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It is well known that zeta-functions universal in the sense that their shifts uniformly on
compact subsets of some region approximate any analytic functions form a rather wide class.
In the paper, the universality for composite functions of the periodic Hurwitz zeta-functions
is discussed.
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INTRODUCTION. In 1975, S. M. Voronin generalizing the Bohr-Courant dense-
ness result [3] for the Riemann zeta-function ((s),s = o + it, obtained a remark-
able universality theorem [17] on the approximation of analytic functions by shifts
¢(s +ir),7 € R. We state a modern version of the Voronin theorem, for the proof,
see, for example, [10]. Let D = {s € C: % <o <1}

Theorem 1. Suppose that K C D be a compact set with connected complement,
and f(s) is a continuous non-vanishing function on K which is analytic in the interior
of K. Then, for every e > 0,

lim inf lIneas{T €0, T):sup [C(s+iT) — f(s)|<e} >0
T—oo T scK

Voronin’s theorem asserts that the set of shifts ((s + ir) approximating a given
analytic function is infinite and even has a positive lower density. On the other
hand, the theorem is not effective in the sense that any 7 € R with approximation
property is not known. However, this effectivity problem does not hinder to apply the
universality theorem which is useful for proof of functional independence, for study
zero-distribution and moment problem of universal functions, is applied for estimation
of complicated analytic functions. This is a motivation to extend the class of universal
functions in the Voronin sense. After appearance of Voronin’s paper, many authors
obtained universality of various zeta and L-functions, and of some classes of Dirichlet
series, for history and references, see [1,5,6,9,11,13,14,16]. It turned out that some
composite functions of universal functions are also universal. For example, log((s)
defined by an usual manner [9], and ¢’(s) are universal functions. In [12], some classes
of functions F' such that F({(s)) preserve the universality property were introduced.
The aim of this paper is the universality for composite functions of periodic Hurwitz
zeta-functions.

Let a = {am : m € Ng = NU{0}} be a periodic sequence of complex numbers
with minimal period k, and o, 0 < a < 1, be a fixed parameter. The periodic Hurwitz
zeta-function ((s, ;a) is defined, for o > 1, by the series

oo
am

C(s,a5a) = m.

m=0
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If a,, = 1, the function ((s, a; a) reduces to the classical Hurwitz zeta-function ((s, a).
The periodicity of the sequence a implies, for o > 1, the equality

k—1
1 I+«
C(Svaa Cl) - k‘s l§=0 alC <57 k > )

which gives analytic continuation for {(s, «;a). If
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then the periodic Hurwitz zeta-function is entire, while, in the case a # 0, ((s, ;)
is @ meromorphic function, and the point s = 1 is unique simple pole with residue 1.

The universality of the function ((s,a;a) with transcendental parameter « has
been began to study in [7], and proved unconditionally in [8]. Denote by K the set of
compact subsets of the strip D with connected complement, and for K € K, denote
by H(K) the set of continuous functions on K which are analytic in the interior of
K. Then the following universality theorem is true [8].

Theorem 2. Suppose that o is transcendental, K € K and f € H(K). Then, for
every € > 0,

1
liminf —meas{7 € [0,T] : sup |¢(s + ir,a;a) — f(s)| < e} > 0.
T—oo T seK

Let H(D) stand for the space of analytic functions on D equipped with the topol-
ogy of uniform convergence on compacta. This paper is devoted to the universality
of functions F({(s,a;a)), where F' : H(D) — H(D).

MAIN RESULTS
1. Statement of results. In what follows, we suppose that the number « is
transcendental.

Theorem 3. Suppose that F' : H(D) — H(D) is a continuous function such
that, for every open set G C H(D), the set F~1G is non-empty. Let K € K and
f € H(K). Then, for every e > 0,

1
liminf —meas{7 € [0,T] : sup |F({(s +ir,asa)) — f(s)| < e} > 0.
T—oo T seK

The hypothesis of Theorem 3 that the set F~'G is non-empty is very general,
however, it is difficult to check this hypothesis. In the next theorem, we replace the
hypothesis of Theorem 3 by a stronger but simpler one.

