КОНВЕРСИЯ ЭНЕРГИИ КОРМА БЫЧКАМИ В ПРОДУКЦИЮ В ЗАВИСИМОСТИ ОТ УРОВНЯ ЛЕГКОГИДРОЛИЗУЕМЫХ УГЛЕВОДОВ В РАЦИОНЕ

- В. Ф. Радчиков, д.с.-х.н, профессор;
- **В. П. Цай,** к.с.-х.н., доцент;
- А. Н. Кот, к.с.-х.н.;
- Т. М. Натынчик, соискатель

РУП «Научно-практический центр национальной академии наук Беларуси по животноводству», г. Жодино, Республика Беларусь

- В. И. Карповский, д.с.-х.н., профессор;
- **В. А. Трокоз,** д.с.-х.н., профессор;

Национальный университет биоресурсов и природопользования Украины, г. Киев, Украина

Включение в рационы ремонтных бычков живой массой 325-400 кг 31% от сухого вещества рациона легкопереваримых углеводов (сахар+крахмал), в т.ч. стабильного крахмала 15% увеличивает трансформацию обменной энергии в энергию прироста живой массы с 21,73 до 23,96 МДж или на 10,2%, что обеспечивает повышение среднесуточных приростов на 7,9%, снижение затраты энергии корма на 7,1% в расчете на единицу энергии, отложенной в приросте.

Ключевые слова: углеводы, рацион, бычки, конверсия энергии, среднесуточные приросты.

Введение. Одним из основных факторов, определяющих уровень продуктивности является обеспеченность животных энергией. В практике кормления сельскохозяйственных животных проблема энергетического питания занимает центральное положение. При этом определяющее значение имеет научное обоснование энергетического баланса в организме животного [1-9].

Основным источником энергии в кормах с точки биохимии и физиологии питания животных являются углеводы, жиры и частично, белки.

Наиболее распространены в живой природе углеводы и на их долю приходится более 2/3 органического вещества. В процессе окисления они обеспечивают все живые клетки энергией [4, 5].

В настоящее время ставится вопрос об использовании возможно большего количества показателей при нормировании кормления крупного рогатого скота. Что касается кормления ремонтных бычков и быков-производителей, то в последнее время вопросы по разработке и уточнению норм потребности их в энергии, питательных и минеральных веществах с учетом полученных достижений в области биохимии и физиологии изучены недостаточно [3, 4].

Целью данной работы явилось изучить влияние разного уровня легкогидролизуемых углеводов в рационах на конверсию энергии корма бычками в продукцию.

Материал и методика исследований. Исследования проведены на 3-х группах бычков чёрно-пёстрой породы, средней живой массой 325-400 кг. Различия в кормлении племенных бычков заключались в том, что в контрольной группе животных уровень сахара в рационе составлял 9% от сухого вещества и соответствовал принятой норме, во II и III опытных — соответственно, 11,7 и 13,5, крахмал занимал 20% во всех группах, сумма легкогидролизуемых углеводов (сахар+крахмал) в I, II и III группах была на уровне 28, 31 и 32%.

Рационы подопытных животных состояли из злаково-бобового сена, травы (смесь тимофеевки и клевера), комбикорма, шрота льняного. Дополнительно в рацион вводили сахар и подсолнечное масло. В структуре рациона сено занимало 9-10%, трава - 45-46, комбикорм - 41-42%, шрот - 3-4% по питательности.

Результаты исследований. Исследованиями установлено, что сахаро-протеиновое отношение в рационе бычков І группы составило 0,78, во ІІ и ІІІ, соответственно, 1,02 и 1,18. Среднесуточное потребление сухого вещества находилось на уровне 7,6-8,1 кг. Концентрация обменной энергии в 1 кг сухого вещества рациона оказалась на достаточно высоком уровне - 11,58-11,66 МДж без существенных различий между группами. Содержание клетчатки в сухом веществе составило 20-21% (таблица 1).

