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LINEAR-INVERSIVE CONGRUENTIAL GENERATOR OF PRN’S

Yan Txe Binsb. Jlinifino-inBepcHuii kourpyentauii reaeparop IIBY. Tusepcumit
KOHTDYEHTHHI MeTOJ '€HePYBAHHSI PIBHOMIDHO PO3MOIITEHUX IICEBIOBUIIAIKOBUX UHCET €
0Cco0IMBO NTPUBAOJINBOIO AJIBTEPHATHBOIO JIIHIHHUM KOHIDYEHTHHUM I'eHEPATOpaM, SKi BOJIOi-
IOTh HU3KOIO HeDarkaHWX 3aKOHOMipHOcTe#t. B maniit crarti po3risamaerbcst HOBU JiHIHHO-
IHBEepPCHUI KOHIDYEHTHUI TeHEPATOP 38 MOJLYJIEM CTEIEHIO ITPOCTOro Yucya. JlatoThbCst OMiHKT
TPUTOHOMETPUIHUX CyM ISl JIHIAHO-IHBEPCHUX KOHIDYEHTHUX IICEBIIOBUIIAIKOBUX UUCEJT.
Peszysnpraru moka3dytoTh, mo 1 iHBEPCHI KOHT'DYEHTHI IICEBJOBHUIAIKOBI YMCJIA MPOXOISITH
S-MIpHUI CepiaJIbHUM TECT Ha CTATUCTUYHY HE3aJIEXKHICTh.

KuarouoBi ciioBa: iHBEpCHI KOHI'DYEHTHI IICEBJIO-BUIAIKOBI 4YMCIa, €KCIOHEHIHI CyMH,
JUCKPITIaHCis.

Yan Txe Bunb. JIuHeliHO-UHBEPCHBIN KOHIPY HTHBIN reHeparop IICY. Un-
BEPCHBI KOHTDYSHTHBII MeTOJ] T€HEPUPOBAHUSI PABHOMEDPHO PACIPEJIEJIEHHBIX IICEBIOCIY-
YafHBIX YHUCEJI SBJISIETCST OCOOEHHO IPUBJIEKATETBHON AJBTEPHATUBON JIMHEHHBIM KOHTDPY-
SHTHBIM T'€HEPaTOPaM, KOTOPhIe 00IaIAI0T PSIIOM HEXKEJATeTbHBIX 3aKOHOMepHOCTel. B Ha-
CTOSAIIEH CTaThe pacCMaTpPUBAeTCA HOBBIN JIMHEITHO-UHBEPCHBINT KOHIPYIHTHBIN I'eHepaTop 10
MOJIYJIIO CTEIIEHHU IIPOCTOr0 Ynca. J{aloTcs OleHKH TPUIOHOMETPUYIECKHUX CYyMM JIJIsl JIMHEHHO-
WHBEPCHBIX KOHI'DYIHTHBIX IMICEBJIOCTYIANHBIX Yncesi. Pe3ybTaThl MOKa3bIBAIOT, UTO ITH WH-
BEPCHBIE KOHI'DYSHTHBIE IICEBIOCIyYaliHble YHUC/Ia IPOXONAT S-MEPHBII CepHAJIbHBIN TECT Ha
CTATUCTUYIECKYIO HE3aBUCUMOCTb.

KuroueBrble ciioBa: MHBEPCHBIE KOHI'DYIHTHBIE [ICEBMIO-CIIYIafiHbIE UNCIIA, SIKCIIOHEHI[NATIb-
HbI€ CyMMBI, J€CKPUIIAHCHS.

Tran The Vinh. Linear-inversive congruential generator of PRN’s. The in-
versive congruential method for generating uniform pseudorandom numbers is a particulary
attractive alternative to inversive congruential generators, which show many undesirable reg-
ularities. In the present paper a new linear-inversive congruential generator with prime-power
modulus is introduced. Exponential sums on linear-inversive congruential pseudorandom
numbers are estimates. The results show that these inversive congruential pseudorandom
numbers pass s-dimensional serial tests on the statistical independence.

Key words: inversive congruential pseudorandom numbers, exponential sum, discrepancy.

