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ON THE OSCILLATIONS IN THE QUASI-LINEAR SECOND ORDER
DIFFERENTIAL SYSTEMS WITH SLOWLY-VARYING
PARAMETERS

ITToroser C. A. Ilpo kosimBaHHS B KBasiaiHiliHux audepeHHiaIbHUX CHUCTE-
Max APYTroro HmOopsiAKy 3 HMOBiJIbHO 3MiHHMMU mapamerpamu. Jlis kBasiminiitnol au-
depeHIiaabHOl CHCTEMH APYTOTO HMOPSIJIKY 3 CYTO YSIBHUMU BJIACHUMHU 3HAYEHHSIME MAaTPHIL
JIIHIHOI YaCTUHU OTPUMAHO YMOBH iCHYBAaHHS YACTHHHOT'O PO3B’A3KY, 300payKyBaHOIO y BU-
szl abcourtoTHO Ta piBHOMIpHO 30iKHUX psaiB Pyp’e 3 noBlILHO 3MiHHNMYE KoedimieHTaMI
Ta 9aCTOTOI0 Ha ACHMIITOTHYHO BEJIMKOMY IIPOMIXKKY 3MIHM He3aJIesKHOI 3MIiHHOI.

KuarouoBi cioBa: mudepenriaapbamii, mOBLIBHO 3MiHHMA, psian Pyp’e.

ITTérones C. A. O KosebaHUX B KBa3sMJIMHEHHBIX AuddepeHnnalIbHbIX CH-
cremMax BTOPOro HOpsifKAa C MEIJIEHHO MEHSIOIMMUCH napamerpamu. Jlns ksa-
3UNMHEHHOU MudEPEHITNATBLHON CUCTEMBI BTOPOrO MOPSIIKA C YACTO MHUMBIMH COOCTBEH-
HBIMU 3HAYEHUSIMU MaTPUILI TMHEHHON 9aCcTU MOJIYI€Hbl YCIOBUS CYIECTBOBAHUST YaCTHOTO
pelllennsi, MPeJICTABIMOrO B BHIe aOCOIOTHO W PABHOMEPHO CXOIANUXCS pPAnoB Pypbe ¢
Me€/JIEHHO MEHSIOIMMHUCS KO DUIIMEeHTAMH 1 9aCTOTON HA ACUMITOTUIECKU GOJIBIIIOM TIPO-
MeKyTKe U3MEHEHUsI H3aBUCUMOMN IIePEMEHHOMN.

Kuarouessbie cioBa: auddepeHnnaabHbIi, MeJIIeHHO MEHSIIOIUACs, psiabl ypbe.

Shchogolev S. A. On the oscillations in the quasi-linear second order dif-
ferential systems with slowly-varying parameters. For the quasi-linear second order
differential system with pure imaginary eigenvalues of the matrix of the linear part, the
conditions of the existence of the particular solution, representable as an absolutely and uni-
formly convergent Fourier-series with slowly varying coefficients and frequency, are obtained
at the asymptotic long interval of the independent variable.

Key words: differential, slowly-varying, Fourier series.

INTRODUCTION. In the theory of the differential equations well known the prob-
lem of the periodic solutions od the differential equations and its systems [1-3]. How-
ever, the strict periodicity of the coefficients of the system and its decisions is some
idealization. In real physical systems, the amplitude and frequency of oscillations,
generally speaking, are not constant, and represent yourself in a certain sense, slowly
varying function of time. An important tool in the study of periodic solutions is a
representation of the desired solution in the form of trigonometric Fourier series:

z(t)= Y ape™ (1)

n=—oo

(v — frequency). Sometimes it takes an additional condition

o0

D> Jan] < + oo, (2)

