1 - A_2)k^2, \\ N^* &= A_2 + A_3 - 2A_1 + 3\left(\frac{2A_1T}{G^2} - 1\right)\left[A_3 + (A_2 - A_3)\frac{K(k) - E(k)}{K(k)k^2}\right]. \end{aligned}$$

Здесь K(k) и E(k) — полные эллиптические интегралы первого и второго рода соответственно [11]. Дифференцируя выражение (5) для k^2 и используя два последних уравнения (6), получим дифференциальное уравнение, которое не зависит от других переменных

$$\frac{dk^2}{d\xi} = (1-\chi)(1-k^2) - [(1-\chi) + (1+\chi)k^2]\frac{E(k)}{K(k)},$$

$$\chi = (2I_{22}A_1A_3 - I_{11}A_2A_3 - I_{33}A_1A_2)/[(I_{33}A_1 - I_{11}A_3)A_2],$$

$$\xi = (t-t_*)/N, \quad N = A_1A_3/(I_{33}A_1 - I_{11}A_3) \sim \varepsilon^{-2}.$$
(7)

Здесь t_* — постоянная. Значению $k^2 = 1$ отвечает равенство $2TA_2 = G^2$, что соответствует сепаратрисе для движения Эйлера-Пуансо.

Из уравнений (6) следует, что под влиянием сопротивления среды происходит эволюция как кинетической энергии тела T, так и величины кинетического момента G. Непосредственно видно, что в первом приближении на их изменение оказывает влияние только сила сопротивления, причем в уравнения входят лишь диагональные коэффициенты I_{ii} матрицы момента трения. Члены, содержащие недиагональные компоненты $I_{ij} (i \neq j)$, выпадают при усреднении. Изменения углов λ , δ зависят как от действия силы сопротивления, так и гравитационного притяжения.

Уравнение (7) описывает усредненное движение конца вектора кинетического момента **G** на сфере радиуса G. Третье уравнение (6) описывает изменение радиуса сферы с течением времени.

Выражение, стоящее в фигурных скобках правой части уравнения (6) для G положительно (при $A_1 > A_2 > A_3$), так как справедливы неравенства $(1-k^2)K \leq E \leq K$ [11]. Каждый коэффициент при I_{ii} является неотрицательной функцией k^2 , причем одновременно они все в нуль обратиться не могут. Поэтому dG/dt < 0,

поскольку G > 0, т.е. переменная G строго убывает для любых $k^2 \in [0, 1]$. Аналогично показывается, что кинетическая энергия также строго убывает [8].

3. Численный расчет изменения кинетического момента, кинетической энергии и углов ориентации вектора кинетического момента. Полученную систему уравнений (6) с учетом (2) и уравнение (7) в виде

$$\frac{dk^2}{dt} = \frac{I_{33}A_1 - I_{11}A_3}{A_1A_3} \left\{ (1-\chi)\left(1-k^2\right) - \left[(1-\chi) + (1+\chi)k^2\right]\frac{E(k)}{K(k)} \right\}$$
(8)

можно численно проинтегрировать. Интегрирование проводилось при начальных условиях G(0) = 1; $k^2(0) = 0.99 \ \delta = \pi/4$ рад; $\lambda = \pi/4$ рад; и значениях главных центральных моментов инерции тела $A_1 = 3.2$; $A_2 = 2.6$; $A_3 = 1.67$. Для коэффициентов сопротивления рассматривались два возможных варианта: $I_{11} = 2.322$; $I_{22} = 1.31$; $I_{33} = 1.425$ и $I_{11} = 0.919$; $I_{22} = 5.228$; $I_{33} = 1.666$. В первом случае величина χ в уравнении (9) была отрицательной -4.477, а во втором положительной и равной 3.853.

Для численного расчета было проведено обезразмеривание уравнений системы (6) и уравнение (8). Характерными параметрами задачи являются G_0 кинетический момент спутника при t = 0, Ω_0 величина угловой скорости ω движения спутника относительно центра масс в начальный момент времени. Безразмерные величины определяются формулами $\tilde{t} = \Omega_0 t$, $\tilde{G} = \frac{G}{G_0}$, $\tilde{A}_i = \frac{A_i \Omega_0}{G_0}$, $\tilde{L}_i = \frac{L_i}{G_0 \Omega_0}$, $\tilde{T} = \frac{T}{G_0 \Omega_0}$, $\varepsilon^2 \tilde{I}_{ii} = \frac{I_{ii}}{G_0}$. Система уравнений примет вид:

