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Let ¢ > 2 be a fixed integer. Given an integer n > 2 and writing its prime factorization
as n = pip2---pr , where p1 < p2 < --- < pr stand for all the prime factors of n, we let
{(n) = P1pz - Dr, that is the concatenation of the respective base ¢ digits of each prime
factor p;, and set £(1) = 1. We prove that the real number 0.£(1)£(2)¢(3)¢(4) ... is a normal
in base ¢. In fact, we show more, namely that the same conclusion holds if we replace each

Di by S(pi), where 0S(z) € Z[z] is an arbitrary polynomial of positive degree such that
S(n) > 0 for all integers n > 1. We prove analogous results and in particular that, given any
fixed positive integer a, the real number 0.£(2 4+ a)¢(3 4+ a)l(5+a)...¢(p+a)..., where p
runs through all primes, is a normal number in base q.
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INTRODUCTION. Given an integer ¢ > 2, a g-normal number (or a normal number)
is a real number whose g-ary expansion is such that any preassigned sequence of length
k > 1, of base ¢ digits from this expansion, occurs at the expected frequency, namely
1/q".

The problem of determining if a given number is normal is unresolved. For in-
stance, fundamental constants such as =, e, v/2, log2 as well as the famous Apery
constant (3), have not yet been proven to be normal numbers, although numerical
evidence tends to indicate that they are. Interestingly, Borel [2] has shown that al-
most all real numbers are normal, that is that the set of those real numbers which
are not normal has Lebesgue measure 0.

One of the first to come up with a normal number was Champernowne [3] who, in
1933, was able to prove that the number made up of the concatenation of the natural
numbers, namely the number

0.123456789101112131415161718192021...,

is normal in base 10. In 1946, Copeland and Erdds [4] showed that the same is true if
one replaces the sequence of natural numbers by the sequence of primes, namely for

the number
0.23571113171923293137...

In the same paper, they conjectured that if f(z) is any nonconstant polynomial whose
values at © = 1,2, 3, ... are positive integers, then the decimal 0.f(1)f(2)f(3)..., where
f(n) is written in base 10, is a normal number. In 1952, Davenport and Erdés [5]
proved this conjecture.

In 1997, Nakai and Shiokawa [15] showed that if f(x) is any nonconstant poly-
nomial taking only positive integral values for positive integral arguments, then the
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number 0.f(2)f(3) f(5) f(7)...f(p)..., where p runs through the prime numbers, is nor-
mal.

In a series of papers (8], [9], [11], [12], we created various families of normal
numbers. In particular, we showed that the numbers

0.p(2)p(3)p(4)p(5)... and 0.P(2)P(3)P(4)P(5)...,

where p(n) and P(n) stand respectively for the smallest and largest prime factors of
n, are normal numbers.

Also, in two papers [7], [10], we used the fact that the prime factorization of
integers is locally chaotic but at the same time globally very regular in order to create
very different families of normal numbers.

Here, we create a new family of normal numbers again using the factorization of
integers but with a different approach. Write each integer n > 2 as n = pips -+ pr,
where p; < po < -+ < p, represent all the prime factors of n. Then, setting ¢(1) =1
and, for each integer n > 2, letting ¢(n) represent the concatenation of the primes
P1,D2, ---, Pr, we show that by concatenating £(1), £(2), £(3), ..., we can create a normal
number, that is that the real number 0.£(1)¢(2)¢(3)... is a normal number. Actually,
we prove more general results.

NOTATION. The letters p and 7 with or without subscript will always denote
prime numbers. We let o stand for the set of all prime numbers, 7(z) for the number
of prime numbers not exceeding x and 7(x; k, 1) for the number of primes p < = such
that p = [ (mod k). Moreover, we set li(z) := ; 1odgtt' Also, we denote by ¢ the
Euler totient function and by ©(n) the number of prime factors of n counting their
multiplicity. The letters ¢ and C, with or without subscript, always denote a positive
constant, but not necessarily the same at each occurrence. At times, we write x; for
log x, x5 for loglog x, and so on.