n—=—oo
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which guaranteed by v € R the absolutely and uniformly convergence of series (1). As
noted in the [4], there is good reason to replace the study of periodic solutions of the
general form by research solutions that can be represented in the form (1) with the
additional condition (2). Narrowing of the space of considered solutions a construc-
tive way to their analytical representation, in particular, facilitates the construction
of approximate analytical expressions for the solutions in the form of finite trigono-
metric sums. Similar problems are considered, for example, in [5-7]. In this regard,
the following problem arises: to research the similar type solutions of the differen-
tial systems with slowly varying parameters, that is to obtain the conditions of the
existence of the solutions, which represented as an absolutely and uniformly conver-
gent Fourier-series with slowly varying coefficients and frequency. In this formulation,
the problem is substantially different from the problem of periodic solutions of the
general form. In some papers of A. V. Kostin and author [8-11] the conditions of
existence of solutions of this type are obtained for a quasi-linear differential systems,
and researched a systems with different properties of the matrix of the linear part.
Considered in these papers systems contained two small parameters p and e, first of
which characterizes the smallness of nonlinearities, and the second - slow variability
coeflicients of the systems. The role of these parameters in the study of oscillations
differ significantly, and, generally speaking, they do not depend on each other. At the
same time in a number of well-known works on the theory of oscillations of quasi-linear
systems, these parameters are the same.

NOTATION. Let G(go) = {t,e: 0<e<egy, —Le ' <t< Le™!, 0 <L < +oo}.

Definition 1. We say, that a function f(¢,¢) belong to class S(m,ep) (m €
Nu{0}), if

1) f:G(go) = C, 2) f(t,e) € C"™(G(eg)) with respect t;

3) d¥f(t,e)/dth = ek fr(t,e) (0< k< m),

def \
[Rrr—— Z sup | fr(t,e)| < +oo.
k=0 G(€0)

Under the slowly varying function we mean a function of class S(m,e).
Definition 2. We say, that a function f(¢,¢,0(t,¢)) belong to class F(m,1, o, )
(m,l € NU{0}), if this function can be represented as:

f(t,e,0(t,¢€)) = Z fn(t,€) exp (inb(t,€)),

n=—oo

and:
1) fu(t,e) € S(m,e0);
o0
def . .
2) [l rmicos)y = Nfollsomeny + Y [0l 1 fallstm.eq) < +00, in particular

n=—oo

o0

£l Fmocnsy = > Ifallsem.eos

n=—oo
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¢
= [p(r,e)dr, p € RT, p € S(m, &), i%lf)ga(t,e):<p0>0.
0 €0

Let f( ,0) € F(m,l,e0,0). We denote V n € Z:

2

L.[f] = % /f(t,e,@) exp(—ind)do,

0

27
1
o /f(t, e,0)df
0

Some basic properties of functions of the classes S(m, ) and F(m, 1, &g, 6) proper-
ties are stated and proved in [12].

particular

MAIN RESULTS
1. Statement of the Problem. Consider the following differential system:

dz;

2
dt = Za'jk(tae)xk + fj(t7579(ta5)) + /’LXj(t7570(t75)7x17x2)7 .] = 1; 27 (3)

k=1

where colon(z1,22) € D C R?, aj € S(m,0), f; € F(m,l,e0,0), X1, X2 belongs
to class F(m,l,e0,0) with respect t,e,60 and analytic with respect z1,22 € D; u €
(0,p0) € R*. Functions aji, f;, X; (j,k = 1,2) are real, and eigenvalues of matrix
(a;i(t,€)) have a form +iw(t,e), where w € RY.

We study a problem of existence of the particular solutions of the classes F'(m*,*,
€*,0) of the system (3).

The system (3) are considered under the following assumptions:

inf t > 0; 4
ot |la12(t,€)| > 0; (4)

inf |kw(t,e) —np(t,e)| =2v>0, k=12, neZ (5)
G(eo)
(means we study the case of absent of the resonance between frequencies w and ¢ in
system (3)).