Theorem 4. Suppose that F' : H(D) — H(D) is a continuous function such
that, for each polynomial p = p(s), the set F~*{p} is non-empty. Let K € K and
f € H(K). Then the assertion of Theorem 3 is true.
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It is easily seen that, for every polynomial p(s), there exits a polynomial ¢(s)
such that, for all 7 € N and cy, ..., ¢, € C, ¢1¢/(5), ..., ¢,q¢"" (s) = p(s). Therefore, by
Theorem 4, the function ¢;¢'(s, a, a), ..., ¢,.¢(") (s, a; a) is universal.

The continuity requirement for the function F' in Theorem 4 can be replaced by an
analogue of the Lipschitz condition in the space of analytic function. More precisely,
we have the following theorem.

Theorem 5. Suppose that F : H(D) — H(D) is a function such that, for each
polynomial p=p(s), the set F~{p} is non-empty, and for each K € K, there exist
positive constants ¢ and B, and Ky € K such that

sup |F(g1(s)) = F(ga(5))] < ¢ sup |gi(s) — g2(s)|” 1)
seK s€Ky
for all g1,92 € H(D). Let K € K and f € H(K). Then the assertion of Theorem 3
18 true.

In view of the integral Cauchy formula, the function F(g) = ¢("), r € N, satisfies
hypotheses of Theorem 5 with § = 1.
Now we will restrict a class of approximated functions. For ay, ..., a,, denote

Hu,...an(D)={g€ HD): (g(s) —a;)"* € HD), j=1,...,r}.

Theorem 6. Suppose that F : H(D) — H(D) is a continuous function such that
F(H(D)) D Hg,,....a, (D). Forr=1,let K € K, f € HK) and f(s) # a1 on K.
Forr > 2, let K C D be an arbitrary compact set, and f € Hg, _ q.(D). Then the
assertion of Theorem 3 is true.

Solving the equation sin(g) = f in g € H(D), we easily find that if f € H_; 1(D),
then, by Theorem 6 with » = 2, f(s) can be approximated by shifts sin({(s+ir, a; a)).
In general case, the following universality theorem is valid.

Theorem 7. Suppose that F' : H(D) — H(D) is a continuous function. Let
K C D be an arbitrary compact set, and f € F(H(D)). Then the assertion of
Theorem 3 is true.

2. Proof of Theorem 5. Theorem 5 is a corollary of Theorem 2 and the
Mergelyan theorem on the approximation of analytic functions by polynomials. We
state the latter theorem in a convenient for us form as the next lemma.

Lemma 1. Let K C C be a compact set with connected complement, and f(s) be
a continuous function on K which is analytic in the interior of K. Then, for every
€ > 0, there exists a polynomial p(s) such that

sup | f(s) — p(s)| <e.
seK
Proof of the lemma is given in [15], see also [18].
Proof. [Proof of Theorem 5] By Lemma 1, there exists a polynomial p(s) such
that

sup f(s) ~ p(s)] < 5. @)
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Let 7 € R satisfy the inequality

sup [F(((s +im.asa)) —g(s)| < e F (5) (3)
seK

where g € F~'{p}, and K; € K corresponds the set K in hypothesis of the theorem.
Then, for the same 7, in view of (1),

€

sup [F(C(s +ir, a;a)) — p(s)| < e sup [F(((s +ir,a0)) — g(s)|” < 5.

s€K seK 2

(4)

By Theorem 2, the set of 7 satisfying (3) has a positive lower density. This and (4)
show that

1
lim inf —meas {T €10,T] : sup |F(¢(s +ir, a5 a)) — p(s)| < E} > 0.
T—oo 1 seK 2

Combining this with (2) proves the theorem.

3. Proof of other Theorems. The proofs of Theorems 4-7 is based on limit
theorems in the sense of weak convergence of probability measures in the space H (D).
Denote by B(S) the class of Borel set of the space S.

Define Q = [[7_vm, where v = {s € C : [s] = 1} for all m € Ny. By
the Tikhonov theorem, the infinite-dimensional torus 2 with the product topology
and pointwise multiplication is a compact topological Abelian group. Therefore, on
(©,B(€2)) the probability Haar measure my can be defined, and this leads to the
probability space (2, B(Q2),my). Denote by w(m) the projection of w € € to the
coordinate space 7,,, m € Ny, and on the probability space (2, B(Q2), mp), define the
H(D)-valued random element ((s, o, w;a) by the formula

amw(m)

(s, a,w;a) = Z m.

m=0

Note that the latter series, for almost all w, converges uniformly on compact subsets
of D. Let P be the distribution of the random element ((s,a,w;a), i.e.,

Pr(A)=mp(we Q:((s,q,w;a) € A), AeB(H(D)).
Proof. [Proof of Theorem 3] By a theorem of [7], the probability measure

Pr(4) = %meas{r €[0,T):¢(s+ir,osa) € A}, A€ B(H(D)),

converges weakly to P as T" — oo. Define

ef 1 .

