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DISTRIBUTION OF THE WEIGHTS
OF THE KLOOSTERMAN CODE

Yaun Txe Biub. Posnoainennsi Bar KiocrepmaHiBCcbKOro Koay. Bupuaiorbest
p-apui KiocrepmaniBebki komu noBxkunu p° — 1 B andasiti Fy, axi € nukaivHUMN KOIaMH,
JyaJbHEMHE 10 Kozis Meaca mosxuun p° — 1. Mu oTpuMyeMo BaroBe pO3IOJiIeHHs KOJIiB
Menaca B Tepminax ogHoBuMipHux cyMm Kiocrepmana HaJ KUIbIEM IIJIUX TayCOBUX YUCEJI.
3maiizieno HerpuBiaabHy OniEKY cymn Knocrepmanisenkux cym k(1, az?; p), a € Gp, KoM @
npobirae IpuUBeEHy CHCTEMY BUYETIB 332 MOLYJIEM D B Z.

Kuaro4yoBi cioBa: cymu Kitocrepmana, koam Mesaca, 1iyii raycosi ducia.

Yaun Txe Bunb. Pacnpenenenue BecoB KiiocrepmaHoBcKoro koga. I3syuqa-
1orcst p-apubie KitocrepManossr Koxpl auabl p° — 1 B andasure Ty, KoTopble ABJIAIOTCA
IUKJIMIECKIMI KOJAMHE, IyaibHBIME Komam Memaca mmaaer p? — 1. MEel mosyuaem BecoBoe
pacupeenenne Koo Mesaca B TepMUHAaX OIHOMEDPHBIX cyMM Kiocrepmana HaJl KOJBIIOM
LEJIBIX TayccoBbIX yuces. Halinena HeTpuBHasibHAs OLNEHKA CyMMbl KJIOCTEPMAHOBBIX CyMM
k(1, az?; D), & € Gp, KOra o IpoGeraeT NPUBEIEHHYIO CUCTEMY BBIYETOB 110 MOJYJIIO P B Z.
Kurouessbie cioBa: cymmbl Kiocrepmana, koipl Mesaca, 1iesible rayCcCoOBbI UCIIA.

Tran The Vinh. Distribution of the weights of the Kloosterman code. Stud-
ied p-ary Kloosterman codes of length p? — 1 in alphabet FF, which are the cyclic codes of
the dual Melas code of length p? — 1. We obtain the weight distribution of the Melas codes
in terms of one-dimensional Kloosterman sums over the ring of Gaussian integers. Derived
the non-trivial bound of sum of the Kloosterman sums k(l,a22;p), a € Gp, when a runs
the system of reduced residues modulo p in Z.

Key words: Kloosterman sums, Melas codes, Gaussian integers.

INTRODUCTION. Let I be the field with ¢ = p™ elements and let § be a primitive
element of I, over IF,,. Let m;(z) denotes the minimal polynomial of 6% over F,,.

Definition 1. The simplex code S(0) is the dual of the cyclic code over Fy of
length n = g — 1 generated by minimal polynomial m1(x) € F,[x] for the primitive
element 6.

Definition 2. The Melas M(0) code is the cyclic code [n,2m] over I, generated
by ma(z)m—1(x).
The code M () has a parity matrix
10 6 ... 012
1ot 672 ... g2
considered as a matrix over IF),.
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Definition 3. Let C' be a code over Iy of length n. Then

C|Fq = CﬂIFp

is called the subfield of C (or restriction of C to I, ).

C |]F is a code over IF;. Its minimal distance cannot be better than the minimal
q

distance of C.
Consider the trace mapping Tr : Iy — I such that for a € Iy, we have

Tr(a) := (tr(a), tr(af), ..., tr(ad™ 1)), (1)

where tr(8) = B+ B2 + 87 +---+ 87" €F,.
If C is a code over I, then

Tr(C) == {tr(c)|ce C} C Iy

is called the trace code of C.
Delsarte [7] proved that for a code C over I, the following equation

(qu:ﬁmﬂ

holds.

This Delsarte statement is often used for study the dual codes.