INTRODUCTION. Let p be a prime number, m > 1 be a positive integer. Consider
the following recursion

Yntl = ay;1 +b (mod p™),(a,b € Z), (1)

where 1 is a multiplicative inversive modulo p™ for v, if (y,,p) = 1. The parame-
ters a, b, yo we called the multiplier, shift and initial value, respectively.

(© Tran The Vinh, 2014



88 Tran The Vinh

In the works of Eichenauer, Lehn, Topuzoglu [5], Niederreiter, Shparlinski [9],
Eichenauer, Grothe [4] ets. were proved that the inversive congruential generator (1)
produces the sequence {z,}, =, = gjﬁh, n = 0,1,2,..., which passes s-dimensional
serial tests on equidistribution and statistical independence for s = 1,2,3,4 if the
defined conditions on relative parameters a, b, yo are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte Carlo type
application (see, [7—9]). The sequences of PRN’s can be used for the cryptographic
applications. Now the initial value yo and the constants a and b are assumed to be
secret key, and then we use the output of the generator (1) as a stream cipher. By the
works [1], [2] it follows that we must be careful in the time of using the generator (1).

In the current paper we give generalization of the generator (1). This generaliza-
tion is based on the recurrence relation

Yn+1 = ayrjl + b+ cp¥n (mOd pm) (2)

under conditions
(cn,p) = (Wo,p) =1, b=a=0 (mod p).

We call the generator (2) the linear-inversive congruential generator. The compu-
tational complexity of generator (2) is the same as that for the generator (1), but the
reconstruction of parameters a, b, ¢, yo is a tricky problem even if several consecutive
values Yn, Yn+1,---,Yntn are revealed. Thus the generator (2) can be used in cryp-
tographical applications. Notice that the conditions (c¢,,p) = (yo,p) =1, 0=a =0
(mod p) guarantee that the recursion (2) produces an infinite sequence {yy }.

T. Kato, L.-M. Wu and N. Yanagihara [6] studied a nonlinear congruential pseudo-
random numbers generator with modulus 2™ of the form

Yni1 = ay, b+ b+ cy, (mod 2™), (yn,2) =1, n=0,1,2,... (3)

They have obtained a condition at which sequences of the maximal length of the pe-
riod are generated.

P. Varbanets and S. Varbanets [12] considered the generator (2) with conditions
(a,p) = (yo,p) =1, b=c =0 (mod p) and showed that the sequence {z,}, =, = ;’—m
passes tests on equidistribution and statistical independence.

In present paper we investigate generator (2) under conditions a = b =0 (mod p),
(¢n,p) =1, n=1,2,... and show that for the sequence {c,} of special type accord-
ing sequence {x,} passes tests on equidistribution and statistical independence (say,
unpredictability).

It will be observed that W.-S. Chou [3] showed that for generator (1) the condi-
tions a = 0 (mod p), (b, p) = 1 produce according sequence {y, } with a period 7 = 1.
It is not alright for applications. Thus in our paper we introduced additional summand
in order extend the period of PRN’s. We will prove that the sequence {y, }produced
by (2) has reasonably large period. As well, we give the description of y,, as the poly-
nomial on n and initial value yq. It makes possible to obtain an acceptable estimate
for the discrepancy function Dy.

NoTATION. The letter p denotes a prime number, p > 3. For an integer ¢ > 1
we denote by Z, the residue ring of integers modulo q. Also, we denote Z; the set
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of invertible elements of Z,. We write ged(a,b) = (a,b) for notation a great common
divisor of @ and b. For z € Z, ged(z,p) = 1 let 2~! be the multiplicative inverse of
a modulo p™. We write v,(A) if p*»(N|A, pr»(D+1 § A For any t € R and ¢ € N

we write exp(t) = e, e(t) = €™, e,(t) = e (3) We denote an integer part of x by

symbol [z].

AUXILIARY ARGUMENTS. In this section we shall gather some auxiliary results
which we use during the course of proof the main theorems.

