ГЕОХІМІЧНІ ОСОБЛИВОСТІ ІРУНТОВИХ ВОД В МЕЖАХ ТЕРИТОРЇ ЛЬВІВСЬКОГО ПРОГИНУ

Р. П. Паньків, М. В. Кость, І. І. Сахнюк, О. М. Майкут, О. Б. Мандзя, I. П. Навроцька, Р. П. Козак
Інститут геології і геохімії горючих копалин НАН України, м. Львів e-mail: M_Kost_2007@ukr.net

В даній роботі на основі визначення показників хімічного складу трунтових вод очінено ӥхній екологічний стан та ступінь забруднення. Зафіксовано підвищений вміст нітратів, Силічію, високі значення лужності та загальної жорсткості. Виявлено відхилення показників фізіологічної повночінності мінерального складу питних вод від нормативних величин. Встановлено, цо формування геохімічного складу фунтових вод зумовлено впливом факторів геологічного, фізико-хімічного та техногенного походження. Наведено рекомендачії щодо зменшення забруднення питної води та покращення їі якості.

Ключові слова: прунтові води, геохімічні особливості, ступінь забруднення, коефіціснт корелячії, фактори впливу.

Встуі

Забезпечення населення якісною водою є досить актуальною проблемою. Практично всі поверхневі, грунтові й частково підземні води забруднені промисловими, побутовими, сіљьськогосподарськими стоками, іхня якість не відповідає чинним санітарним нормам. Основним джерелом водопостачання сільського населення є підземні води першого від поверхні водоносного горизонту, який є недостатньо захищеним від проникнення забруднень. Залежно від частоти і кількості опадів значно коливається рівень грунтових вод, а в залежності від забруднення грунту змінюється їхній склад.

Найбільшим ризиком, пов'язаним зі станом здоров'я населення, що виникає при споживанні питної води, є підвипений вміст нітратів, Феруму та низький Йоду, Фтору і Магнію, які є показниками фізіологічної повноцінності питної води і визначають відповідність їі мінерального складу біологічним потребам організму людини. Слід зазначити, що некондиційний склад питної води призводить до зниження імунітету до різного роду захворювань, порушує обмін речовин, викликає серцево-судинні хвороби і негативно діє на генетичний код.

Аналіз останніх досліджень і публікацій з даної теми

Незадовіљьна якість питної води - це проблема, характерна на даний час для багатьох сільських населених пунктів України. Покращення якості води, яка споживається населенням, визнано Верховною Радою України одним із основних пріоритетів охорони довкілля та раціонального використання природних ресурсів, що гарантується [1-4].

Даній проблемі присвячені роботи [5-9] та ін. Однак у даних дослідженнях аспекти щодо геохімічних особливостей грунтових вод в межах території Львівського прогину відсутні, чим \mathbf{i} обумовленј вибір теми дослідження.

Мета роботи - встановити геохімічні особливості грунтових вод в межах території Львівського прогину.

Робота виконана в рамках бюджетних тем "Гідрогеоекологічні дослідження Львівського прогину в зв'язку з нафтогазоносністю" та "Геоекологічні проблеми заходу України (на прикладі території Львівської області)" нашого Інституту.

Проведено відбір 50 проб грунтових вод, виконано аналітичне визначення показників хімічного складу та порівняно їх кількості із [10]. Аналізи вод виконано авторами в атестованій лабораторії згідно з ДСТУ та ГОСТів. Оцінювали наступні показники: мінералізацію, твердість, окиснюваність перманганатну, вміст Натрію, Калію, Кальцію, Магнію, наявність хлоридів, сполук амонію, нітратів, нітритів, сульфатів, гідрокарбонатів, фосфатів, Фтору, Силіщію, Літію, Стронцію та ряду важких металів.

Результати та їх обговорення

За фізико-географічними умовами досліджувана територія розташована у лісостеповій кліматичній зоні помірно-континентального поясу. Вона характеризується густою річковою сіткою, що пов'язано з великою кількістю опадів та значним ерозійним розчленуванням поверхні. Переважають дерново-підзолисті, ясно-сірі, сірі та чорноземні опідзолені грунти. За сольовим складом води належать до гідрокарбонатно-кальцієвого типу, мають низьку мінералізацію та невисоку твердість [11]. Проте внаслідок антропогенного впливу вони зазнали докорінних змін природного гідрохімічного, гідродинамічного режиму.