Pr p(A) def Tmeas{r €0,T]: F({(s+ir,a;n)) € A}, A€ B(H(D)).
Then, clearly, we have that Prpr = PrF~!', where PrF~! is defined, for A €
B(H (D)), by PrF~Y(A) = Pr(F~'A). Therefore , the continuity of F', weak conver-
gence of Pp, and Theorem 5.1 of [2] show that Pr p converges weakly to PcF 1 as
T — o0.
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The space H(D) is separable. Therefore, the support of a probability measure P
on (H(D),B(H(D))) is a minimal closed set Sp C H(D) such that P(Sp) = 1. The
set Sp consists of all elements x such that every open neighbourhood G of x has a
positive P-measure.

In [8], it is proved that the support of the measure P is the whole of H(D).
We will prove that this is also true for the measure P.F~!'. Really, let g be an
arbitrary element of H(D), and G be an open neighbourhood of g. By the hypothesis
of the theorem, the set F~'G is non-empty, and, because of the continuity of F, it
is open, too. Thus, F~1G is an open neighbourhood of some element g; € H(D).
Since the support of P is the whole of H(D), we obtain that P;(F~'G) > 0. Hence,
P:F7YG) = P:(F7'G) > 0. Since g and G are arbitrary, this shows that the support
of P.F~1 is the whole of H(D).

By Lemma 1, there exists a polynomial p = p(s) such that (2) holds. Define

6~ {a HD): suplo(s) ~ (o) < 5.
seK
The set G is an open neighbourhood of p which, in view of the above remark, is an
element of the support of the measure P.F~!. Therefore, P.F~'(G) > 0. Using the
weak convergence of Pr g to PrF~!' as T — oo, and applying an equivalent of weak
convergence of probability measures in terms of open sets, see Theorem 3 of [2], we
obtain that

1
lim inf —meas {7‘ € 10,7 : sup |F({(s +ir,a;a)) —p(s)] < 6}
T—oo T seK 2

> P FH(G) > 0.

This together with (2) proves the theorem.

Proof. [Proof of Theorem 4] The space H(D) is metrisable. It is well known,
see, for example, [4], that there exists a sequence {K] : | € N} of compact subsets of
the strip D such that

D=J K,
=1

K; C Ki41, for all I € N, and if K C D is a compact subset, then K C K; for some
l € N. Then

[ee]
_1 SUPek, |91(s) — g2(s)] Iy
) = 2 ! : ) ’ € D ’
olar. gz) Z 1+ sup,eg, [91(s) — g2(s)| g gz (D)

~

=1

is a metric in H (D) which induces the topology of uniform convergence on compacta.
In the case of H(D), obviously, we may choose the sets K; to be with connected
complements. It is easily seen that o(g1, g2) is small if sup,c g, [g1(s) — g2(s)] is small
enough for sufficiently large I. Thus, approximation in the space H(D) reduces to
that on compact subsets with connected complements.

We will prove that, for every open set G C H(D), the set F~1G is non-empty.
Let () # G C H(D) be arbitrary open set, and g € G. Suppose that K € K. Then,
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by Lemma 1, for every € > 0, these exists a polynomial p = p(s) such that

sup [g(s) — p(s)] <e.

seEK
Therefore, if € is small enough, we may assume that p € G, too. Thus, by hypothesis
of the theorem, the set F~'G is non-empty. Therefore, the theorem follows from
Theorem 3.