Lemma 1. Let p be a prime number and let f(x) € Z[x] be a polynomial of degree
n,n=2,
f(@) = a1z + asx® + azz® + -+ + azz”,

where vp(aj) = vp(az) >0, j > 3.
Then the following estimates

Z epm (f(x)) :{ gpw if vplar) <vplaz),

rE€Zym if  vplar) = vp(az)

hold.

This assertion is a corollary of the estimate of Gauss sum.
We will study the statistical properties of the sequences of PRN’s by the discrep-

N —1;

) _ ((Yn Ynia Unteo1) o ()1, :

ancy of the sequence of points X,(LS (pm, R
s=1,2,....

For the sequence of N points Ps = {(Y1.ny---sYsn)}, » = 0,1,..., N — 1 on the
half-opened interval [0,1)* we denote the discrepancy D) (P;) as

ey

DB)(P,) = An(4) N
acpn:| N

9

where Ayx(A) is the number of points of the sequence Ps that hits the box
A= [alaﬁl) X X [asaﬁs) g [071)37

|Al is the volume of A and the supremum is taken over all boxes A.

Let {z,,} is a sequence of numbers from [0, 1). Form the sequence of s-dimensional
points X,(f) = (Tn, Tntls- s Tnts—1), » = 1,2,..., N. We say that {z,} passes s-
dimensional discrepancy test if for every j = 1,2,...,s the sequence {XJ/} has a
discrepancy which tends to zero for N — oc.

Consider a point set P, from [0,1)° for which all coordinates of all points are
rational numbers of the form %, 0 < a < gq. Let us denote C(q) = (f%,%] Nz,
C*(q) = {a € C(q)|(a,q) = 1}. Let Cy(q) (respectively, C*(q)) be the inner product
of s copies of C(q) (respectively, C*(q)).

Lemma 2. (Niederreiter, [8]). For an integer M > 2 and yo,...,yn—1 € Z°,
let P be the point set consisting of the fractional parts {M‘lyo} s {M‘lyN,l}.
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Then

DN(P)<1—(1—A14)S+ D W

heCx(M)

1= 71
n=0

From this lemma it is seen the the non-trivial estimates of exponential sums over

the sequence {X,SS)} are important for the further investigation we presented.

Next assertion has the paramount importance for estimation of such exponential
sums.

Proposition 1. Let {y,} be the sequence produced by the recursion (2) with the
parameters a =b =0 mod p, (¢,p) = (Yo,p) = 1. Denote my = 2v,(a) +v,(b), my =

[ﬁ] There are exist the polynomial Fy,(u,v) € Zu,v] such that for n > m+1

we have 1 1
Yn = Fu(yo,Yo ) = Aon + A1inyo + Binyy +

+ Bonyy 2+ Bany + - + Bmynyy ™ (mod p™), (4)
B, =0 (mod p™), j >4,
where the coefficients Ajn, Bjn defined by the following relations

Apnt1 =b+ cnp1(b+ cnlo 1) =
= b(1+ cnt1) + Cnprcn(b+ a1 Agn2) =
=b(1+ cpny1 + Cnt16n + Cnpi1Cntn_1Aon—1) = )
=b(1+ cnt1 + Cng1Cn + CnyiCnCn_1 + -+
i CpgiCn -2 Ag ) = bAY(n)
Al,n+1 = Cp+1Cp * - C2C1.

-1 1 2
Biny1 = aAl, + cny1Bn = aAl, (1 + cpp16n + CnpiCocn1 + -+

2 2 _ /
+ Cn+1Cp " - 6201) - a‘Bl,n-‘rl?

n+1 A6
abz AQJ’ (6)
j=1 "l

B3 i1 = a’Bi(n) + ab*Bj (n),
Bj7n+1 =0 (HlOd pm0)7 .7 = 47

Ba ny1

where B4(n), BY(n) have the simple description in terms of coefficients c1,ca, . . ..

