МЕТОД СНИЖЕНИЯ ДОПОЛНИТЕЛЬНОЙ ПОГРЕШНОСТИ ИНКЛИНОМЕТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ С КАРДАННЫМИ РАМКАМИ

Е. А. Пономарева, асс.

Ключевые слова: погрешность, инклинометрический преобразователь, полный факторный эксперимент, алгоритмическая компенсация, вариации напряжения питания

Постановка проблемы. При работе первичных преобразователей инклинометра в автономном режиме питание электронной схемы производится от аккумуляторов или батарей, ЭДС которых с течением времени или других причин падает. Кроме того, в глубоких скважинах на работу как источника питания, так и всего датчика оказывает существенное влияние температура окружающей среды. Все это вносит дополнительные погрешности при измерении параметров искривления скважины [6-8].

Анализ публикаций. Исследованию погрешностей инклинометрических преобразователей посвящено много публикаций [1; 5-7; 9; 10]. Как правило, погрешности рассматриваются обособленно друг от друга, что сказывается на точности измерения углов ориентации.

Цель статьи. Предлагается на основании предварительных экспериментальных исследований определять параметры влияния нестабильности напряжения питания на показания преобразователя совместно с вариацией температуры окружающей среды с целью алгоритмической компенсации в процессе измерений.

Основной материал. Поскольку в реальных условиях температура и напряжение питания меняются одновременно и, трудно определить как влияние каждого дестабилизирующего фактора на точность измерений независимо друг от друга, так и их коррелирующее воздействие, для построения экспериментальной модели использовался аппарат теории планирования эксперимента [3; 4].

Будем рассматривать аппроксимирующую функцию в виде:

$$\Delta \chi_{\partial} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n + b_{12} x_1 x_2 + \dots + b_{n-1} n x_{n-1} x_n + \dots + b_{nn} x_n^2 + \dots,$$
 (1) где n – число факторов, b – коэффициенты степенного ряда.

Как показали проведенные исследования и данные, приведенные в работе [2], функция дополнительной погрешности инклинометрического преобразователя имеет линейный характер, поэтому в степенном ряде (1) ограничимся составляющими первого порядка, а также членом взаимного влияния одного фактора на другой. Исходя из вышеизложенного, аппроксимирующий полином запишем в виде:

$$\Delta \chi_0 = b_0 + b_1 T + b_2 U + b_{12} U T, \tag{2}$$

где b_{12} – коэффициент, определяющий эффект взаимодействия факторов температуры и напряжения питания.

Эксперимент проводился при интервалах варьирования температуры 40°С, напряжения питания ± 2 В, при этом верхний уровень измерения температуры и напряжения питания $T_{\rm max} = +100$ °С, $U_{\rm max} = \pm 15B$, а нижний уровень – соответственно $T_{\rm min} = +20$ °С, $U_{\rm min} = \pm 11B$.

Для удобства определения коэффициентов ряда (2) проводилась операция кодирования факторов в точку с координатами x_c : $x_{ic} = \frac{x_{i\max} + x_{i}\min}{2}$, где x_i – значение фактора T, U.

При этом каждому фактору в новом масштабе соответствует его кодированное значение так, что $x_{i_{\max}} = +1; \quad x_{i_{\min}} = -1.$

Кодированное значение фактора связанно с истинным значением следующим соотношением:

$$x_{i} = \frac{x_{i} - x_{ic}}{x_{ic} - x_{i \min}} = \frac{x_{i} - x_{ic}}{x_{i \max} - x_{ic}},$$
(3)

Аппроксимирующий полином (2) с учетом кодированных факторов в матричном виде записывается следующим образом:

$$\begin{bmatrix} \Delta \chi_{\partial 1} \\ \Delta \chi_{\partial 2} \\ \Delta \chi_{\partial 3} \\ \Delta \chi_{\partial 4} \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_{12} \end{bmatrix} \sum_{U=1}^{N} x_{iU},$$

где $\sum_{U=1}^{N} x_{iU}$ — матрица планирования, N — количество опытов.

При определении сочетания факторов использовалось ортогональное планирование, так как факторы, составляющие матрицу планирования, удовлетворяют условию ортогональности $\sum_{U=1}^{N} x_{iU} x_{jU} = 0.$

Поскольку в эксперименте факторы варьировались на двух уровнях (+1, -1), строился план или полный факторный эксперимент ПФЭ типа 2^2 (для двух факторов n=2). Таким образом, число опытов в эксперименте равно $2^2=4$, и поэтому определялась погрешность при следующих значениях температуры и напряжения питания:

1.
$$T = 20^{\circ}C$$
, $U = \pm 11B$; 2. $T = 20^{\circ}C$, $U = \pm 15B$;

3. $T = 100^{\circ} C$, $U = \pm 11B$; 3. $T = 100^{\circ} C$, $U = \pm 15B$.