$$\begin{split} \frac{d\delta}{d\tilde{t}} &= -\varepsilon^2 \frac{3}{2\tilde{G}} \beta_2 \beta_3 \tilde{N}^*, \quad \frac{d\lambda}{d\tilde{t}} = \varepsilon^2 \frac{3}{2\tilde{G}\sin\delta} \beta_1 \beta_3 \tilde{N}^*, \\ \frac{d\tilde{G}}{d\tilde{t}} &= -\varepsilon^2 \frac{\tilde{G}}{\tilde{R}(k)} \left\{ \tilde{I}_{22} \left(\tilde{A}_1 - \tilde{A}_3 \right) W(k) + \tilde{I}_{33} \left(\tilde{A}_1 - \tilde{A}_2 \right) \left[k^2 - W(k) \right] + \right. \\ &+ \tilde{I}_{11} (\tilde{A}_2 - \tilde{A}_3) \left[1 - W(k) \right] \right\}, \\ \frac{d\tilde{T}}{d\tilde{t}} &= -\varepsilon^2 \frac{2\tilde{T}}{\tilde{R}(k)} \left\{ \tilde{I}_{22} \left(\tilde{A}_1 - \tilde{A}_3 \right) W(k) + \tilde{I}_{33} \left(\tilde{A}_1 - \tilde{A}_2 \right) \left[k^2 - W(k) \right] + \right. \\ &+ \left. \frac{\tilde{A}}{\tilde{S}(k)} \left\{ \frac{\tilde{I}_{33}}{\tilde{A}_3} \left[k^2 - W(k) \right] + \left. \frac{\tilde{I}_{22}}{\tilde{A}_2} \left(1 - k^2 \right) W(k) \right\} + \right. \\ &+ \left. \frac{\tilde{I}_{11}}{\tilde{A}_1} \frac{(\tilde{A}_2 - \tilde{A}_3)\tilde{R}(k)}{\tilde{S}(k)} \left[1 - W(k) \right] \right\}, \end{split}$$
(9)
$$\tilde{A} = (\tilde{A}_1 - \tilde{A}_2)(\tilde{A}_1 - \tilde{A}_3)(\tilde{A}_2 - \tilde{A}_3), \\ W(k) &= 1 - \frac{E(k)}{K(k)}, \quad \tilde{R}(k) = \tilde{A}_1 \left(\tilde{A}_2 - \tilde{A}_3 \right) + \tilde{A}_3 \left(\tilde{A}_1 - \tilde{A}_2 \right) k^2, \\ \tilde{S}(k) &= \tilde{A}_2 - \tilde{A}_3 + (\tilde{A}_1 - \tilde{A}_2)k^2, \\ \tilde{N}^* &= \tilde{A}_2 + \tilde{A}_3 - 2\tilde{A}_1 + 3 \left(\frac{2\tilde{A}_1\tilde{T}}{\tilde{G}^2} - 1 \right) \left[\tilde{A}_3 + (\tilde{A}_2 - \tilde{A}_3) \frac{K(k) - E(k)}{K(k)k^2} \right], \\ \left. \frac{dk^2}{dt} &= \varepsilon^2 \frac{\tilde{I}_{33}\tilde{A}_1 - \tilde{I}_{11}\tilde{A}_3}{\tilde{A}_1\tilde{A}_3} \left\{ (1 - \chi) \left(1 - k^2 \right) - \left[(1 - \chi) + (1 + \chi) k^2 \right] \frac{E(k)}{K(k)} \right\}. \end{split}$$

Интегрирование системы проводилось для медленного времени $\tau = \varepsilon^2 \tilde{t}$. Для численного интегрирования системы применялись неявные схемы Адамса, что позволяет интегрировать систему в представленном виде, с учетом закона изменения угла нутации. Численный анализ показывает, что функции $\tilde{G}(\tau)$ и $\tilde{T}(\tau)$ являются монотонно убывающими, как было получено ранее [8].

Применение неявной схемы численного интегрирования позволяет построить годограф вектора кинетического момента в системе координат Ox_i (i = 1, 2, 3) по найденным углам ориентации λ и δ .

Для проведения численного исследования вектор кинетического момента в начальный момент времени отклонен от оси x_3 на угол $\pi/4$ рад и повернут около оси x_3 так же на угол $\pi/4$ рад.