Let ¢ > 2 be a fixed integer and let A; =0,1,2,...,¢ — 1. Given an integer ¢ > 1,
an expression of the form ,7s...3;, where each i; € A, is called a word of length t.
Given a word «, we shall write A(a) = ¢ to indicate that « is a word of length ¢. We
shall also use the symbol A to denote the empty word. For each t € N, we let Afl stand
for the set of words of length ¢ over A;, while A7 will stand for the set of all words
over A, regardless of their length, including the empty word A. Observe that the
concatenation of two words «, 8 € A7, written af3, also belongs to A7. Finally, given
a word a and a subword S of «, we will denote by vg(«) the number of occurrences
of B in «, that is, the number of pairs of words g1, pe such that pi Sus = .

Given a positive integer n, we write its g-ary expansion as

n=¢n)+en)g+- -+ et(n)qt’

where ¢;(n) € A, for 0 < i < t and €¢(n) # 0. To this representation, we associate
the word
n= eo(n)el(n)...et(n) € Az+1

For convenience, if n < 0, we let 7 = A. Observe that the number of digits of such a

number n will thus be A(72) = H‘;igj +1.
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Finally, given a sequence of integers a(1),a(2),a(3), ..., we will say that the con-
catenation of their ¢g-ary digit expansions a(1)a(2)a(3)..., denoted by Concat(a(n) :
n € N), is a ¢g-normal sequence if the real number 0.Concat(a(n) : n € N) =
0.a(1)a(2)a(3)... is a g-normal number.

MAIN RESULTS

1. Statement of the problem. Let ¢ > 2 be a fixed integer. From here on, we
let S(x) € Z[z] be an arbitrary polynomial (of degree rg) such that S(n) > 0 for all
integers n > 1. Moreover, for each integer n > 2, we write its prime factorization as
n = pips---pr, where p; < py < --- < p, are all the prime factors of n and set

£(n) :== S(p1)S(p2)...S(pr),

where each S(p;) is expressed in base g. For convenience, we set £(1) = 1.

Theorem 1. The real number
&:=0.(1)0(2)£(3)L(4)...
is a g-normal number.
Theorem 2. Given an arbitrary positive integer a, the real number
n:=0L24a)l(3+ a)l(5+a)..L(p+a)..,
where p runs through all primes, is a ¢-normal number

Let 1 = dy < dy < -+ < dr) = n be the sequence of divisors of n and let
t(n) = S(d1)S(dz2)...S(dr(n)). Then, let

0 := 0.Concat(t(n) : n € N),
k = 0.Concat(t(p+a):p € p),

where a is a fixed positive integer.
Theorem 3. The above real numbers 8 and k are g-normal numbers

Let S(x) be as above and let Q(z) € Z[z] be such that Q(n) > 0 for each integer
n > 1. Then, consider the expression

Qn):= [ »*=pw2--pr,
p*]1Q(n)

where p; < pa < -+- < p, are all the prime factors of Q(n), so that

6(Q(n)) = S(p1)S(p2)---S(pr)-

Then, let

a = 0.Concat(¢(Q(n)) : n € N),
B = 0.Concat({(Q(p)) : p € p),
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Theorem 4. The above real numbers o and beta are both g-normal numbers.

Let Q(z) be as above. Then, let 1 =€ < eg < -+ < es5(n) be the sequence of all
the divisors of (n) which do not exceed n, consider the expression

h(Q(n)) := S(e1)S(e2)...5(e5(n))

and set
1 = 0.Concat(h(Q(n)) : n € N)

Theorem 5. The above real number ¢ is a ¢-normal number.
2. Preliminary lemmas.

Lemma 1. Let S € Z[x] be as above. Given a positive integer k, let 81 and Bo
be any two distinct words belonging to AZ. Let cg > 0 be an arbitrary number and
consider the intervals

Jw 1= {w,w—i— (w>1).

_w
log® w

Further let w(Jy) stand for the number of prime numbers belonging to the interval
Jw. Then,

m Z ”’51(%)_%2(%)‘ =0  asw—
v PEJw

Proof. This result is a consequence of Theorem 1 in the paper of Bassily and
Katai [1].

Given an infinite sequence v = aias... € AqN and a positive integer T', we write y7
for the word ajas...ar.