Представим план $\Pi\Phi \ni 2^2$ в следующем виде (таб. 1):

Таблица 1 План полного факторного эксперимента

N	x_0	x_1	x_2	x_{12}	$\Delta\chi_{\scriptscriptstyle \partial}$
1	+1	-1	-1	+1	$\Delta\chi_{\partial 1}$
2	+1	+1	+1	+1	$\Delta\chi_{\partial 2}$
3	+1	-1	+1	-1	$\Delta\chi_{\partial 3}$
4	+1	+1	-1	-1	$\Delta \chi_{\partial 4}$

Определение коэффициентов ряда (2) сводится к выражению:

$$b_{i} = \frac{\sum_{U=1}^{N} x_{iU} \Delta \chi_{\partial U}}{N},$$

$$b_{0} = \frac{\sum_{U=1}^{N} \Delta \chi_{\partial U}}{N},$$

$$b_{1} = \frac{\sum_{U=1}^{N} \Delta \chi_{\partial U} \cdot x_{1U}}{N},$$

$$b_{2} = \frac{\sum_{U=1}^{N} \Delta \chi_{\partial U} \cdot x_{2U}}{N},$$

$$b_{12} = \frac{\sum_{U=1}^{N} \Delta \chi_{\partial U} \cdot x_{1U} \cdot x_{2U}}{N}.$$

$$(4)$$

Таким образом, в результате проведенных исследований определены коэффициенты аппроксимирующего полинома в кодированных факторах. Переход от кодированных значений к истинным осуществляется согласно формуле (3). Полученные результаты позволяют сделать вывод о степени влияния каждого фактора в отдельности и их сочетания на функцию отклика (аппроксимирующую функцию).

Согласно представленной выше модели (1 - 4) были проведены экспериментальные исследования феррозондового преобразователя азимута ИП с карданными рамками,

позволившими определить дополнительную погрешность измерений, обусловленную нестабильностью напряжения питания и температурой окружающей среды.

Эксперимент проводился на лабораторной установке, содержащей датчик азимута и электронную схему преобразования, цифровой вольтметр, термошкаф, позволяющий проводить испытания при температурах от 20 до 200°С, источник питания УНИП-5. При испытаниях датчик азимута помещался в термошкаф и соединялся с расположенной там же схемой преобразования. Источник напряжения питания и цифровой вольтметр размещались снаружи.

Эксперимент проводился при интервалах варьирования температуры 40°С, напряжения питания ± 2 В, при этом верхний уровень измерения температуры и напряжения питания $T_{\rm max} = \pm 100^{\circ}$ С, $U_{\rm max} = \pm 15$ В, а нижний уровень – соответственно $T_{\rm min} = \pm 20^{\circ}$ С, $U_{\rm min} = \pm 11$ В.

Полученные результаты измерений обработаны в соответствии с ГОСТ 8.009-72, а систематические составляющие вместе с матрицей планирования приведены в таблице 2.

T а блица 2 План полного факторного эксперимента для феррозондового датчика азимута

Составляющие плана		Факторы				Эффект	_	
		T°C	Код	U, B	Код	взаимодей- ствия	Отклик	
Верхний уровень	X_0	X_1	X_1	X_2	X_2	X_1X_2	$\Delta\chi_{\partial}$, pa ∂	$\hat{\Delta}\chi_{\delta}, pa\delta$
	+	100	+	15	+1			
Нулевой уровень	0	60	0	13	0			
Нижний уровень	_	20	ı	11	-1			
	1	+1	20	-1	11	-1	$0.174 \cdot 10^{-3}$	$0.174 \cdot 10^{-3}$
Матрица	2	+1	100	+1	15	+1	$0.087 \cdot 10^{-3}$	$0.088 \cdot 10^{-3}$
планирования	3	+1	20	-1	15	+1	$0.401 \cdot 10^{-3}$	$0.402 \cdot 10^{-3}$
	4	+1	100	+1	11	-1	$0.785 \cdot 10^{-3}$	$0.784 \cdot 10^{-3}$

Окончательный вид аппроксимирующего полинома в кодированных значениях факторов следующий:

$$\Delta \alpha_{\rm m} = (0.161 + 0.276x_1 - 0.318x_2 - 0.03x_1x_2)10^{-3}.$$

Переход от кодированных значений к истинным осуществляется согласно формуле (3). При этом член взаимодействия факторов был отброшен ввиду его малости. Тогда аналитическое выражение дополнительной погрешности измерения азимута равно

$$\Delta \alpha_{\scriptscriptstyle \partial} = (1.816 + 0.0068T - 0.159U)10^{-2}$$
 (рад).