В первом расчетном случае (для отрицательного χ) получен годограф вектора кинетического момента, представленный на рис. 1. Из рис. 1 видно, что вектор кинетического момента, убывая, стремится занять предельное положение в плоскости орбиты спутника Ox_1x_2 . На рис. 2 и 3 годограф вектора кинетического момента изображен в большем масштабе. Рисунок 2 показывает проекцию кривой годографа на плоскость Ox_1x_2 , а на рис. 3 годограф показан вдоль оси спирали.

Рис. 2

Во втором расчетном случае (для положительного χ) результат построения годографа вектора кинетического момента представлен на рис. 4. Рисунки 5 и 6 отображают ту же кривую в большем масштабе в проекциях на другие плоскости.

Видно, что во втором расчетом случае характер поведения сохраняется, но вектор кинетического момента стремится к другому предельному положению в плоскости орбиты. Ось предельного положения располагается ближе к оси Ox_1 . В обоих расчетных случаях ось спирали не является постоянной. Согласно численному исследованию наблюдается искривленние оси спирали, при этом во втором расчетным случае искривление становится более существенным.

Заключение. Таким образом, в случае возмущенного движения спутника с учетом гравитационного момента и момента сил сопротивления построен годограф вектора кинетического момента в трехмерном пространстве $Ox_1x_2x_3$, связанный с плоскостью круговой орбиты спутника. Получено, что вектор кинетического момента, убывая вследствие диссипативного момента сопротивления среды, стремится занять предельное положение в плоскости орбиты.

Автор благодарит Л. Д. Акуленко и Д. Д. Лещенко за полезные обсуждения.

- 1. Белецкий В. В. Движение искусственного спутника относительно центра масс [текст] / Владимир Васильевич Белецкий. – М. : Наука, 1965. – 416 с.
- Черноусько Ф. Л. О движении спутника относительно центра масс под действием гравитационных моментов [текст] / Ф. Л. Черноусько // Прикл. математика и механика. – 1963. – Т.27, №3. – С. 472–483.

- 3. Белецкий В. В. Движение спутника относительно центра масс в гравитационном поле [текст] / Владимир Васильевич Белецкий. М.: Изд-во МГУ, 1975. 308 с.
- Акуленко Л. Ф. Быстрое движение вокруг неподвижной точки тяжелого твердого тела в сопротивляющейся среде [текст] / Л. Д. Акуленко, Д. Д. Лещенко, Ф. Л. Черноусько // Известия АН СССР. Механика твердого тела. – 1982. – №3. – С. 5 – 13.
- Акуленко Л. Д. Эволюция быстрого вращения динамически симметричного спутника под действием гравитационного момента в сопротивляющейся среде [текст] / Л. Д. Акуленко, Д. Д. Лещенко, А. Л. Рачинская // Механика твердого тела. – 2006. – 36. – С. 58 – 63.
- Лещенко Д. Д. Движение спутника относительно центра масс под действием момента сил светового давления в сопротивляющейся среде [текст] / Д. Д. Лещенко, А. Л. Рачинская // Вісник Одеськ. нац. ун-ту. Матем. і мех. – 2007. – Т.12, вип.7. – С. 85 – 98.
- Акуленко Л. Д. Вращения спутника с полостью, заполненной вязкой жидкостью, под действием гравитационного и светового моментов [текст] / Л. Д. Акуленко, Я. С. Зинкевич, Д. Д. Лещенко, А. Л. Рачинская // Вісник Одеськ. нац. ун-ту. Матем. і мех. – 2008. – Т.13, вип.11. – С. 117 – 131.
- Акуленко Л. Д. Эволюция быстрого вращения спутника под действием гравитационного момента в среде с сопротивлением [текст] / Л. Д. Акуленко, Д. Д. Лещенко, А. Л. Рачинская // Известия РАН. Механика твердого тела. – 2008. – №2. – С. 13 – 26.
- 9. Волосов В. М. Метод осреднения в теории нелинейных колебательных систем [текст] / В. М. Волосов, Б. И. Моргунов. М.: Изд-во МГУ, 1971. 507 с.
- Ландау Л. Д. Теоретическая физика. Т. 1. Механика [текст] /Л. Д. Ландау, Е. М. Лифшиц. – М.: Наука, 1973. – 208 с.
- Градштейн И. С. Таблицы интегралов, сумм, рядов и произведений [текст] / И. С. Градштейн, И. М. Рыжик. – М.: Наука, 1971. – 1108 с.