В таблиці 1 наведено порівняння питомої ваги проб на території західних областей України впродовж 2010-2012 років, які за даними [12] не відповідають встановленим нормам за санітарнохімічними показниками. Як бачимо, незадовільний стан грунтових вод показує, що проблеми у сфері охорони вод від забруднення та виснаження не знайшли вирішення.

Проведені нами дослідження грунтових вод показали, що вони характеризуються величиною водневого показника $6,19-9,30$ од. pH , загальною мінералізацією $-0,23-1,58 \mathrm{r} / \mathrm{дm}^{3}$, лужністю - 1,2-10,4 ммоль/дм ${ }^{3}$ та змішаним аніонним (з переважанням гідрокарбонатів, рідше сулфатів (3 проби) або хлоридів (2 проби), нітратів (1 проба)) та катіонним (з переважанням кальцію, і лише в одній пробі калію) складом. Кількості фосфатів становили < $0,01-3,01$ мт/дм ${ }^{3}$, фторидів - $0,1-0,35 \mathrm{mг} /$ м 3, сполук амонію - $0-2,31 \mathrm{mг} /$ д 3, і не перевищували гранично допустимих концентрацій для питних вод (ГДКв).

Таблиця 1. Питома вага проб з систем децентралізованого водопостачання (у \%), які не відповідають встановленим нормам за санітарно-хімічними показниками [12]

Область	Питома вага не відповідаючих нормам проб (\%) по роках		
	2010	2011	2012
Волинська	18,2	20,9	17,4
Рівненська	26,2	28,8	26,2
Львівська	7,3	5,5	5,7
Тернопільська	36,6	17,7	18,1
Івано-Франківська	9,9	8,1	9,9
По Україні	34,2	32,0	29,3

Зафіксовано підвищені значення мінералізації (1,06 ГДКв - 1 проба), загальної жорсткості (1,00-1,96 ГДКв - 9 проб), окиснюваності перманганатної ($1,24-16,9$ ГДКв - 5 проб), високі вмісти Силіцію ($1,00-2,35$ ГДКв - 17 проб), нітритів (3,07 ГДКв - 1 проба), нітратів (1,08-5,69 ГДКв - 23 проби). Концентрації $\mathrm{Fe}\left(\leq 0,01-0,89\right.$ мг/дм $\left.{ }^{3}\right)$, $\mathrm{Mn}(\leq 0,002-0,39), \mathrm{Cu}(\leq 0,002-0,013), \mathrm{Zn}$ $(\leq 0,005-0,076)$, $\mathrm{Sr}(0,21-3,29)$, Li ($<0,002-0,073$), $\mathrm{Cr}(0,002-0,005)$, Mo ($0,004-0,026$), V ($0,002-$ 0,009) не перевищували ГДКв. I лише в одній пробі кількість Mn становила 0,83 мг/дм ${ }^{3}(1,66$ ГДКв). Вміст інших металів знаходився нижче ГДКв та межі виявлення (мг/дм ${ }^{3}$): $\mathrm{Pb}, \mathrm{Co}, \mathrm{Ni}<0,01$; $\mathrm{Ag}<0,005 ; \mathrm{Cd}<0,001$.

Слід зазначити, що у 42 \% проаналізованих нами проб рівень нітратів перевищуе їх ГДКв. За даними [13], перевищення по вмісту нітратів у 2011 році виявлено у $13,4 \%$ проб Львівщини.

Найгірший стан води зафіксовано в населених пунктах у Сокальському, Радехівському, Жовківському, Жидачівському, Миколаївському, Пустомитівському районах. Підвищений вміст нітратів є наслідком легкого проникнення у водоносні горизонти мінеральних і органічних добрив, стоків від місць складування твердих відходів, рідких стоків, які утворюються при утримуванні худоби, при удобренні грунту рідким гноєм. Відомо, що нітрати характеризуються досить широким спектром токсичної дії на живі організми. Основна маса нітратів потрапляє до організму людини із питною водою. Нітрати швидко всмоктуються в шлунково-кишковому тракті, частина їх у незмінному вигляді виводиться з організму, а інша - метаболізує до нітритів та інших сполук, в тому числі і канцерогенних нітрозоамінів, що володіють канцерогенною, мутагенною, ембріотоксичною дією [14]. Все це негативно позначається на окисно-відновних процесах в організмі, сприяе утворенню метгемоглобіну.