We note, that similar problem are considered by author in paper [13], but in this
paper sifficiently using the assumption, that parameters x4 and € are related by u” < €2,
where r € N. This condition, though in some cases performed, yet is sufficiently tough.
Therefore in this paper we seek to obtain conditions of the existence of solutions of
these classes, which are not supposed to such a relationship between the parameters
wand €.

2. Auxiliary results. Consider the following system of the differential equations:

o(t,e (il% Zajkt5)§k+fj(t€9)+MX(t€9§17§2)_7_12 (6)

where (&1,&) € D1 C R?, ajy, fj, X; are the same as in the system (3), but (t,¢)
considered as constants.
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Lemma. If condition (5), then 3 pu; € (0, o) such that ¥V p € (0,p1) the

system (6) has a particular solution §;(t,e,6,p) (j = 1,2), which belong to class
F(m,l,e0,0).
Proof. Consider generating system corresponding to system (6):
w(t,e) dg]o Zakt5§k0+f(t50) . (7)
do J J

Easy to show that
ar1(t, e) —inp(t, ) aiz(t,€)
az (t,€) as(t,e) —inp(t, e)
= (w(t,e) = np(t, ) (w(t, €) + nep(t ),
however, based on the assumption (5):

inf |A,(t,e)]=~> >0V neZ
G(go0)

Ay(te) =

Consider the following solution of system (7):

> Ajn(t,E)
Ayt e)

where A, (t,¢) are determinants, which obtained from A,,(¢,¢) by replacing in it the
j-th column by the col(=T',[f1(t,e,8)], —T'n[f2(t, €, 0)]).

Operators L1, Ly has a properties:
1) if f1, f2,91,92 € F(mv Lo, 9)) then L; [flv f2] [91792] € F(ma L, e0, 9) and Lj[fl"’_

g1, f2 + g2] = Lj[f1, fo] + Ljlg1, 92], L [thcfﬂ = cLjlf1, f2] ( =1,2);
2) 3 K; € (0,400) such that

&jol(t,e,0) = Lj[f1, fo] = exp(inf), j = 1,2,

n=—oo

2
ZHL [f1, o)l Pemateo.0) < K1Z||fg | F(m.le0,0)-

j=1

Based on these properties we can state, that &10,&20 € F'(m, 1, €9, 0).
We make in the system (6) the substitution:

5] = §j0(t,€,9) +/j/77j? j = 1527 (8)

where 71,72 — new unknown functions. We obtain:

dnj

plt.e)p Zam (t,e)m + g;(t,€,0) +uzuﬂc (t,e,0)me+
k=1 k=1
+/~1’2H‘(t7€a95n1an27/’6) j = 1727 (9)

where g;(t,e,0) = X;(t,€,0, €10, €20), uji(t, e, 0) = 2Xilbsb080),

1 (0%X;(t,e,0, ,
Hy(t, 2,0, ) = & (225000800 Vg, Gao ¥ Vi)
2 Oy
82X-(~-~) 82X-(---)
2—1 = — L _p2),0<v<l.
+ 011022 i+ 0x3 772) v
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By analyticity of functions X1, Xs the functions g;, ujr € F(m, 1,9, 0), the func-
tions Hy, Hy belongs to class F'(m, [, £9, 0) with respect ¢, €, 6 and analytic with respect
71,72 in some area of these variables, and g;, u;x, H; are real.

Along with the system (9) we consider the linear nonhomogeneous system:

2
dn; .
@(t,E)% = Z ajk(ta E)nkO + gj(t7€7 9)7 J= ]-7 2. (10)
k=1

This system has a particular solution 1,0 = L;[g1,g2] € F(m,l,e0,60) (j = 1,2). We
seek the solution from class F'(m,l,e0,0) of system (9) by the method of succes-
sive approximations, defining the initial approximation n;o(t,¢,0) (j = 1,2), and the
subsequent approximations defining by formulas:

