УДК 621.436:62–714.2 С.Н. Ткач, ст. преподаватель Севастопольский национальный технический университет ул. Университетская 33, г. Севастополь, Россия, 99053 E-mail: tkachsn@gmail.com ТЕПЛООБМЕН ПУЧКОВ U-ОБРАЗНЫХ ТРУБ В УСЛОВИЯХ СВОБОДНОЙ КОНВЕКЦИИ

Приведены результаты экспериментальных исследований теплообмена в межтрубном пространстве забортного охладителя в условиях свободно-конвективного движения. Ключевые слова: забортный охладитель, свободно-конвективный теплообмен.

Введение

Возможность создания эффективной системы охлаждения судовых установок существенно зависит от эффективности теплоотвода забортной воде. Одним из направлений совершенствования централизованных систем охлаждения судовых двигателей является переход на замкнутые схемы с расположением охладителя в пространстве забортной выгородки (рисунок 1).

Рисунок 1 – Расположение охладителей в пространстве забортной выгородки:

а) общий вид забортных выгородок в кормовой части корпуса судна; б) размещение забортных охладителей в пространстве забортной выгородки; в) конструкция ЗО; г) варианты конструкции ЗО; 1, 2 – вход и выход забортной воды; 3, 4 – медные и цинковые протекторы, предотвращающие обрастание и коррозию

г)

В таком забортном охладителе (ЗО) горячий теплоноситель циркулирует внутри U-образных вертикально ориентированных трубок, поступает и отводится через патрубки, забортная вода снаружи омывает трубки. Отвод теплоты от теплопередающей поверхности осуществляется организацией в межтрубном пространстве свободно-конвективного движения забортной воды, что исключает применение насосов, трубопроводов, арматуры, повышая надежность системы охлаждения (рисунок 2).

Расположение ЗО в объеме забортных выгородок требует достаточного пространства для организации свободно-конвективного режима движения охлаждающей жидкости, что не всегда удается

Рисунок 2 – Варианты конструкции забортной выгородки при проведении исследований: а – выгородка с наружными ограничительными стенками и внутренней вставкой; б – выгородка с наружными стенками; в – без ограничительных стенок; 1, 3 – вход и выход забортной воды; 2 – ограничительная стенка; 4 – патрубки входа и выхода воды внутреннего контура; 5 – вентиляционная труба; 6 – трубная система забортного охладителя; 7 – внутренняя вставка; 8 – трубчатый аэратор

обеспечить, не нарушая прочностных характеристик корпуса судна. При движении судна набегающий поток способствует теплоотводу забортной воде. Однако при стоянке судна эффективность теплоотвода снижается. В летний период температурный напор может оказаться крайне малым, что дополнительно резко снижает коэффициент теплоотдачи и требует увеличение теплопередающей поверхности.

С целью увеличения интенсивности теплоотдачи забортной воде, и снижения массогабаритных показателей ЗО, в работе [1] был исследован метод подачи газожидкостных струй в пространство между U-образными трубками. Эксперименты выполнялись с учетом изменения режимных и геометрических характеристик для опускного и подъемного участка центральной U-образной трубки в пучке с шахматной компоновкой труб, размещенных в пространстве забортной выгородки. Полученные результаты показали перспективность метода в сравнении с условиями свободно-конвективного течения забортной воды.

Для возможности оценки метода газожидкостных струй для теплопередающей поверхности Uобразной трубки, включающей опускной, подъемный и промежуточный участок, необходимо на первом этапе исследовать теплообмен в условиях свободной конвекции.

Исходя из этого, целью данной статьи является определение зависимостей для расчета внешнего свободно-конвективного теплообмена пучка U-образных вертикально-ориентированных трубок с учетом изменения как режимных, так и геометрических характеристик теплообменного аппарата и забортной выгородки.

Методика исследований

Исследования внешнего теплообмена полной поверхности U-образной трубки выполнены в условиях свободной конвекции на экспериментальной установке, описанной в [2]. Полагая, что пучок состоит из большого числа цилиндрических трубок, а их диаметр и расположение одинаковое, исследования теплообмена проводились в пределах одного элемента – центральной U-образной трубки пучка из семи трубок. С целью расположения экспериментальных точек в исследуемой области факторного пространства некоторым оптимальным образом применялось ротатабельное центральное композиционное планирование.