Таблица 1

Углеводно-протеиновая характеристика рационов

утивандне претегне	Группа		
Показатель			
	I	II	III
Сахаро-протеиновое отношение	0,78	1,02	1,18
Отношение сахара к крахмалу	0,45	0,59	0,68
Отношение легкогидролизуемых углеводов к клетчатке	1,40	1,55	1,65
Отношение сахар+крахмал к расщепляемому протеину	2,10	2,33	2,45
Отношение сахара к расщепляемому протеину	0,66	0,86	1,00
Расщепляемый протеин на 1 МДж ОЭ, г	12,3	12,3	12,3
Переваримый протеин на 1 МДж ОЭ, г	10,43	10,42	10,43
Сахар + крахмал к клетчатке	1,40	1,54	1,65

В связи с введением в рационы дополнительного количества сахара у животные опытных групп сахаро-протеиновое отношение было значительно выше, чем в контрольной и составило 1,02 и 1,18 против 0,78. Соответственно изменилось и соотношение сахара и крахмала (0,45 в контроле и 0,59 и 0,68 в опытных группах). Количество сахара и сахар+крахмал в расчете на 1 г расщепляемого протеина по I, II и III группах находились в следующих пределах: 0,66, 0,86, 1,00 и 2,10, 2,33 и 2,45, соответственно.

Большое влияние на использование сырого, переваримого, расщепляемого и нерасщепляемого протеина жвачными животными оказывает соотношение легкогидролизуемых углеводов (сахар+крахмал) к клетчатке. В проведенных исследованиях этот показатель находился в пределах: 1,40 в I группе, 1,55 — во II и 1,65 — в III группе, согласно принятых норм на 1 г клетчатки должно приходится 0,85-0,86 г растворимых углеводов. Следовательно, в рационах наблюдался некоторый дефицит клетчатки.

В наших исследованиях содержание крахмала, в том числе и нерасщепляемого в рубце, было примерно одинаковым во всех группах, но в связи с разным количеством сахара в рационах опытных групп, общее количество легкогидролизуемых углеводов оказалось разным. Так, у бычков І группы этот показатель составил 2049 г, во ІІ — 2267 и ІІІ — 2485 г, что на 10,6 и 21,2% больше, чем в контроле. Отмеченные изменения в поступлении углеводного комплекса с кормами определенным образом сказались на использовании энергии рационов.

Рассматривая показатели использования обменной энергии на образование продукции, то есть величину энергии, отложенную в приросте массы тела, следует отметить, что разный уровень легкогидролизуемых углеводов оказал не одинаковое влияние на синтез продукции. Так, у

бычков I группы чистая энергия составила 21, 73 МДж, во II - 23,96 и Ш - 23,05 МДж. Энергия корма на синтез прироста использовалась с разной эффективностью: в І группе - 13,9% валовой энергии отложено в приросте, во II - 15 и в III -14,2%. Эти данные свидетельствуют о том, что скармливание в составе рациона ремонтным бычкам 28% от сухого вещества легкогидролизуемых углеводов, повышает эффективность использования обменной энергии на синтез прироста живой массы. Обменная энергия рациона за вычетом обменной энергии, которая пошла на поддержание жизни в I группе, составила 45,19 МДж, во II -48,52 и в III -51,46 МДж. На основании этих экспериментальных данных рассчитан коэффициент продуктивного использования обменной энергии (КПИ), потребленной сверх поддерживающих затрат животного. В І группе он составил 0,48, во II - 0,49 и в III - 0,48.

Таким образом, бычки II группы в состав рациона которых было дополнительно введено 28% от сухого вещества легкогидролизуемых углеводов (сахар+крахмал) имели более высокий коэффициент использования обменной энергии на прирост живой массы.

Среднесуточные приросты у бычков контрольной группы составили 1064 г, а в опытных повысились до 1116-1148 г или на 5-8%.

По объему эякулята бычки II и III групп превосходили аналогов I группы на 11-14,8%, а концентрации спермы - на 8-12%. Среднее количество замороженных доз спермы составило 58-65.

Анализ данных по эффективности использования питательных веществ и энергии корма подопытных животных (таблица 2) показывает, что по трансформации энергии корма в энергию прироста лучшие показатели имели животные II и III групп, получавшие дополнительно в рационе сахар.

Таблица 2

Основные показатели трансфоромации энергии корма в энергию прироста живой массы бычков

Группа	Энергия прироста, МДж	Трансформация ОЭ рациона в прирост живой массы, %	Затраты ОЭ рациона на 1 МДж в приросте живой массы, МДж
1	21,73	24,5	4,08
II	23,96	26,3	3,79
Ш	23.05	24.5	4 07

Количество энергии, отложенной в приросте, у них составило 23,96-23,05МДж или на 10,3-6,1% больше, чем в I группе.