2
js = Lj |g1(t,€,0) + 1Y uin(t,e,0) o1 + p>Hi(t,€,0,m1 01, 02,0-1, 1),
k=1

2

g?(ta g, 9) + MZUQk(ta &, 0)”7’6,571 + M2H2(ta g, 97 771,5717 772,5717 /1') 9
k=1

j=1,2 s=1,2,.... (11)
We denote:

2
Q=<{n,m € F(m,l,e0,0) : Z 115 = mjoll Fm,te0,0) < d5 d >0
=1

By analyticity of functions Hy, Hy IM (d), K2(d) € (0, 4+00) such that Vn3, n3, ni*,
ns* €

2
Z HHj(t’Evevnfangﬁu)HF(m,l,Eo,@) < M(d)’
j=1

2
Z ||Hj(ta57 9777?775,,“) - Hj(tvga eanf*a n;*vﬂ)HF(m,l,sg,O) g
=1

2
S E(d) Y105 = 15 | pemco.0)-
j=1

We denote: u* = max Nlwin(t, €, 0) || Fim.ie0,0)-
Using techniqlfés contraction mapping principle, it is easy to show, that by con-
didtion
2
wK1(d) <2m+1(21 + Du* (Kl(d) Z 9% || F(m1,e0,0) + d) + uM(d)) <dop<d
k=1

all approximations 7n;s (j =1,2; s =0,1,2,...) remain inside 2. And by condition

pEK (d) (2™ (2N + D + pKa(d) < 1
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the process of successive approximations (11) converges to the solution 7,7s from
class F(m, 1,9, 0) of the system (9), and this solution are real.
Lemma are proved.
3. Method of solving the problem. We make in the system (3) the substitu-
tion:
xj:é.j(tagvovﬂ>+yj’ J=12 (12)

where §(t,e,0, 1) (j = 1,2) — solution from class F'(m, 1, g0, 0) of system (6), and y1, y2
— new unknown functions. We obtain:

2 2
d .
L= age(t )i+ ehy(tie,0,0) + p Y wlt e Oyt
k=1 k=1
2
+M2 Zvjk(t7€7 07M)yk + M}/vj(t75707y17y27/1‘)7 j = 17 27 (13)
k=1

where real functions h; from class F(m — 1,1, €0, 0), real functions

2
02X (t,e,0,&0 + vipm, Exo + viung)
vk =

(“):ck axs s

s=1

from class F'(m,l, eg,0), real functions Y7,Ys from class F(m,l, e,0) with respect
t,e, 0, analytic with respect y1,y2 in some area of these variables and contain terms
not lower than second order with respect v, yo.

We make in the system (13) the substitution:

0 1 .
ijEy](- )+y§- =12,

where y%l), yél) — new unknown functions, and y§0), yéo) are defined by formulas:

y§0)(t,5797u) = Ljlhi(t,e,0,p), ha(t,e,0,p)], j=1,2.

As result we obtained:

dy " & 1 1 & 1
ar = 20t R0, 0,50 e 1, 0,0) 4 4 3wl 2, O+

2 2
+:u’2 Z vjk(tv & 97 u)yl(fl)—i—p,g Z Wik (ta & 97 M)y](gl)'i_M}/J(l) (ta &, 91 y§1)7 y§1)7 M)v ] =1, 27
k=1 k=1
(14)
where h;l) € F(m — 2,1,¢e0,0), 0(1),wjk € F(m — 1,1,¢e0,0), Yj(l) belongs to class

J
F(m —1,1,e9,0) with respect t,e,0, analytic with respect y§1),y§2) in some area of
these variables and contains terms not lower than second order with respect yil), yél).

To system (14) we apply the transformation, which reducing its to almost diagonal

kind:

y%l) = a12(t>5)y§2) + al?(tag)y§2)a
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SV = (—iw(t,e) — an (t,)yt? + (iw(t, ) — ar1(t,e))y?. (15)

Determinant of transformation (15) is equal 2iw(t, €)a12(t, €), therefore his non-degeneracy
are provided by condidtions (4), (5). As result we obtain:

dy?