Lemma 2. The infinite sequence v is a g-normal sequence if for every positive
integer k and arbitrary words B, P2 € A’;, there exists an infinite sequence of positive
integers Ty < Ty < --- such that

. log Ty i1 .
lim —2-mH g
nne log Ty ’ (@)
. 1 .
Jim 7 |ve, (v™) =g, (") =0 (i)

Proof. It follows from conditions (¢) and (i¢) that
1 T T
T|Vﬁl(’7 )71/52(7 )| —0asT — o0
and consequently that

1
s 6T = 3 07| S0 as T o )
B2 Ak
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But since

Y va(")=T+0(1)

B2c Ak

it follows from (1) that

1

T T)

vg, (7 —0asT — o0

A
thereby completing the proof of the lemma.
Lemma 3. If 1 < k< zand (k1) = 1,

3z
(k) log(x/k)’
Proof. This is Theorem 3.8 in the book of Halberstam and Richert [14].

m(x; k1) <

Lemma 4 (Bombieri-Vinogradov Theorem). For every constant A > 0, there
exists a constant B = B(A) depending on A, such that for large values of x, the
following estimate holds:

m(y) x

o) | " logz

max i<a<s |7(y; b, a) —
(a,b)=1

y<z

b<Vz/(log z)P

Proof. A proof of this result can be found in the book of Iwaniec and Kowalski [6].
3. Proof of Theorem 1. Let x be a large number and set

Since log S(p) = (1 4 o(1))rglogp as p — oo, we find that

-3l
Z Z alog S(p) + O(x)

1
n<x p®||n

" logg
1 x
— Z alog S(p) (pa + O(l)> + O(x)

1ogqpa<m
a>1
log S
qusz p
zlogx
=(1 1
(1 + o) 2T + Ofa),

where we used the prime number theorem in the form Zpgz loﬁp = logp + O(1),

thereby establishing that the number of digits of £(*) is of order x log z, that is that

MeE@) ~ zlog (2)
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Now, we easily obtain that

uﬂ(f(-f)) _ Z Vﬁ(%) {;J +O(z) = xz Vﬁ(i(p)) + O(x)

pr<T pPsT

and therefore that, given any two distinct words (81,32 € A’; and using (2), there
exists a positive constant C' such that, as x — oo,

| . I R 7R ) R )
sy o €) — v (€] < o > . to(l). (3
On the other hand, it is clear from Lemma 1 that
s O ) -G -0 @ox) @

r<p<2x

Observe that, in light of (4), as © — oo,

3, (S)) — v (S)|

Z’ =D DE- T DI P I A Eim)

p<x p 2l<a 20 p<2ltl
>1
1 2! 1og 2!
= Z 210( 7 = o(log z),
2l<m
>1

which used in (3) along with (2) yields

1 1
- (x)y _ ()] = _
e (€)= v €] =0 (1o g ) + (1) = o(1),
thus completing the proof of Theorem 1.

4. Proof of Theorem 2. Let x be a large number and set

n(z) := Concat({(p + a) : p < x).
First observe that the number of digits in the word n(®) is of order , since
An®) ~ 7(z)logx ~ . (5)

On the other hand, letting 6 > 0 be an arbitrary small number, it is known that there
exists a positive constant ¢ > 0 such that

#{r <z:P(r+a)>27%) < con(x) (6)

(see for instance the proof of Theorem 12.9 in the book of De Koninck and Luca [13]).
Arguing as in the proof of Theorem 1, we have that, given any two distinct words
81,09 € A’;, for some positive constant C1,
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v (1) = v () <Y | (S)) = vsa (S))| - mlaip, —)

pgll—é
+Cy Y (logp)m(x;p, —a) + O(r(z) loglog z). (7)
z1-d<pLx
It follows from Lemma 3 that
x
m(x;p,—a) K —————, 8
( ) plog(z/p) ®)
which implies, in light of (6), that
Z (logp)n(z;p, —a) < logx - o7(x) < dz. (9)

zl-d<p<La

Using Lemma 1, it follows from (7), (8) and (9) that, for some positive constant Cs,

o [ 1) — s, ()]
im

Since § > 0 was chosen to be arbitrarily small, it follows that the left hand side of
last inequality must be 0. Combining this with observation (5), the result follows.

5. Proof of Theorem 3. The proof that 6 is a normal number is somewhat
similar to the proof that 7 is normal as shown in Theorem 2. Hence, we will focus
our attention on the proof that x is normal.

Let x be a large number and set x(x) := Concat(t(p +a) : p < x). First we
observe that

< Cqd.