From Definition 2 it follows that the Melas code may be defined as a restriction of
a cyclic code over I on IF), with two zeros 6 and 6~!. Thus by Delsarte theorem, we

conclude that the dual of Melas code M () is the direct sum (as vectorial subspace)
of two simplex code S(#) and S(671), i.e.

M@+ = {tr(azy + B2 ), ... tr(az, + 5m;1)|a, BeF,}

(here we fixed some sorting of non-zero element from ).

Obviously, that M (0)* contains ¢ codewords. The code M (8)+ we will call the
Kloosterman code over IF,,.

In the works [5,6,8] the weights of dual code of M (#) and other codes are given
for ¢ = 2 using properties of the Kloosterman sums over a finite fields of characteristic
2. In [11] J. Wolfmann determined the weight distribution of M(6)+ for p = 3. G.
van der Geer, R. Schoof and M. van der Vlugt (see [6]) derived a formula for the
frequencies of the weights in ternary Melas codes.

Our aim is to investigate the distribution of weights for the p-ary dual Melas codes,
where p is a prime number, p =3 (mod 4), and m =2, i.e. n =p™ —1 = p? — 1.

NOTATION. In this article we denote:

7Z,,G — the ring of rational integers and Gaussian integers, respectively;
Z,,G, — the classes of residues in Z (respectively, in G) modulo p;

Z;, Gy — the classes of reduced residues in Z, (respectively, in Gp);
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wt(a) — the Hamming weight of vector a € IFy;

C+ — the dual code of C;

2~ — the multiple inverse to 2 € G modulo p, i.e. z-27" =1 (mod p).

Also we consider "<” and ”O” as equivalent symbols.

AUXILIARY ARGUMENTS. Let m(a, 3) denotes a codeword of dual Melas code
M*(0) associated with pair (o, 8) € G2, and let wt(m(a,3)) denotes a weight of
m(a, ). Clearly that wt(m(«, 8)) = n — z(«, 8) with

2(a, B) = #{z € Gj|tr(az + Bz~") = 0}. (2)

For considered case we have tr(y) = v + 7, where 7 is a complex conjugate to -,
so tr(y) = 2%y.

Next we will express the Hamming weight wt(m(a, 8)) by means of the Kloost-
erman sum over G,

Ko, fip) = 3 e (555), 3)
z€G
It well-known that

p*—1 if a=8=0,
-1 i =0 0

(. B:p) = A S 4)
€(a,ﬁ)~p if aﬂ #(L

here |e(a, B)] < 2.

Since k(a, 8;p) = k(1,a8;p) if a # 0, we consider the h-th moment K of the
Kloosterman sum k(1,) that is given by

K™= 3" (k(1,7:p)" (5)

veG),

In terms of K™ we will study the distribution of weight of the M()* code.

Lemma 1. Let 0 is a generated element of the group G},. Then

0 7:f 05::6:: ;
p2__1 if O{ZZO, B:# Oa
wt(m(a, §)) = or a£0,6=0, (6

WNEZD 1S (1aB%p) if af#0.

zZ€ZLy,



60 Tran The Vinh.

Proof. The case a8 = 0 is trivial. Let a8 # 0. Then we have

am+Bz_1

Ao = 30 o 3 )

z€GY © 2€Zy

p—1 1
D) S
p 0

;ceG;; z=
2 p—1 2. -1
p-—1 1 pitretapz?e™l)
= + — E e P =
p pz—l
pP -1

151
+ - k(1,aB2% p).
LS kLas)

Hence,

p—1
wi(m(e, ) =n — =(a, ) = p* — 1 - (p2; 1 +;Zk<1,aﬁz2;p>> =
z=1

1 1

p—1
=@’ -1)(1- =Y k(1,082 p).

P
Cosequence 1. For aff #0
wt(m(a, B)) = p* 4+ 3pcosp, 0 < ¢ < 2.

The following Lemma shows that an estimate of wt(m(a, 3)) can be improved.