2
= (—1)jiw(t,s)y§-2) + EZBjk(t,s) ) 4 52h(2)(t ,0, 1)+

k=1

2

2
+peaP (te,0,0) + 1> ulP (e, 0y + 12 0Pt e, 0, w0+
k=1 k=1

2
e Y w (e, 0, my? + uY Pt 0,57 w8 ), 5 =1.2, (16)
k=1

where 8, € S(m —1,¢9), h;g) € F(m—2,1,e0,0), agi) € F(m —1,1,&9,6), functions
@ (2 '

ujy, v, are defined by formulas:
; 2 2
@2 1 a1y ji(w? +afy) j_1iarn
== L (ugg — —qyi TR 171012
i =3 (u11 + uz) + % (u11 —u2) + (=1) Yot uig + (—1) 5, U2t
N PO S T L AMPOON H § Gt Wok) MOV V KLUE I
b = o \U11 U2 5y \W11 T U22 Sears 12 5 Ut
(J # k),
RO iar, i(w? 4 a?)) _ia
Vs 2(1111 +vg) + % (vi1 —v2) + (1) it v12 + (— ) S V21,
o2 = Lo ) (1 g ) HL gt
ik = 5\ T U2 o, V11T V22 i 12 o U2
(J # k).

Obviously, that ugk)7 J(i) € F(m,l,e0,0) (j,k=1,2).

Now we increase the order of smallness with respect parameter ¢ of the off-diagonal
elements in matrix of system (16). For this purpose in system (16) we make the
substitution:

@ _ @ _ et o o _ Balte) o

_ _ (3) 17
Y1 Y 20(t, 2) Y275 Y2 2u(t, ) YTy (17)

Choose €1 € (0,¢0) from condition:

Bia(t,€)Ba1(t, )
w2(t, e)

This condition guaranteed the non-degeneracy of transformation (17), and as result
its use has been:

2 sup

G(eo)

< 4.

dy'¥ ,
L (<1t €) + 285, ) +522%k (t. )y + €7 (¢ e.0, ) +
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+,uea (ts&u +u2u()t€0 +u22 te@luy(?’)
k=1

+uezw (toe, 0,y + uY P (e, 0,97 48V ), j =12, (18)

where o, € S(m —2,¢1), hgg) € F(m—2,l,¢e1,0), 03(3) (3) € F(m—1,le,0), Y(B)

belongs to class F(m —1,1,¢1,0) with respect ¢,¢,60 and contalns the terms not lower

than second order with respect y§ ), y(s).

With system (18) we consider the linear homogeneous system:

~ 2
dy; . ~ ~
= (WY ieo(t,e) + <Py (8,0))5; + Yy (8 e, 0)F+
k=1
2
+02 >0l (b e, 0, )G, §=1,2. (19)
k=1

In paper [12] shawn that by condition (5) 3 e2 € (0,e1), p2 € (0,p1) such that
Ve € (0,e2), V u € (0, p2) exists non-degenerating transformation of kind:

2
37]' = gj + ijk(t7€707u’)gk7 .] = 1727 (20)
k=1

where ¢, € F'(m — 1,1,e2,0), which reducing the system (19) to kind:

dy; N -
d7j = ((—=1)iw(t, ) + eB;(t,€) + pAjolt,e) + p* A1 (t, €, 1)y, +
2 o~
e dik(t,e,0, 1)y, 5= 1,2, (21)
k=1

where \jo(t,e) =T [ugi) (t,a,@)}, Mt e,u) =T v](?)(t,s,ﬂ,u)} € S(m,e2), dji €
F(m —1,1,e2,0). By using this result through substitution