)= AS@)r(x;d, —a) + O(li(x))

d<z
_ Z ({1015'(5):(] J + 1) m(z;d, —a) + O(li(z))
OZ logd )+ 0 Zf(p+a) + O(li(z))
d<z pse
__To o m(x;d,—a T
~ logq dgz(l gd)m(x;d, —a) + O(z), 1o

where we used the fact that >°  7(p+a) = O(x).
Let § > 0 be an arbitrarily small number. On the one hand, for some positive
constant C1,

Z (log d)7(x;d, —a) < (log x) Z 1

zl-d<d<z 2t <d<z
dv=p+a, p<x

< (log x) Z m(z;v, —a)

v<ad

_— < .
C1(log ) Z e 1og(x/v) < 6Cizlogx (11)

v
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and, for some positive constant Cy

CQSC
Z (logd)m(z;d, —a) < (logx) Z () log(@/d) < Cox. (12)

d<at=? d<al—s

On the other hand, using Lemmas 3 and 4, for some positive constant Cj,

li(z) li(z)
logd)n(z;d,—a) > log d — logd) |7(x;d, —a) —
> (ogdntaid,—0)> 3 (oedigs = 3 g [stoid—a) = 55
:Cg(l+o(1))xlogx+0< . )
log” x
> zlogx. (13)
Hence combining relations (10), (11), (12) and (13), we find that
AO0®)) ~ zlog . (14)

Now, we easily obtain that, for any given distinct words 81, 32 € A’; ,

v (09) = v, (0] <D [vs, (S(@)) = v, (S(@)| m(w5d, ~a) + cowlog o

d<azl-9

v, (S(@)) = v (S(@)|
<C + cdzlog x, (15)
Z $(d) log(w/d)

where we used Lemma 3. Combining (15) with Lemma 1, we obtain that
vs, (0)) —v5,(0)
A0@)
thereby implying, arguing as in the previous proofs and in light of (14), that
vg, (0)) — v5,(6)
A(0@)

lim sup <4,

T—r 00

lim sup =0,

r—r00

thus completing the proof of Theorem 3.
6. Proof of Theorem 4. We will only consider the number 3.
First, for each prime number 7, we let p(7) stand for the number of those residue
classes n (with (n,7) = 1) for which Q(n) =0 (mod 7), and we let
SR SER S
be the list of these residue classes.
As before, setting 3*) := Concat(£(Q(p)) : p < x), we first observe that

ABE) = A(S(m) > 1+0 | > QQ(p

TT P pP<T
Q(p)=0 (mod =)

p(m)
= 3" AS@) S wasw,1) + 0 (:I:Z‘) . (16)

TT v=1
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Since p(m) is bounded, we obtain that

—_— log S(7) rologm
A(S = | —— O(1) = ———+0(1). 17
(5() b@gq +o() =BT 1 o) (1)
Hence, in light of (17), we have, given an arbitrarily small number § > 0,
p(m)
S ASm) D s IY) < dxas (18)
zl-d<nr<z v=1
and
p(m) log 7 p(r) (r)
Z A(S(m)) Z m(x;m, 1) = ro Z ] Zﬂ(x;ﬂ',lf,“)) SE Z P o wxs.
ﬂ.gzl—é v=1 ﬂ.gml—s qu v=1 7‘-<‘T1—5 ™
(19)
Hence, combining (18) and (19) in (16), we get that
A(BW) ~ (20)

Then, using the same approach as in the proofs of the previous theorems, we find

that 4
Vg, (B(I)) — VB, (6(1))
TIo

‘<(5+0(1) (z — 00)

and therefore that
Vg, (B(I)) — Uy (ﬁ(x))

T

lim sup
r—r 00

-

thus proving that g is a g-normal number.

7. Proof of Theorem 5. The proof is similar to that of Theorem 3 and we will
therefore skip it.

8. Final remarks. Let S,Q € Z[z] be as above and, given a prime number p,
let p(p) be the number of solutions n of @(n) =0 (mod p). Assume that p(p) < p for
all primes p.

Then, using the above techniques as well as those developed in our previous
work [11], we can show that the real numbers

61 := 0.Concat(S(p(Q(n))) : n € N)
02 := 0.Concat(S(p(Q(m))) : m € p)

are g-normal numbers.