Proof. By (2) we infer consequently
Yy = aya1 +b+cyo (modp™),
I
ayo_1 + b+ yoc1
=acy yy (L —acy g ® —bey tyg A aPeryg ! 2abe P yg Do Pyg P )

+ by + calayy t + b1 4 c1yo) = Aoz + Arayo + Birayy "Baayy 2 + Baayg S 4+ - -

Yo = + by + calayy t + by 4 c1yo) =
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where
Apz = b(1 + ¢2),
Agz = cie,
Bia = ac;t +acy = a(c;t + ),
Boy = —abcl_Q,
Bsy = —a®c% + ab?c?,
By = 2a2bcf3 — ab?’c;47

Bj2 =0 (mod pmin (2a+b,a+3b))'

In general case

Yn = Aon + A1nYo + BinYo ' + Banyo 2+ (A, p) = 1.

= Yna1 = ad, vy ' [1— AonAL Yy ' — Bin AL yp -
—BonArayo® — A3 ALY P+ B Ay ]+

+ b+ cnr1(Aon + Arnyo + Binyo '+ Banyy ® + Banyo > + Banyg t + )
= Ao+t + Arnr1yo + Bty + Baar¥o + Banr1yo s

where
Ao 1 = b+ cny1Aon;
A1,n+1 = Cn+1A1n;
By = aAl_nl + cnt1Bin;
B2,n+1 = CL140»,L141_7L2 + Bgn;
B3,n+1 = —aBlnA_Q - aA%nAl_f’ + Cn+lB3n;

in

Bj, =0 (mod p™), j>4.

Hence, we have

Aons1 = b+ cngp1(b+ cnAon—1) =b(1 + cpg1) + cngrcn(b+ cno1Aon—2) =

- b(]- + Cn+41 + Cn+1Cn + Cn+1cncn71AO,n71) -

== b(l + Cn+41 + Cn+1Cn + Cn+1CnCn—1 R Cn+1Cp * - C2140,1) = bAé)(n)

A1,n+1 = Cp+41Cp ** - C2C1.

—1 —1 2
Biny1 = aAl, + a1 B = aAy, (1 +cnyicn + cnpicyeno1 +-- -+

+engrcy, e c3e1) = aBy g,
n+1 Aéj,j

B3 i1 = a®Bi(n) + ab*Bj (n)

Bjn+1 =0 (modp™), j > 4.

BQ,n+1 =ab



92 Tran The Vinh

Corollary 3. Let {y,} be the sequence produced by the recursion (2) with v,(b) =
B<vp(a) =ca andlet c; =c,i=1,2,.... Then we have modulo p™
Yn = o+ n(b+p"Ha(yo 1)) — nab(1+p* =" Ha(yg ')+ (7)
+ pipmin (20‘+B’0‘+35)H3(y0_1,n), if ¢c=1 (mod p™),

Yn = Yo + n(b+p*G1(3, 2,95 1)) — n2ab(1 + p* P Go(8, 2, y5 1))+ (8)
+ pdpmin Qe BetSB Gu (5, 2, yotn), if ¢#1 (mod p™),

where H;, G; are polynomials on its own variables with integer coefficients.

Proof. For ¢ =1 (mod p™) we obtain

Appn=nb, A1n =1 (mod p™),

Bi, =na, By, = —ab% (mod p™)

Bs., = —ab% —a*(n—1) (mod p™)

Bjn, = a?b- gi1(n) +ab® - ga(n), g1(n),g2(n) € Z[n).

(9)

From this follows that there are polynomials H;, i = 1,2, 3, such that the relation
(7) holds.

If ¢ 2 1 (mod p™) we denote throughout ¢ an index ¢ (mod p). Let us assume
that n=060+2,0<2<6—1,=nd"1 + 257! (mod p).

Mindful that

06 —
=1 +pu)ict =1+ pul + p*ul———-—=

cr=(1 —pu€+p2u2€(£T_1) + o) F

we also obtain

Yn =0 +n(b+p*Gi1(8, 2,95 ")) — nZab(l + Ga(3, z,y5 ' )p™)+

10
+n3p7G3(6aZ>yal)7 ( )
where v = min (2a + 8, + 35).
The corollary is established. |
Corollary 4. In notation above with ¢, = c+np, n = 1,2,..., we have modulo
pm
Yn = b(n+pfo(n)) + yo(1 + pnfi(n))+
—1)(2n—1
+ (n—l—p(n(n )6( n—1) —|—2n2—n> +p2f21(n))+ (11)