Proof. [Proof of Theorem 6] First we observe that the support of the measure
P:F~1 is the closure of the set F(H(D)). Really, let g be an arbitrary element of
F(H(D)), and G be any open neighbourhood of g. Then there exists g; € H(D)
such that F(g;) = g. Therefore, the set F~1G is an open neighbourhood of g; by
continuity of F'. Since the support of the measure P is the whole of H (D), this shows
that P.(F~'G) > 0. Thus,

P:F1(G) = P:(F'G) > 0. (5)

Moreover, P F~Y(F(H(D))) = P:(H(D)) = 1. Since the support is a closed set, this
together with (5) proves that the support of P-F~! is the closure of F(H(D)).
The case r = 1. By Lemma 1, there exists a polynomial p(s) such that

sup £ (s) = p(5)| < 7. (©)

Since f(s) # a1 on K, we have that p(s) # a; on K as well provided ¢ is small enough.
Therefore, we can define on K a continuous branch of log(p(s) — aq) which will be
analytic in the interior of K. Applying Lemma 1 once more, we find a polynomial
p1(s) such that

sup |p(s) —ay — e”l(s)| < E. (7)
seK 4

Obviously, g1(s) el opi(s) +ay € H(D), and ¢1(s) # a1. Thus, g1 € H,, (D). Since
H,(D) C F(H(D)), by the above remark, ¢ is an element of the support of the
measure P F~1. Define

Gi = {g € HD): sup f(s) — g (5)] < -}

Then G is an open neighbourhood of g;, thus, we have that P.F~!(G1) > 0. Using
the weak convergence of the measure Pr p to P@F_l, hence we obtain that

1
lim inf —meas {T €10, 7] : sup |F(¢(s +ir,a;a)) — g1(9)] < 6}
T—oo T scK 2

> P.F1(Gy) > 0. (8)

Inequalities (6) and(7) imply

sup |(s) = g1 (s)] < 5
seK

which together with (8) proves the theorem in the case r = 1.
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The case r > 2. Since f € Hg,, . qo.(D) and H,, . 4.(D) C F(H(D)), we have
that f is an element of the support of the measure P:F~!. Define

G2 ={g € H(D): suplg(s) = f(s)] < ek

Then PCF_l(Gg) > 0, and the weak convergence of the measure Pr g to PCF_1 gives
the inequality

lim inf %meas {T € [0,T] :sup |[F(¢(s +ir, o5 a)) — f(s)] < 5}

T—o0 seK

> P.F1(Gy) > 0.

The theorem is proved.

Proof. [Proof of Theorem 7] We may use the same arguments as in the proof of
the case r > 2 of Theorem 6, since, by the observation in the beginning of the proof
of Theorem 6, f(s) is an element of the support of the measure P F~*.

CONCLUSION. It is well known that zeta-functions universal in the sense that their
shifts uniformly on compact subsets of some region approximate any analytic functions
form a rather wide class. In the paper, the universality for composite functions of the
periodic Hurwitz zeta-functions was discussed.
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Jaypinwirac A., Mowos /].
V3ATAJIBHEHHS YHIBEPCAJIbHOCTI 3ETA—®VHKIII ['VYPBIIIA

Pesrome

Hobpe Bimomo, mo 3era-dyHKINHI yHIBEpCAJIbHI B TOMY CEHCi, IO IXHI 3IBUXKKU aIllpOKCH-
MYIOTh aHaJIITHIHI DYHKIHT 3 JOBOJII IIMPOKOI'O KJIAaCy PIBHOMIPHO Ha KOMIAKTHHX IIiMHO-
KHUHAX JesKol obsacti. B craTTi 06roBoproeThcst yHIBEpCAIbHICTD KOMITO3UINT TEPIOINIHAX
3era-pyHKIii ['ypsina.

Karouosi caosa:  meopema npo aimim, nepioduuna dema—gpynrkuia Iypsiua, ywisepcarv-
HiCMO.

Jlaypunwurac A., Mowos JI.
OBOBUIEHUS YHUBEPCAJIbHOCTU NEPUOJUYECKUX 3ETA-OYHKIUN ['YPBUIIA

Pesrome

XO0poIII0 U3BECTHO, UTO 3eTa~-(PYHKIIUN YHUBEPCAIBHBI B TOM CMBIC/IE, UTO UX CIABUTHU AITPOK-
CUMUPYIOT aHAJIUTHYIECKHE DYHKITUU U3 JOBOJBHO IMUPOKOTO KJIACCA PABHOMEPHBIM 00Pa30M
Ha KOMIIAKTHBIX TOJIMHOXKECTBAX HEKOTOPOi#l obiactu. B craTbe obCyKmaeTcs yHUBEPCATIb-
HOCTb KOMITO3UITHI Iepuoanydeckux 3era—dyukiuit ['ypsura.

Karoueswie caosa: npedeavras meopema, nepuoduseckasn sema—pynruyus Lypsuya, ynueep-
CaANbHOCTD.