2
y](S) = yj(4) + ijk(t,é", 97N)y1(g4)7 .7 =1,2, (22)
k=1

where 1), — the same as that in formula (20), we reduce by € € (0,e2), p € (0, p2)
the system (18) to kind:

dyj(»4)

= ()it ) + 855 (1,2) + uhjo(t,2) + pP A (2 )y +

+52h(4(t59u)+u60 (t,e,0, 1) +€22a te,u)y,(f)—l—
k=1
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+uezw (e, 0wyt + pY P e, 0,50y ), 5 =12, (23)
k=1

where h(-4) € F(m — 2,1,e9,0), Jj( ) w](t) € F(m — 1,1,e9,0), ai € S(m — 2,e9),
Y(4) € F(m—1,l,e9,0) with respect t,&,0 and and contains the terms not lower than

second order with respect y§4), y§4).

We denote:
Ajg(t,{:‘,,u) = (71)]%‘)@75) + &‘ﬂ(t,E) + ,U)\jo(t,é') + H’z/\jl(tagnu) (] = 13 2)

By condition (5) 3 e3 € (0,e2), uz € (0, u2) such that V e € (0,e3), p € (0, u3) the
following inequality is true:

Gi(nf) |Aja(t, e, ) —inp(t,e)| 2y >0, j=1,2, ne€ Z. (24)
€3

Due to inequality (24) the functions

(t,e.0, )]
y {0 ‘ ‘
te 0 9), j=1,2
(t.e,0,p) E Aﬂ t E u) o) exp(inf), j =1,

belongs to class F'(m — 1,1,e3,0). We make in system (3) the substitution:

Y = pey " (te ) + ey, j=1,2, (25)
where y§5), y§5) — new unknown functions. We obtain:
dy(-5)
djt = Nj2(t, &, 1)y, ) +5h(5)(t £,0,u) +62Za (t,e, )y (5)+
k=1
+;L€Zw (toe,0, )y +ueY, " (t,e,0,4° 48 ), j=1,2. (26)

All coefficients of this system belongs to class F'(m — 2,1,e3,0), nonlinearities Y1(5),
Y2(5) analytic with respect y§5), yé‘g) in some area of these variables.

With system (26) we consider the linear nonhomogeneous and diagonal system:

5
dﬁ‘)) = Npa(toe, pyly) +eh$ (te,0,0), j=1,2. (27)
Suppose one of the following two conditions:
ReXjo(t,e) = Redji(t,e,u) =0, j=1,2. (28)
Gl(rg) [ReXjo(t,e)| =72 >0, j=1,2. (29)

Then from results of paper [13] follows, that 3 €4 € (0,e3), pa € (0, pg) such that

Ve € (0,e4), V o € (0,p4) the system (27) has particular solution y( ) (=12
which belong to class F(m — 2,1,e4,0).
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We construct now the process of successive approximations, defining the initial ap-

proximation yj(-g) (t,e,0,1) (j =1,2), and and the subsequent approximations defining

as solutions of class F(m — 2,1,e4,60) of the linear nonhomogeneous systems:

dy]@
dt

2
= \ja(t,e u)yjs) + Eh( (t,e,0,p) + &2 Z a§.‘,;) (t,e,u)y,(:zfl—l-
k=1

+,u€Zw ts@uy,ii 1+u5Yj(5)(t,5,0 ygi 1,y§55) L), 7=12; s=1,2,....

(30)

Using techniques contraction mapping principle, it is easy to show, that 3 ¢35, us €
(0, +00) such that V e € (0,e5), p € (0, us) the process (30) converges to the solution
y](-s) (t,e,0,pu) (j =1,2) from class F(m — 2,1,e5,0) of system (26).

4. Principal Result. Thus the following theorem.

Theorem. Let the system (3) satisfy the conditions (4), (5) and one of the con-
ditions (28), (29). Then 3 * € (0,¢¢), p* € (0, po) such that ¥ p € (0, u*) the system
(8) has a particular solution x;(t,e,0,u) (j =1,2) from class F(m —2,1,¢*,0).