+ 5 2(abfaa(n)) + vy ° (—ab® fs(n)) + p” fa(n),

where f07f1af217f223f3af4 € Z[n}
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Proof. In virtue of Proposition 1 we can write

Aop, =b[1+ (c+np) + (c+np)(c+ (n—1)p) +---
<+ (c+mnp)c+ (n—1)p)--(c+p)] =

n(n—1 "L 12
=b 1+c"+pc”717(2 )+p2c"7221j+... = (12)
i,j=1
i

=b(1+ "p"Fi(n)) = bAj,,
where Fi(n) =1+an+an?+---,a; =0 (mod p?), i =1,2,....

A =1 +p)(1+2p+--+1+np) =
nnt1) , anln+ 1)(6n2 —n —2) (13)

= l4p— 5 + p*F2(n), Fa(n) € Z.
The similar reasoning shows that
Bin = aA (1 +din+don® +--+), (dl,p) =1, vp(d;) =1, j=2,3,.... (14)
Further we have
B2n — a’b ( 41_70 +pF3(7’L)) Zf c 5—'5 1 (HlOd p ) (15)
ab(n + nFy(n)) if ¢=1 (modp™),
2 [
B3, = —a {Aflf(l + (ec+np)(c+ (n—1)p))+
o1
+A[11 1(1+(c+(n—1)p+-~-))—|—--- -
o (16)
AOn/2
—ab® =5 —(n+pg(n)) +--- =
Aln
= —a®(2¢" + Epn + ¢p*n* (1 + pgi(n)))—
—ab*(n + 2¢" + ™) (1 + pnga(n)),
Bjn =p7gj(n) (mod p™), j >4, (17)
where g1(n), g2(n), g;(n), j > 4, are polynomials with integer coefficients.
Hence, by Proposition 1 we obtain Corollary 2. |

From Proposition 1, Corollaries 1 and 2 we deduce

Corollary 5. Let 7 be the least of periods for the sequence {y,} generated by the
congruential recursion (2) with v,(b) = 8 < vp(a) = a. Then 7 =p™ P, ifc, = c or
cn =c+np, (¢,p) = 1.

Proof. Indeed, from formulas for Ag,, Aipn, Bjn, j = 1,2,..., we can conclude

that

)

Ai,n+3 = Ai,37 Bj,n+3 = Bj,?) (mOd Pm)» i=0,1; j=12,...,
if and only if n =0 (mod p™~#). |
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Let {y,} be the sequence produced by (2). For h,hy,hs € Z and k,£ € N U {0},

we denote
N—1
hyn

Sn(h,yo) = Y 2T,

n=0

h h
ore(hi,hoip™) = Y e (M> .

m
YoEZym p

Proposition 2. Let we have the linear-inversive congruential generator produced by
relation (2) with § = vp(b) < vp(a) = a, 26 < m, and let (h,p™) = s. The we have
the following estimates

0 if N=7, m>pf+s,
ISn(h,yo)| < 4 N if m<pB+s,

m+s+8

2p~ 2 (L+logp™®) if m>pB+s.

Proof. First we assume that N =7 = p™# i.e. N is a period of the sequence
{yn}. The Corollaries 1 and 2 from Proposition 1 show that the behavior of the
exponential sum S;(h,yp) on the sequences of PRN’s for the cases ¢, = ¢ and ¢, =
¢+ np are identical. Thus, we consider the sequence generated by (2) with ¢, = c.

By Corollary 1 we have

" T hoF(n)
_ Yn _ oL (n
|ST(h7y0)| - Z € (pmﬁ> - Z € (pmsﬁ) )
n=0 n=0

where h = hop®, F(n) = Co + Cin+ -+ Cpyn™,
Cy=b (mod pPth),
Cy = —ab (mod p+F+l),
C; =0 (mod p?),

moreover,
a=vy(a), B=v,(b), v=min(2a+B,a+38) > a.