Lemma 2. Let o € G;, Then

p—1
Zk(l,azQ;p) = 2p? cos pg + 1.
z=1
Proof. We have
p—1 p—1 2 -1
itr ztaz“x
Zk(l,az2;p) = et (stege—) _
z=1 z=1 ZEG;‘)
p—1 _
— emtr(%) <Z emn(m p1>.22 — 1) —
IGG; z=0

= ¥ emin(5) ((tr(zl)) G(1,p%) — 1> ,
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where G(1,p?) is the Gauss sum over IFpe, (5> is the Legendre symbol.
Take into account that G(1,p?) = p if p=3 (mod 4), we yield

p—1
t oxT
E(1,az%p) =p E < ! ) emitr(57) + 1.

z=1 z€G,

The sum in right-hand side in last equation is the Kloosterman sum k, («, 3;p)
with the quadratic character xy. The Kloosterman sum with character admits the
same estimate as the Kloosterman sum k(«, 3; p) over G, Thus we obtain

p—1
Zk(l,az2;p) =2p%cos g+ 1, 0 < g < 2.
z=1
|
Cosequence 2. For aff #0
wi(m(a, ) = p* —p—1+42pcos g, (7)

where 0 < p < 27.

MAIN RESULTS

1. Distribution of the Hamming weight for the Melas code. We will
determine the weight distributions of the Melas code as follows: first, we study the
duals of the codes M(6) and then by the MacWilliams identities related the weight
distribution of the dual codes to the weight distribution of the Melas codes them-
selves, we will obtain the weight distribution of the codes M (6).

We need two more of lemmas.

Lemma 3 (V. Pless [10]). Let C be a p-ary linear code of length n and of dimen-
sion k and let A; (respectively, A}-) denotes the number of codewords of weight i in
C (respectively, in C+). Then for h=0,1,2,..., we have

n min(h,n) TL—Z)
ST e C ) R

where

d) J'Z ( )ih

is a Stirling number of the second kind.



62 Tran The Vinh.

Denote
p—1
E(y) =Y k(1,92%p),
z=1
=0 _ TNE
K7 =Y k' t=012,....

v€G;

Lemma 4. Let M; denote the number of code words of weight i for the Melas code
M (0) overZ,. Then for every positive integer h, the moment KM of the Kloosterman
sum k(1,v;p) is given by

—(h—1)

—(h —(0) —(1
(p2_1)(p_1)hK():f(M077Mh)+g(K( )aK( )7a7K )v (9)

where

h h 2 1
f(Mo, My, ..., M) =p* > M > j1S(h, )p" ( jjg _i_; ) (10)
i=0 j=1
g(BL . KDY = —(p? - (" (p? - 1)), (11)

Proof. We purpose a scheme of proof the Theorem 13 in [9]. Take C = M (6)*
in Lemma 3, and consider the left-hand side of the identity (8). By Lemma 1 for each
pair (o, B) € GZQ, with a8 = 0, but « or 3 is not zero, the weight wt(m(c, 8)) = p? — 1
(all together we have 2(p? — 1) such pairs). For every from other pairs («, 3) there
exist 7 € G such that a8 = . More over, the same v corresponds exactly (p® — 1)

p—1
pairs (a, 3) € G, with weight (p*—1) (1 - %) - % > k(1,72%;p) by Lemma 1.
z=1
Thus the left-hand side of the identity (8) equals

z_: (p2 —1- z)hMll = Z (p2 —1-— Wt(m(a,ﬁ)))h =

i=0 a,BeG)y
_ Pl 1o N
DY) ( ~1 pkm) -

h
-0t Y S - H) -

h
p‘—1
:(p2_1)h+ h Z

Since in our case the dimension of M (0) is k = 4, the right-hand side of (8) equals

" h p2 1—12
M; i\S(h, j)p*~I I 12
; ;J (hy j)p <p2_1_j> (12)

Hence, Lemma 4 is proved completely. |
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Lemma 4 establishes link between the number of codewords of weight ¢ in M (6)
and values of K9, But it is easy to show that K can be expressed by values of
the /-th power moment K ) of Kloosterman sums k(1, o; p), where

K= 3" (k(1,:p))", £=0,1,2,....
aeGy

Thus below we give estimates for K(*) over G,,.