Затраты энергии в расчете на 1 МДж, отложенный в приросте, составили во II группе 3,79 МДж или на 7,1% ниже, чем в контроле

Выводы. Включение в рационы ремонтных бычков живой массой 325-400 кг 31% от су-

хого вещества рациона легкопереваримых углеводов (сахар+крахмал), в т.ч. стабильного крахмала 15% повышает трансформацию обменной энергии в энергию прироста живой массы с 21,73 до 23,96 МДж или на 10,2%, что обеспечивает увеличение среднесуточных приростов на 7,9% и снижение затрат энергии корма на 7,1% в расчете на энергию, отложенную в приросте.

Список используемой литературы:

- 1. Богданов, Г. А. Кормление сельскохозяйственных животных / Г. А. Богданов. 2-е изд., перераб. и доп. Москва : Агропромиздат, 1990. 624 с.
 - 2. Баканов, В. Н. Кормление сельскохозяйственных животных / В. Н. Баканов, В. К. Менькин. Москва : Аг-

ропромиздат, 1989. - 511 с.

- 3. Бергнер Кетц, Х.-А. Научные основы питания сельскохозяйственных животных / Х.-А. Бергнер Кетц. Москва : Колос, 1973. 173 с.
- 4. Комбикорм КР-3 с экструдированным обогатителем в рационах бычков на откорме / В. Ф. Радчиков [и др.] // Актуальные проблемы интенсивного развития животноводства : сб. науч. тр. Горки : БГСХА, 2014. Вып. 17, ч. 1. С. 114-123. Авт. также : Шинкарева С.Л., Гурин В.К., Ганущенко О.Ф., Ярошевич С.А.
- 5. Состав крови и продуктивность молодняка крупного рогатого скота при использовании в рационах белково-энергетической добавки / В. Ф. Радчиков [и др.] // Зоотехническая наука Беларуси : сб. науч. тр. / Науч. практ. центр Нац. акад. наук Беларуси по животноводству. Жодино, 2014. Т. 49, ч. 2. С. 158-170. Авт. также : Горлов И.Ф., Шарейко Н.А., Люндышев Л.А., Пентилюк С.И., Ярошевич С.А., Сергучев С.В.
- 6. Выращивание бычков на мясо с использованием энерго-протеиновых добавок / В. Ф. Радчиков [и др.] // Конкурентоспособность и качество животноводческой продукции : материалы междунар. науч.-практ. конф., посвящ. 65-летию зоотехнической науки Беларуси (18-19 сент. 2014 г.). Жодино, 2014. С. 267-268. Авт. также : Люндышев В.А., Глинкова А.М., Ярошевич С.А., Симоненко Е.П.
- 7. Энерго-протеиновый концентрат в рационах молодняка крупного рогатого скота / В. Ф. Радчиков [и др.] // Инновации и современные технологии в производстве и переработке сельскохозяйственной продукции : сб. науч. ст. по материалам IX Междунар. науч.-практ. конф., посвящ. 85-летнему юбилею факультета технологического менеджмента. Ставрополь : АГРУС, 2014. С. 208-213. Авт. также : Гурин В.К., Цай В.П., Сапсалева Т.Л., Шинкарева С.Л.
- 8. Энергетическое питание молодняка крупного рогатого скота : моногр. / В. Ф. Радчиков [и др.]. Жодино, 2014. 166 с.
- 9. Взаимосвязь использования энергии корма ремонтными бычками при разном уровне легкогидролизуемых углеводов в рационах / В. К. Гурин [и др.] // Ученые записки УО «ВГАВМ». 2011. Т. 47, № 1. С. 353-357. Авт. также : Радчикова Г.Н., Будько В.М., Шевцов А.Н., Яночкин И.В.