Проверка соответствия полученной модели экспериментальной в первом приближении, проводилась $\Delta \chi_{\partial} = \hat{\Delta} \chi_{\partial}$, где $\hat{\Delta} \chi_{\partial} = \sum_{i}^{N} b_{i} x_{iU}$ — результаты проверки приведены в таблице 2.

Кроме этого, для оценки однородности дисперсий применен критерий Кохрена [2; 11], который используется при одинаковом числе повторений каждого опыта.

При этом вычислялась дисперсия каждого опыта

$$S_i^2 = \frac{\sum_{i=1}^{N} (Y_{iN} - \overline{Y}_N)^2}{R - 1},$$

где S_i^2 – дисперсия i-го опыта,

R – число повторений в каждом опыте,

 Y_{iN} – отклик i-го опыта,

 \overline{Y}_N – средний отклик.

Для четырех опытов, приведенных в таблице 4.1, были вычислены следующие дисперсии: $S_1^2 = 2.17 \cdot 10^{-7}, \ S_2^2 = 1.33 \cdot 10^{-7}, \ S_3^2 = 3.22 \cdot 10^7, \ S_4^2 = 2.21 \cdot 10^7.$

Затем была найдена величина $G = S_{i\,\mathrm{max}} \, 2/\sum_{i=1}^N S_i^2 = 0.32$. Табличное значение $G_{\mathrm{таб}}$ при принятой доверительной вероятности P = 0.95 и степенях свободы $f_i = N - 1 = 3, \, f = N = 4, \, G_{ma\delta} = 0.68, \,$ т. е. $G < G_{ma\delta}$, что подтверждает однородность дисперсий опытов.

Далее проверялась адекватность полученной модели с помощью критерия Фишера путем сравнения дисперсий адекватности и воспроизводимости S_v^2 .

$$S_{ad}^{2} = \frac{R \sum_{i=1}^{N} (\Delta \alpha_{i} - \hat{\Delta} \alpha_{i})^{2}}{f_{ad}} = 3.0 \cdot 10^{-9}, \quad S_{y}^{2} = \sum_{i=1}^{N} \frac{S_{i}^{2}}{N} = 2.48 \cdot 10^{7}.$$

Сравнивая $F = S_{ad}^2 / S_y^2 = 1.2 \cdot 10^{-2}$ с табличным значением критерия Фишера при P = 0.95, можно видеть, что $F = 1.2 \cdot 10^{-2} < F_{mao} = 4.1$.

Таким образом, можно сделать вывод, что представленная модель (1-4) адекватна экспериментальным данным. Функции погрешности от температуры при различных значениях напряжения питания приведены на рисунке 1.

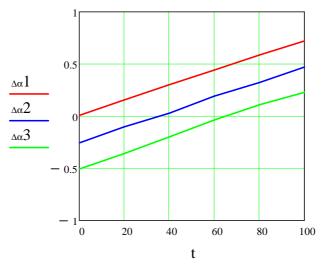


Рис. График зависимости дополнительной погрешности в азимуте от температуры окружающей среды

Выводы. Предложена модель ИП с карданными рамками, которая отличается тем, что с использованием методов планирования эксперимента и регрессионного анализа определяет степень корреляционной связи между напряжением питания и температурой в скважине, что позволяет повысить эффективность измерения параметров искривления скважины в 2 раза за счет предварительной коррекции погрешности, обусловленной перечисленными факторами.

Исследованы дополнительные погрешности ИП с карданными рамками от совместного влияния нестабильности напряжения питания и температуры в скважине. Предварительное определение погрешности от перечисленных возмущающих факторов позволяет повысить точность измерения углов ориентации за счет алгоритмической коррекции измерительной информации. Установлено, что погрешность в азимуте разработанного ИП не превышает 1°30', погрешность зенитного угла не превышает 20' при угле наклона $\theta > 3^\circ$, дополнительная погрешность от изменения температуры на 100° C равна $0,14^\circ$, от изменения напряжения питания на $\pm 2B - \pm 0,09^\circ$.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

1. Геофизическая аппаратура: [сб. науч. ст. / научн. ред. А. В. Матвеев и др.] – Ленинград : Недра, 1980. – 224 с.