CoNCLUSION. Using the concatenation of the prime factors of each positive inte-
ger, we created various new families of normal numbers.
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e Konink 2K.-M., Kamai I.
@AKTOPIBALHH HA TTPOCTI OIJIbHUKKW TA HOPMAJIbHI YHUCJIA

Pestome
Hexait ¢ > 2 — dikcoBane mijie. 3aJaBIINUCh UM YHACJIOM 1 > 2 Ta 3allMCABIIU HOrO
PO3KJIa 1 Ha IIPOCTi JIJIBHUKU N = P1P2 - * - Pr , A€ P1 < P2 < *++ < Pr, MU BBOJMMO IO3HAYEHHS

£(n) = pi Dz - - Pr AUisl KOHKaTEHAIil [IPeJICTaBJIEHb IPOCTHUX JIJIBHUKIB P; 32 OCHOBOIO ¢, 1 3a
osHaveHHsiM Kiagemo £(1) = 1. Hamu nosezmeno, mo aificae uncio 0.£(1)€(2)£(3)4(4) ... €
HOPMAaJILHAM 3a OCHOBOIO ¢. BIIbII TOro, HAMM IOKa3aHO, IO Iie TBEP/KEHHSI 3aJINIIAETHCS
ClIpaBeJINBUM HaBITh KO KOXKHUI AIIBHUK P; 3aminnTu Ha S(p;), ne S(z) € Z[z] € rakum
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[IOJIHOMOM IIO3UTHUBHOTO crymeHto, mo S(n) > 0 maa seix mmmx n > 1. Takox Hamun
JIOBEJICHO, IO ISl JOBLILHOrO (DIKCOBAHOINO MO3UTUBHOIO Iijoro 4mcia a aiiicue 0.4(2 +
a)l(34+a)l(5+a)...L(p+a) ..., me p npobirae Bei MpoCTi IuCIa, € HOPMATIBHAM 38 OCHOBOIO (.
Karouosi crosa:  daxmopusdauis, npocmi wucia, HOPMAALHE YUCAA.

e Konunx 2K.-M., Kamau U.
DAKTOPUBAIIUSA HA TTPOCTHIE MHOYKUTEJIM U HOPMAJILHBIE YHUCJIA

Pesrome

Ilycts ¢ > 2 — ¢durcupoBanHOE TeI0€. 3aMABIINCH MEJINM YUCJIOM 1 > 2 W 3aIUCaB €ro
pasJioXkeHne Ha IPOCThIE JIEJTUTEN N = P1P2 - - - Pr, TIE P1 < P2 < -+ + < Pr, MBI BBOJUM 000-
suavenue ¢(n) = pi Pz - - - Pr AJIs KOHKATEHAIMH IPEICTABJIEHII IPOCTHIX JEJINTEJIER P; IO OC-
HOBAHUIO ¢, U 110 onpeaesenuio nosaraeM £(1) = 1. Hamu JoKa3aHO, 94TO BELIECTBEHHOE THCIIO
0.£(1)£(2)€(3)¢(4) . .. siBasieTcst HOpMAJILHBIM 110 OCHOBaHUIO ¢. Boslee Toro, HaMu mokasaHo,
YTO 9TO yTBEPXKAEHUE OCTAETCS CIPABEJIUBBIM JaXKe eCJIM KaXK/blil JeJuTesb P; 3aMEHATh
ua S(p;), tae S(z) € Z[x] — TaKoil MHOTOUWIEH HOJIOKHUTEALHON cremeny, uro S(n) > 0 mis
Bcex nesbix 1 > 1. Takrke HAMU JOKa3aHO, YTO JIJIsl IPOU3BOJILHOIO (PUKCHPOBAHHOIO IIOJIO-
JKUTEJIBHOIO 11eJI0ro uucia a BemecrserHoe duciao 0.4(2 4+ a)l(3+a)l(5+a)... L(p+a)...,
rzie p MpoberaeT Bce IPOCThIE UUCJIA, SIBJISETCS HOPMAJIbHLIM II0 OCHOBAHMUIO §.

Knmoueevie crosa: 6vicmpo menaowueca Gyrnrwyuu, nesunetinoe dupdepenyuarvroie ypas-
HEHUA, ACUMNIMOTNUKG DEWEeHUT.
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