REFERENCES

- 1. Bogdanov, G. A. 1990. Feeding of farm animals = Kormlenie sel'skohozjajstvennyh zhivotnyh. 2nd edition, revised and enlarged. Moscow: Agropromizdat, 624 (in Russian).
- 2. Bakanov, V. N. and V. K. Men'kin. 1989. Feeding of farm animals = Kormlenie sel'skohozjajstvennyh zhivotnyh. Moscow: Agropromizdat, 511 (in Russian).
- 3. Bergner Ketz, H.-A. 1973. Scientific fundamentals of farm animal nutrition = Nauchnye osnovy pitanija sel'sko-hozjajstvennyh zhivotnyh. Moscow: Kolos, 173 (in Russian).
- 4. Radchikov, V. F., S. L. Shinkareva, V. K. Gurin, O. F. Ganushhenko and S. A. Jaroshevich. 2014. *Combined feed with extruded enrichment in rations of fattening calves = Kombikorm KR-3 s jekstrudirovannym obogatitelem v racionah bychkov na otkorme*. Actual problems of intensive development of animal husbandry [Aktual'nye problemy intensivnogo razvitija zhivotnovodstva]: collection of scientific works. Gorki: BGSHA, 17(1): 114-123 (in Russian).
- 5. Radchikov, V. F., I. F. Gorlov, N. A. Sharejko, L. A. Ljundyshev, S. I. Pentiljuk, S. A. Jaroshevich and S. V. Serguchev. 2014. The composition of blood and the productivity of young cattle when used in the rations of a protein-energy supplement = Sostav krovi i produktivnost' molodnjaka krupnogo rogatogo skota pri ispol'zovanii v racionah belkovo-jenergeticheskoj dobavki. Zootechnical science of Belarus [Zootehnicheskaja nauka Belarusi]: collection of scientific works / Scientific and Practical Center of the National Academy of Sciences of Belarus on Animal Husbandry. Zhodino, 49(2): 158-170 (in Russian).
- 6. Radchikov, V. F., V. A. Ljundyshev, A. M. Glinkova, S. A. Jaroshevich and E. P. Simonenko. 2014. *Growing steers for meat using energy-protein supplements = Vyrashhivanie bychkov na mjaso s ispol'zovaniem jenergo-proteinovyh dobavok*. Competitiveness and quality of livestock products [Konkurentosposobnost' i kachestvo zhivotnovodcheskoj produkcii]: Materials of the international scientific and practical conference dedicated to the 65th anniversary of the zootechnical science of Belarus (September 18-19, 2014). Zhodino, 267-268 (in Russian).
- 7. Radchikov, V. F., V. K. Gurin, V. P. Tsaj, T. L. Sapsaleva and S. L. Shinkareva. 2014. Energy and protein concentrate in rations of young cattle = Jenergo-proteinovyj koncentrat v racionah molodnjaka krupnogo rogatogo skota. Innovations and modern technologies in the production and processing of agricultural products [Innovacii i sovremennye tehnologii v proizvodstve i pererabotke sel'skohozjajstvennoj produkcii]: A collection of scientific articles on the materials of the IX International Scientific and Practical Conference dedicated to the 85th anniversary of the Faculty of Technological Management. Stavropol': AGRUS, 208-213 (in Russian).
- 8. Radchikov, V. F. etc. 2014. Energy nutrition of young cattle = Jenergeticheskoe pitanie molodnjaka krupnogo rogatogo skota: monograph. Zhodino, 166 (in Russian).
- 9. Gurin, V. K., G. N. Radchikova, V. M. Bud'ko, A. N. Shevtsov and I. V. Janochkin. 2011. The relationship between the use of feed energy by repair bulls at different levels of easily hydrolyzed carbohydrates in diets = Vzaimosvjaz' ispol'zovanija jenergii korma remontnymi bychkami pri raznom urovne legkogidrolizuemyh uglevodov v racionah. Scientific notes of the Vitebsk State Academy of Veterinary Medicine, 47(1): 353-357 (in Russian).

Радчиков, В. Ф., Цай, В. П., Кот, А. Н., Натынчик, Т. М., Карповский, В. И., Трокоз, В. А. КОНВЕРСИЯ ЭНЕРГИИ КОРМА БЫЧКАМИ В ПРОДУКЦИЮ В ЗАВИСИМОСТИ ОТ УРОВНЯ ЛЕГ-КОГИДРОЛИЗУЕМЫХ УГЛЕВОДОВ В РАЦИОНЕ.

Включение в рационы ремонтных бычков живой массой 325-400 кг 31% от сухого вещества рациона легкопереваримых углеводов (сахар+крахмал), в т.ч. стабильного крахмала 15% увеличивает трансформацию обменной энергии в энергию прироста живой массы с 21,73 до 23,96 МДж или на 10,2%, что обеспечивает повышение среднесуточных приростов на 7,9%, снижение за-

траты энергии корма на 7,1% в расчете на единицу энергии, отложенной в приросте.