Независимые факторы и диапазон их варьирования выбраны с учетом определяющих конструктивных параметров поверхности теплообмена, и эксплуатационных режимов работы ЗО в составе системы охлаждения судового дизеля. Так, температура воды внутреннего контура на входе $\dot{t_1} = 40...85$ °C, температура забортной воды на входе $\dot{t_2} = 10...30$ °C, скорость воды внутреннего контура в трубках $\omega_1 = 0.33...1,67$ м/с (рисунок 3).

Средние значения внешних коэффициентов теплоотдачи $\overline{\alpha}_2$ определялись при установившихся режимах по зависимости: $\overline{\alpha}_2 = Q/(F \cdot \Delta \overline{t})$, где Q – количество теплоты, переданное забортной воде;

F – внешняя теплопередающая поверхность центральной U-образной трубки; $\Delta \overline{t} = \overline{t}_{cr} - \overline{t}_2$ – температурный напор между внешней поверхностью трубки и забортной водой.

В качестве определяющего размера в числах Нуссельта и Грасгофа принималась высота l (рисунок 3, в) вертикального участка трубки. Значения физических параметров определялись по температуре забортной воды \bar{t}_2 за пределами движущегося слоя. Максимальные относительные среднеквадратичные погрешности определения коэффициентов теплоотдачи $\bar{\alpha}_2$ не превышали ±11,4%, а чисел Нуссельта – ±11,6%.

Рисунок 3 – К выбору конструктивных и режимных параметров: a – 3D-модель забортного охладителя с пучком из семи U-образных цилиндрических труб; б – схема размещения труб в поперечном сечении трубного пучка с относительным шагом s/d = 1,5; 2,0 и 3,0; в – расчетная схема центральной трубки

37a = 1,3,2,0 if 3,0, B = pacternal exema delipation ipy

Результаты экспериментов, их анализ и обобщение

На рисунке 4, а представлены полученные экспериментальные зависимости коэффициента теплоотдачи $\overline{\alpha}_2$ от температурного напора $\overline{t_{cT}} - \overline{t_2}$ для различных случаев теплообмена. Эти зависимости хорошо аппроксимируются степенной функцией вида:

$$\overline{\alpha}_2 = c \cdot \Delta \overline{t}^{\mathrm{m}} \,. \tag{1}$$

Рисунок 4 – Зависимость $\overline{\alpha}_2 = f(\overline{t_{cr}} - \overline{t_2})$ (а) и $\overline{Nu}_l = f(Gr, Pr)$ (б) в условиях свободной конвекции при разном относительном шаге трубок и разной конструкции забортной выгородки:

1 – вариант А (рисунок 2, а); 2 – вариант Б (рисунок 2, б); 3 – вариант В (рисунок 2, в);

4 - средняя теплоотдача в неограниченном пространстве одиночной вертикальной трубки [3]

В таблицу 1 сведены все постоянные *c* и *m* из соотношения (1) во всем исследуемом диапазоне $\Delta t = t_{cT} - t_2$. Как видно, на эффективность теплообмена благоприятное влияние оказывает не только рост температурного напора, но и плотность расположения трубок в трубном пучке. Большее значение $\overline{\alpha}_2$ удается получить при использовании трубок с относительным шагом s/d = 1,5. Причем, в диапазоне

изменения $\Delta t = 28...36$ °C наблюдается излом кривых и резкое увеличение теплоотдачи при дальнейшем увеличении разности температур, что характерно при смене режима. Излом проявляется для большинства шагов и вариантов конструкции забортной выгородки. Чем плотнее пучок трубок, тем меньший температурный напор необходимо создать для появления излома. Так, для s/d = 1,5 точка излома находится в диапазоне $\Delta t = 25...28$ °C, для s/d = 2,0 необходим напор $\Delta t = 34$ °C, для s/d = 3,0 напор $\Delta t = 36$ °C.