2. Moments of Kloosterman sum over G,. Evaluations of the n-th power
moments K (") of Kloosterman sums represent a big interest not only for the studying
the distribution of weight of special linear codes, but also for investigation of individual
values k(1,;p). Relatively, easily derive the formulas for the first four moments of
Kloosterman sums over Z,

KO =1, K& —p?_p_1, K® = (g) 219p41, KW =2p° 3p2 p—1, (13)

(see [4, §4.4]).
For the case h = 5, we have (see, [11])

KG) = (%’) 4p° + b(p)p? +4p+1if p>5 (14)

where |b(p)| < 2p + 5.

For h = 6 H. Salié¢ and H. Davenport independently proved that K = O(p*).
For h = 7 R.J. Evans [?] obtained the estimate |K(7| < 29p* + 14p> + 14p> + 6p,
and Ping Xi, Yian Yi [11] constructed an asymptotic representation for K ") n>T7,
when p grows to infinity.

The behaviour of K over G also represents a certain interest. It is easy to show
that

KO =1 K@ =p'—p2 -1, |[KO| <ep* 0<c<3. (15)

In greater details the case of h = 3 we consider now.
We have

a(etytz)+z 14y 14271 )

EOp) =Y k(Lasp)’ =Y. 3 s ’

aeGy aeGy z,y,2€G, "
-1, -1, _—1
it 2ty “d=z 7 ca(zty+z)
= g e ( P ) g 627” p —11] = (16)
m,y,zGG; aeGy
1, 1,1
Z ditr ( —ty__+=
= N(p) ep ( P ) —+ 1=
©,y,2€G},

z+y+2=0 (mod p)

The exponential sum in right-hand side of (19) can be estimated by the following
theorem.
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Theorem. Let F, be a finite field with q elements and let f(z,y,z) € Fyz,y, 2]
and V be an algebraic manifold produced by the polynomial f(z,y,z). If for given
a,B,v€ ¥, and all T € ¥y except O(1) values, the polynomial

Fr(z,y) = flz,y,m)v " —ay e = By ly

is absolutely irreducible polynomial, then the following bound

Z eﬂitr(L‘erﬁ;y+'yz) <q (17)

(zy,2)EV UTF

holds.

This statement is a generalization of the result of C. Hooley from [3].
We apply this theorem to construction of bound K (%) (p). We have

-1,,-1,_ -1
it x +v +z ) . z+y+z
Z eﬂ-l r( i = Z eﬂ-ltr( ’ ).

z,y,2€G], z,y,2€G)
z+y+7=0 (mod p) z7 4y 4271=0 (mod p)

The condition 27! +y~1 4+ 271 = 0 (mod p) is equivalent to xy + zz +yz = 0
(mod p). Let us f(z,y,2) = zy + zz +yz and z = 7 — (x + y). Then in notations of
theorem we have F.(z,y) = 2y + (x +y)(7 — 2 —y). In order the polynomial F, (x,y)
was absolutely irreducible modulo p it is sufficient the fulfilment of a condition the
system of equations

%—fz?x+y+7w:0,

%—fzx—l—Zy—FTw:O, (18)

%:x—f—y:oj

where K(z,y,w) = w?F, (%, %) has not solutions (zo, yo, wo) with wg # 0 for all
values 7 € IF, except O(1) among them.
But the system (21) has not solutions (x, yo, wo) with wg # 0 if 7 # 0. Hence,

—1,,-1, -1
it 2ty 4=
> () o,
x,y,2€G,
z+y+2=0 (mod p)

and consequently we proved that K®) < p?.

CONCLUSION. Studied p-ary Kloosterman codes of length p® — 1 in alphabet F,
which are the cyclic codes of the dual Melas code of length p?> — 1. We obtain the
weight distribution of the Melas codes in terms of one-dimensional Kloosterman sums
over the ring of Gaussian integers. Derived the non-trivial bound of sum of the
Kloosterman sums k(1, az?;p), @ € G, when « runs the system of reduced residues
modulo p in Z.
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