- 2. **Громыко Г. Л.** Общая теория статистики / Г. Л. Громыко. М.: ИНФРА, 1999. 139 с.
- 3. **Зверев А. Е.** Преобразователи угловых перемещений в цифровой код / А. Е. Зверев, В. П. Максимов. Л. : Энергия, 1974. 180 с.
- 4. **Ивобатенко Б. А.** Планирование эксперимента в электромеханике / Б. А. Ивобатенко, Н. В. Ильинский. М. : Недра, 1975. 184 с.
 - 5. **Исаченко В. Х.** Инклинометрия скважин. М. : Недра, 1987. 216 с.
- 6. **Ковшов Г. Н.** Приборы контроля пространственной ориентации скважин при бурении / Г. Н. Ковшов, Г. Ю. Коловертнов. Уфа: Изд-во УГНТУ, 2001. 228 с.
- 7. **Миловзоров Г. В.** Инклинометрические преобразователи на основе феррозондов и одностепенных маятников для автоматизированных систем управления бурением наклоннонаправленных скважин: дисс. ... канд. тех. Наук : 05.13.05 / Миловзоров Георгий Владимирович. Уфа, 1985. 282 с.
- 8. Метод определения параметров искривления скважины: (тези доп. X Міжнар. конф. «Контроль і управління в складних системах 2010» [Електронний ресурс] / О. А. Пономарьова, Г. М. Ковшов, О. В. Садовникова // Перспективні методи і технічні засоби систем контролю і управління. Вінниця, 2010. С. 90. Режим доступу: http://www.vstu.vinnica.ua/mccs 2010/ukr/abstracts_UA.html.
- 9. **Рогатых Н. П.** Построение датчиков ориентации подвижных объектов / Н. П. Рогатых // Датчики и системы. -2003. -№ 2. C. 15 18.
- 10. **Слива Е. С.** Коррекция характеристик первичных преобразователей по температуре / Е. С. Слива // Вестник СГАУ. Сб. : Проблемы и перспективы развития двигателестроения. Самара, 1998. Ч. 2. С. 25 29.
- 11. Теорія статистики / [Г. І. Мостовий, А. О. Дєгтяр, В. К. Горкавий, В. В. Ярова]. Х. : Вид-во ХарРІ УАДУ «Магістр», 2002. 300 с.

УДК 53.082

Метод снижения дополнительной погрешности инклинометрического преобразователя с карданными рамками / Е. А. Пономарева // Вісник Придніпровської державної академії будівництва та архітектури. – Д. : ПГАСА, 2013. – № 3. – С. 20 – 24. – рис. 1. – табл. 2. – Библиогр.: (11 назв.).

Предложена модель ИП с карданными рамками, которая отличается тем, что с использованием методов планирования эксперимента и регрессионного анализа определяет степень корреляционной связи между напряжением питания и температурой в скважине, что позволяет повысить эффективность измерения параметров искривления скважины в два раза за счет предварительной коррекции погрешности, обусловленной перечисленными факторами.

Ключевые слова: погрешность, инклинометрический преобразователь, полный факторный эксперимент, алгоритмическая компенсация, вариации напряжения питания.

Метод зниження додаткової похибки інклінометричного перетворювача з карданними рамками / О. А. Пономарьова // Вісник Придніпровської державної академії будівництва та архітектури. — Д. : ПДАБА, 2013. — № 3. — С. 20 — 24. — рис. 1. — табл. 2. — Бібліогр.: (11 назв.).

Запропоновано модель IП з карданними рамками, яка відрізняється тим, що з використанням методів планування експерименту й регресійного аналізу визначає ступінь кореляційного зв'язку між напругою живлення та температурою у свердловині, що дозволяє підвищити ефективність виміру параметрів скривлення свердловини удвічі за рахунок попередньої корекції похибки, зумовленої згаданими факторами.

Ключові слова: похибка, інклінометричний перетворювач, повний факторний експеримент, алгорітмічна компенсація, варіація напруги живлення.

Method of decline of additional error of inklinometer sensor with cardan scopes / O. A. Ponomaryova // Visnyk of Pridneprovsk State Academy of Civil Engineering and Architecture. – D.: PSACEA, 2013. – \mathbb{N}_2 3. – P. 20 – 24. – pic. 1. – tabl. 2. – Bibliogr.: (11 names).

The model of inclinometer is offered with cardan scopes, which determines the degree of cross-correlation connection between tension of feed and temperature in a mining hole. It allows to promote efficiency of measuring parameters of curvature of mining hole in 2 times.

Key words: error, inklinometer sensor, complete factor experiment, algorithmic indemnification, variations of tension of feed.