s/d	Вариант А (рисунок 2, а)			Вариант Б (рисунок 2, б)			Вариант В (рисунок 2, в)		
	С	т	$\min \le \Delta \overline{t} > \max$	С	т	$\min \le \Delta \overline{t} > \max$	С	т	$\min \le \Delta \overline{t} > \max$
1,5	350	0,33	14; 25	350	0,35	14; 30	650	0,16	14; 28
	92	0,75	25; 55	55	0,9	30; 55	55	0,9	28; 55
2,0	160	0,55	14; 55	320	0,33	14; 34	220	0,45	14; 34
				88	0,7	34; 55	90	0,7	34; 55
3,0	280	0,33	14; 36	281	0,33	14; 36	367	0,25	14; 36
	74	0,7	36; 55	170	0,47	36; 55	152	0,5	36; 55

Таблица 1 – Опытные постоянные с и *m* для зависимости вида $\overline{\alpha}_2 = c \cdot \Delta \overline{t}^m$

На основании анализа [3] для обобщения экспериментальных данных, исходя из физической модели процесса, был выбран общий вид критериальной зависимости для свободно-конвективного теплообмена Nu = f(Gr, Pr). В результате были построены графические зависимости (рисунок 4, б) на основании которых для расчета процессов конвективного теплообмена получены обобщенные соотношения вида:

$$\overline{\mathrm{Nu}}_l = c \cdot \mathrm{Ra}^{\mathrm{n}} \,. \tag{2}$$

В таблицу 2 сведены все значения опытных постоянных c и n из соотношения (2) для всех исследуемых пучков и вариантов забортной выгородки в интервале чисел Рэлея $Ra = 6 \cdot 10^{10} \dots 3 \cdot 10^{11}$.

s/d	Вариант А (рисунок 2, а)			Вариант Б (рисунок 2, б)			Вариант В (рисунок 2, в)		
	С	п	$\min \le \operatorname{Ra} > \max$	С	п	min≤Ra> max	С	п	$\min \le \operatorname{Ra} > \max$
1,5	1,6	0,25	$6 \cdot 10^{10}; 1, 5 \cdot 10^{11}$	0,22	0,33	$6 \cdot 10^{10}; 1, 5 \cdot 10^{11}$	940	_	$6 \cdot 10^{10}; 1, 1 \cdot 10^{11}$
	$4,3.10^{-6}$	0,75	$1,5 \cdot 10^{11}; 3 \cdot 10^{11}$	$2,1.10^{-4}$	0,6	$1,5\cdot10^{11}; 3\cdot10^{11}$	$2,8\cdot10^{-3}$	0,5	$1,1\cdot10^{11}; 3\cdot10^{11}$
2,0	5,7·10 ⁻²	0,38	6·10 ¹⁰ ; 3·10 ¹¹	0,42	0,3	$6 \cdot 10^{10}; 1, 4 \cdot 10^{11}$	0,2	0,33	$6 \cdot 10^{10}; 1, 7 \cdot 10^{11}$
				$2,5 \cdot 10^{-3}$	0,5	$1,4\cdot10^{11}; 3\cdot10^{11}$	$3,8.10^{-6}$	0,75	$1,7\cdot 10^{11}; 3\cdot 10^{11}$
3,0	1,3	0,25	$6.10^{10}; 1.8.10^{11}$	1,3	0,25	$6 \cdot 10^{10}; 1, 4 \cdot 10^{11}$	$1,7.10^{-1}$	0,33	$6 \cdot 10^{10}; 2, 0 \cdot 10^{11}$
	$2,0.10^{-3}$	0,5	$1,8\cdot10^{11}; 3\cdot10^{11}$	$2,8\cdot10^{-2}$	0,4	$1,4\cdot10^{11}; 3\cdot10^{11}$	$3,0.10^{-6}$	0,75	$2,0.10^{11}; 3.10^{11}$

Таблица 2 – Опытные постоянные c и n для зависимости вида $\overline{Nu}_l = c \cdot Ra^n$