Ключевые слова: углеводы, рацион, бычки, конверсия энергии, среднесуточные приросты.

Radchikov, V. F., Tsai, V. P., Kot, A. N., Natinchik, T. M., Karpovsky, V. I., Trokoz, V. A. FEED ENERGY CONVERSION BY STEERS INTO PRODUCTION DEPENDING ON THE LEVEL OF EASILY HYDROLYZED CARBOHYDRATES IN DIET

Implementation of digestible carbohydrates (sugar+starch), including stable starch 15% in diet for replacement steers of 325-400 kg of live weight in amount of 31% of diet dry matter increases transformation of metabolizable energy into energy of live weight gain from 21.73 to 23.96 MJ, or by 10.2%, that ensures increase of average daily weight gain by 7.9%, and decreases feed energy consumption by 7.1% calculated per one energy unit deposited in weight gain.

Key words: carbohydrates, diet, steers, energy conversion, average daily weight gain.

Дата поступления в редакцию: 29.09.2017 г.

Рецензенты: доктор с.-х. наук, доцент А.А. Хоченков доктор с.-х. наук, доцент Н.В. Пилюк

УДК 636.2.084.1

ИСПОЛЬЗОВАНИЕ ОРГАНИЧЕСКИХ МИКРОЭЛЕМЕНТОВ В КОРМЛЕНИИ ТЕЛЯТ

В. А. Радчиков, д.с.-х.н., профессор;

В. П. Цай, к.с.-х.н., доцент;

А. Н. Кот, к.с.-х.н.;

Г. В. Бесараб, научный сотрудник;

Т. М. Натынчик, соискатель

РУП «Научно-практический центр национальной академии наук Беларуси по животноводству», г. Жодино, Республика Беларусь

В. А. Люндышев, к.с.-х.н., доцент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Скармливание органического микроэлементного комплекса (ОМЭК) в составе комбикормов КР-1 в количестве 10% от существующих норм содержания микроэлементов в типовых рецептурах при выращивании телят в 10-75 дней оказывает положительное влияние на поедаемость кормов, морфо-биохимический состав крови и продуктивность животных позволяет повысить среднесуточные приросты животных на 12,3% при снижении затрат кормов на 10%. Применение органического микроэлементного комплекса позволяет снизить себестоимость прироста 10,9% и получить дополнительную прибыль в размере 336,0 тыс. бел. рублей или 37,2 у.е. на голову за период опыта.

Ключевые слова: телята, минеральные вещества, кормление, кровь, продуктивность.

В связи с расширением и детализацией представлений о потребностях животных и о физиологической роли биогенных минеральных элементов и витаминов эти вопросы приобрели огромное значение при организации их питания [1-6].

Комплексные добавки минеральных веществ и витаминов в рационы животных с учетом содержания их в кормах и норм потребности обладают высокой биологической и экономической эффективностью. Действуя в качестве катализаторов многочисленных реакций обмена веществ в организме, биологически активные вещества способствуют снижению потерь основных питательных веществ корма, связанных с процессом превращения их в вещества тела и продукцию. В результате более эффективного использования питательных веществ рациона производство продукции животноводства на тех же кормах значительно увеличивается [7-10].

В результате проведенных исследований

накоплен большой экспериментальный материал по содержанию микроэлементов и витаминов в кормах, органах и тканях животных. Минеральные вещества находятся во всех тканях живого организма. Так, в коже их содержится 0,6 %, в костной ткани -27, мышечной -1, жировой -0.2, в печени и мозге - по 1,4 % [11]. Минеральные вещества поступают в организм животных с кормом и питьевой водой. После всасывания они попадают в печень, затем переносятся в различные органы, где избирательно депонируются [12]. Выделяются минеральные вещества из организма с калом, мочой, потом, молоком, а у птиц - с яйцами. Содержание всех макро- и микроэлементов в организме животных составляет 4-6 % от его массы, где на долю макроэлементов приходится 99,6 %, микроэлементов – 0,4 % [13].

Исследования, проведенные в нашей стране и за рубежом, подтверждают более эффективное положительное влияние на продуктивность животных микроэлементов в органиче-