Consider now the linear nonhomogeneous system:

dz;

2
dt = Zajk(tas)wk + fj(tvgag(tvg))v j = 1727 (31)

where a;i, f; the same as in system (3).

Consequence 1. Let the system (31) satisfy the conditions (4), (5). Then &g €
(0,e0) such that system (31) has a particular solution z;(t,e,0,u) (j = 1,2) from
class F(m —2,1,¢g,0).

5. Examples.

As examples of the application of our results establish the conditions for the
existence of solutions from class F(m — 2,1,e*,6) for systems corresponding to the
known in nonlinear mechanics equations of Duffing and Van der Pol.

1. Consider the system of Duffing:

d d
% = T2, % = —w?(t,e)xy + b(t, e)sind(t, ) + px?, (32)

t
0(t,e) = [ p(r,e)dr, w,b,p € S(m,ep); w,b,p € RT, mf cp >0, 1nf w > 0.
0

I
[t

Obviously the system (32) has a kind (3), where ain = 0, ags = 0, aqa
a1 = —w?, f1 =0, fo = bsin, X; =0, Xy = z5.
Assume that the condition (5). Condition (4) holds obviously. Then

b b
§10 = —5—— sinf, & = % cosf, un =0, u1z =0,
w* — @ ws =

3b* . 2 2 it
e e T sin” 0, gz = 0,uy) = —ufy) = 2w(w? — p2)?

.2
sin“ 6,
w2 — p2)2
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3ib?
D Redjo=0(j=1,2),

SR R

111 =0, v12=0, v90o =0, v21 =6 (M sin 6 + Vl/“h) m,

(2) _ (2) _ 3ia12 b ino
U1y Cb5) o (wgwg sinG +vipn | m,

where 0 < 11 < 1, 1 — the real function from class F(m,1,eq,6).

Hence the functions Ug), vg) - are purely imaginary, therefore ReA1; = Relgs =

0. So true conditions (28). Hence

Consequence 2. Let system (32) satisfy condition (5). Then ez € (0,e0), pr €
(0, o) such that ¥ p € (0, pur) the system (32) has a particular solution x;(t,e,0, )
(j =1,2) from class F(m — 2,1,e7,0).

2. Consder the system of Van der Pol:

d d
% = T2, % = —w?(t,e)xy + b(t, e)sind(t, ) + p(1 — z3)o, (33)
functions 6, b, w, aji, f; — the same as in system (32), X; =0, Xo = (1 — 2%)z,.
Assume that the condition (5). Condition (4) holds obviously. Functions &;0(t, ¢, 6)
(j =1,2) — the same as in system (32). Then:

(pr 2

Uil = O7 U2 = O, Ug1 = —m Sin20, Ug9 = 1-— m sin2 07
2 12
@) b .9 ipb .
=1-——— 00— ——————— 20
Uuq] W= ) sin P(a? — )2 sin 20,
2 12
2) . 9 b .
=1-——- 0+ —F——— 20
Ugg (w2 — 902)2 sm” 0 + 2w(w2 — @2)2 Sin 20,
b2
Aip=1— ————— =1,2
j0 2(0)2 _ @2)2 (.7 ’ )
Thus, when the unequality
b(t
§= sup (t2) < V2, (34)

G(eo) w2(ta 5) - 902(157 6)

is true, then condidtions (29) with constant v = 1 — §%/2. Hence
Consequence 3. Let system (33) satisfy condidtions (5) and (34). Then J eg €

(0,e0), ps € (0, o) such that ¥V p € (0, ug) the system (33) has a particular solution
zj(t,e,0,un) ( =1,2) from class F(m — 2,1,¢3,0).

CoONCLUSION. Thus, for the system (3) the sufficient conditions of the existence
of the particular solution from class F(m — 2,1,e*,6) (0 < &* < gg) are obtained.
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