Опираясь на исследования, представленные в работе [4], для рассматриваемых в настоящей работе условий, можно выделить два режима теплообмена: режим пограничного слоя и режим гидродинамического взаимодействия соседних трубок. Режим пограничного слоя характерен для чисел Рэлея в среднем в диапазоне Ra = $6 \cdot 10^{10} \dots 1,55 \cdot 10^{11}$ (рисунок 4, б) и зависит от характеристик трубного пучка и конструкции забортной выгородки. В этом режиме данные по пучкам идут почти параллельно зависимости для одиночной трубки (Nu = $f(\text{Ra}^{0,33})$, и имеют постоянные степени n, близкие к значению 0,25 и 0,33 (таблица 2), что характерно для сформировавшегося пограничного ламинарного или турбулентного слоя. При этом режиме тепловое взаимодействие соседних трубок отсутствует. Причем, средняя теплоотдача для трубок с s/d = 1,5 и 2,0 даже выше, чем у одиночной трубки.

Для участка с числами Рэлея Ra > 1,55 · 10¹¹ на теплоотдачу оказывает дополнительное влияние гидродинамическое взаимодействие соседних трубок. При сближении трубок тот же самый расход свободно-конвективного потока приходится на меньшую площадь поперечного сечения пучка и скорость забортной воды возрастает, что ведет к увеличению теплоотдачи.

Выводы

Результаты исследований свободно-конвективного теплообмена в межтрубном пространстве пучков вертикальных U-образных трубок показали:

 теплообмен одиночной трубы несколько выше теплообмена пучка трубок с относительным шагом 3,0; интенсивность теплообмена повышается с уменьшением относительного шага трубок; 138

– имеются два режима теплообмена: режим пограничного слоя при $\Delta t = 14...32$ °C (Ra = $6 \cdot 10^{10}...1,55 \cdot 10^{11}$), характеризующийся относительно низкой эффективностью теплообменных процессов; высокоэффективный режим ($\Delta t = 32...55$ °C, Ra = $1,55 \cdot 10^{11}...3 \cdot 10^{11}$) гидродинамического взаимодействия соседних трубок.

Теплоотдача в режиме пограничного слоя соответствует условиям работы забортного охладителя в летний период при стоянке судна, т.е. при малом температурном напоре.

Поэтому, целью дальнейших исследований является изучения метода подачи газожидкостных струй для интенсификации теплоотдачи забортной воде в забортном охладителе.

Библиографический список использованной литературы

1. Ткач С.Н. Экспериментальные исследования теплоотдачи забортного охладителя в условиях свободно-конвективного и газожидкостного течения морской воды. / С.Н. Ткач, И.И. Свириденко, Е.С. Ткач // Вестник СевНТУ. Сер. Механика, энергетика, экология: сб. науч. тр. — Севастополь: СевНТУ, 2013. — Вып. 137. — С. 351–354.

2. Ткач С.Н. Экспериментальная установка для исследования газожидкостной интенсификации теплоотдачи забортной воде / С.Н. Ткач, В.А. Тимофеев // Зб. наук. пр. СНУЯЕтаП. — 2010. — Вип. 1 (33). — С. 171–179.

3. Михеев М.А. Основы теплопередачи / М.А. Михеев, И.М. Михеева. — М: Энергия, 1977. — 344 с.

4. Гусев С.Е. Карта режимов свободно-конвективного теплообмена коридорного пучка труб / С.Е. Гусев, А.А. Пиндрус // Тепломассообмен-ММФ-2000. — Минск, 2000. — Т. 1. — С. 121–128.

Поступила в редакцию 31.03.2014 г.

Ткач С.М. Теплообмін пучків U-образних труб в умовах вільної конвекції

Приведені результати експериментальних досліджень теплообміну в міжтрубному просторі забортного охолоджувача в умовах вільно-конвективного руху.

Ключові слова: забортний охолоджувач, вільно-конвективний теплообмін.

Tkach S. Heat exchange of U-shaped bunches of tubes in conditions of free convection

Results of experimental researches of heat exchange are given in tube space of box-cooler in the conditions of free-convective movement.

Keywords: box-cooler, free-convective heat exchange.