Now, applying Lemma 1 we obtain

sl ={ § 1 mSoTe

In the case N < 7 we use the well-known estimate of uncomplete exponential sum
by means of the complete exponential sum (see, [7], Ch. 1, Th. 2)

T—1 hE(n)
Y em(Eee)

n=0

[Sn(h,yo)] € max (1+1logT).

1<t<r

By virtue of the fact that the congruence

hb+t=0 (mod p**t?)
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have only one solution under condition 1 < ¢t < 7, we deduce (by Lemma 1), that

m+4+B—s

1Sn(hyo)| <p*-2p" 2 (1+logp™P)=2p

m+B+s
2

(1+logp™ 7).

Remark. Similar bound for Sn(h,yo) is valid for case ¢, = ¢+ np.

Proposition 3. Let (hi, ho,p) =1, vp(h1+he) = s1, vp(hik+hel) = so and let {y, }
be the sequence produced by (2) with ¢, = ¢ or ¢, = ¢+ np. The following estimates

hy+hy 0 Zf 51<52+ﬁ,m751752>0,
1Yk 2Ye m+4B+s )
Z e( pm ) Sy 2 e if s1Zs2+ B, m—s—s2>0,

YoEZym p™ Y(p—1) otherwise,

hold.
Proof. Let ¢ =1+ pu, u# 0 (mod p™~1). By Corollary 2 we have modulo p™
hiyk + hoye = Bo + Biyo + B_1yg* + B_ayg 2+,
where

By =b[(hy + ha) + (hic"p" Fy (k) + hoc'p" F1(0))] = bBy, (Bj,p) = 1;

k(k+1 0+ 1
B1=(h1+h2)+p(h1 (2 )+h2(2 )+"'>§

B_1 = a[(hy + ha) + di(hik + hot) 4+ do(h1k? + hol®) +---];
c(hy 4 ha) — (hick + hoc?)
c—1

B_3 = —a® (2¢*(hy + ha) + p(hik + hol)+
+c'p? (ha (K + pg()) + ha (€% + pg(£)))) —
— ab® [hik + hol + 2(hic® + hoc®) + (hact® + hac®)(hy + ho)+
+p(hikg(k) + hatg(€))];

B_;=0 (modp”), j=4,5,....

B_,=ab [ + p(h1 F3(k) + h2F3(€))] ;

Substituting ¢* and ¢’ by the polynomials on k and ¢ and applying Lemma 1 we
obtain requisite statement. |
This conclusion of Proposition 3 stays behind also for ¢,, = c+pn, ¢ Z 1 (mod p™).

MAIN REsULTS. The properties of equidistribution and statistical independency
of sequences of PRN’s {y,} generated by (2) we will study using bounds for the
discrepancy of certain points produced by the sequence {z,}, x, = ;’%. We say that
the sequence {x,} passes the s-dimensional test on equidistribution and statistical
independency if every sequence {Xflj)}, Xn = (Zn,...,Tntj-1), j = 1,..., s has the
discrepancy D N(Xflj )) such that D N(XT(«Lj )) — 0 for N — oo. From Lemma 2 it follows
that we should have non-trivial estimates for sum

N-1
Z <h1yn+"'+hjyn+j1> j

m
n=0 p
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LN -1, XY =

Theorem 1. Let {X,(Lj)}, n =01,

(@, ... Tntj—1) be the
sequence of points x9 e [0,1)7 produced by (2). Then for every j, 1 < j < 4, the

following estimate
J ! 1+ (2 logp™ + T j
5\ ;08P 5

D%) = D%)(XO7X17"'7XN—1) < pim +

()
n’, l.e.

holds.
Proof. Let h - Xf,,j) denote the inner dot of h and X
h- Xéj) = hix, + h2$n+1 + -4 hj.%‘n+j_1.

In order to apply Lemma 2, we should have an estimate for the sum

T—1
Z . <hlyn +hoyny1 + - + hjyn+j—1>
n=0 pm

Without loss of generality, we can suppose that (hi,hs,
representation y,, as a polynomial on n (by Corollaries 1 and 2) we have

,hj,p) = 1. From the

hiyn + - 4 hjynyi—1 = (hayo + - - - hjyo)+
+(han +ho(n+1) 4+ hi(n+j = 1)b+ np* PG (y5 ') —

J
—ab(1+p* PGP (yo 1)) S hi(n +1i — 1)%+
i=1

J
+ (Z hi(n +i— 1)3> PGP (yo, hy).
i=1
Hence, the sum h1y, + -+ + h;Yny;j—1 Tepresents a polynomial of special type
M) is appreciable by Lemma 1:

P
f(n) such that the exponential sum Y e ( o
n=1

T—1
h ++h j— m+B+L
(”’" 3ty 1>|<2p e

S (e

n=0

lf (hl —|—h2 —‘r—f—hj,pm) :pi.
Now, using the connection between complete and uncomplete exponential sums
and Lemma 2, we deduce the assertion of theorem. |
Corollary 6. The sequence of PRN’s produced by (2) passes s-dimensional test
on equidistibution and statistical independency for s =1,2,...,p—1.
Theorem 2. Let the sequence {y,} be produced by (2) with (c¢,p) = (yo,p) = 1,
0< B =1uv,(b<a=uvy(a)). Then for h € Z, vy(h) = s, we have
— 1 mts
Sx(h) = s 3 ISwlhy)l < N+ Np~ 5 (2 + VEph).

yEZ;m
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Proof. Without loss of generality we will assume that s = 0. By the Cauchy-
Schwarz inequality we obtain

_ 1 _
SE € o 3 ISw ()l = e< b y”) <
P yoezs,, ) K0 vezs,
1 1 oo N-1
< — Z |Ukz(h7—h,p )|: ooy Z |O’]€g(h—h,p )‘:
p(™) k,£=0 p(™) r=0 k=0
vp(k—0)=r
;| m=lo Nl 1 N-1
= m Z |0k7€(h7 —h;p™)| + m Z |0k7k(h7 —h;p™)| =
o) = e(r™) =
vp(k—€)="y k=¢
| mol N-l
=N+ ( m) |Uk’¢(h, —h;pm)|
PP v=0 k,0=0
vp(k—£€)=vy
Using Proposition 3 we infer
= N-1
[Sn(h)]P <N + D) R T
PP ~=0 k,£=0
k#ZL(mod 2)
vp(k—€)=y
N-1 1 m—1 N
+ > okelh,=hip™)| | SN+ —— [213'2" > —+
o p(m) =
k={(mod 2)
vp(k—0)="

N-—1
DY > lowe(h, —hip™)| | <

y<m—B m—B<y<m—-1/ kL=0

m—1
m N
@(m) 7:Op
N-1
DD > lowelh=hip™) o <
y<m—B8 m—pB<y<m—1 k,0=0
vp(k—€)="

1 m m+ﬁ+"/ N
<N+ ——<2Np= 42 P — +p" —
@(m) Z pY Z pY

y<m-—p y=m—f
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1 m m
<N+ —— (2Np7 +oNp™ 4 Npmp*mw) <
p(m)

<Np~ % (4+5p§) )
Thus, for (h,p) = 1:
= 1 _m B
S (k)| < N¥ + Np~# (24 VBpf )|
If (h,p™) = p°, s < m, then similarly to the previous, we have
ISn(h)| < N% + Np~ =t (2 + ﬁp%) .

Theorem 3. Let Dy(yo) denotes the mean of discrepancy of the sequence points

{g:;} produced by the recursion (2) with initial value yo. Then the following bound

for value averaged over all yg € Z;'m

— 1 _m—8
Dy = > DN(yo)<le+3p T logp™

m
e(p™) =

holds.

This assertion follows immediately from Theorem 2 and Lemma 2.
The last theorem shows that for 8 > %m upon the average an estimate of Dy (yo)
it is preferable than individual estimate Dy (yo) given by Theorem 1.

CONCLUSION. In the presented paper a new linear-inversive congruential genera-
tor with prime-power modulus was introduced. Exponential sums on linear-inversive
congruential pseudorandom numbers were estimated. The obtained results show these
inversive congruential pseudorandom numbers pass s-dimensional serial tests on the
statistical independence.
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