Перевищення ГДКв щодо загальної жорсткості ($\leq 10 \mathrm{mг} /$ дм 3) у досліджуваних водах викликано підвищеним вмістом кальцію. Висока жорсткість погіршуе органолептичні властивості води, надаючи їй гіркуватого присмаку та негативно впливає на органи травлення людини.

У водах спостерігається деяке підвищення вмісту Силіцію, яке, очевидно, пов'язано з фізико-географічними умовами району.

Відповідність мінерального складу питної води біологічним потребам організму людини визначають показники ї̈̆ фізіологічної повнодінності. Порівняння фактичних значень складу трунтових вод з нормативними наведено в таблиці 2 . Як бачимо, відхилення від нормативних величин характерні практично для біљшості визначуваних показників. Так, наприклад, вміст фтору нижче нормативного. Відомо, що недостатній (менше $0,5 \mathrm{mт} /$ дм 3), вміст цьго елемента у воді сприяє підвищенню захворюваності населення на карісс зубів.

Таблиця 2. Показники фізіологічної повноцінності мінерального складу питної води

Показник	Нормативні значення $[10]$	Фактичні значення	Відсоток проб зі значеннмии	
			більше норми	
Сухий залишок, мг/дм ${ }^{3}$	$200-500$	$344,23-1583,33$	0	74
Загальна лужність, ммоль/дм				
Кальцій, мг/дм ${ }^{3}$	$0,5-6,5$	$1,2-10,4$	0	28
Магній, мг/дм ${ }^{3}$	$25-75$	$17,03-364,71$	2	80
Загальна жорсткість,				
ммоль/дм ${ }^{3}$	$10-50$	$1,82-49,82$	26	0
Натрій, мг/дм ${ }^{3}$	$1,5-7,0$	$1,40-19,60$	2	60
Калій, мг/дм ${ }^{3}$	$2-20$	$2,14-128,60$	0	48
Йод, мкт/дм ${ }^{3}$	$2-20$	$0-106,7$	20	30
Фториди, мг/дм ${ }^{3}$	$20-30$	не визначали	-	-

Оцінку екологічного статусу грунтових вод проведено за формулою [15]:

$$
\Sigma\left[\left(\mathrm{C}_{1} / \Gamma Д К_{1}\right)+\left(\mathrm{C}_{2} / \Gamma Д К_{2}\right)+\ldots+(\mathrm{Cn} / \Gamma Д К \mathrm{n})\right],
$$

де $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{Cn}$ - показники концентрації різних забруднювальних речовин у трунтовій воді ($\mathrm{m} /$ дм 3);

ГДК 1, ГДК $2, \ldots$ ГДКn - граничнодопустимі концентрації забруднювальних речовин у грунтовій воді.

Градація ступеня забруднення та екологічного стану наведено в табл. 3.
Таблиця 3. Ступінь забруднення грунтових вод та їх екологічний стан [15]

№ п/п	Ступінь забруднення прунтових вод	Коефіцієнт сумарного забруднення	Екологічний стан природного середовища					
1	умовно чисті	$0-3$	сприятливий	$	$	2	слабко забруднені	$3-10$
:---:	:---:	:---:						
3	середньо забруднені	$10-20$						
4	сильно забруднені	>20						
напружнийй								

Порівняльний аналіз складу грунтових вод з [10], розрахунок коефіцієнта сумарного забруднення [15], показали, що їх екологічний стан задовільний, а ступінь забруднення - слабко забруднені. I лише в 2 пробах показники не відповідають нормам. На величину цього коефіцієнта значний вплив мають підвищені кількості нітратів, Силіцію, лужності, амонію, величини загальної жорсткості, окиснюваності перманганатної.

Перевірка розподілу основних показників грунтових водах досліджуваної території показала, що відхилення від нормального закону для рівня значущості 0,01 простежуються для нітритів, карбонатів, окиснюваності перманганатної, амонію, фосфатів, Калію, $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Sr}$, $\mathrm{Li}, \mathrm{Cr}, \mathrm{Mo}$ та V.

У таблиці 4 представлені результати кореляційного методу аналізу, виконані за допомогою програми STATISTICA 6. Встановлено тісний кореляційний зв'язок мінералізації (М) з загальною жорсткістю ($+0,75$), слабкий - з гідрокарбонатами ($+0,69$), Кальцієм ($+0,65$), Магнієм ($+0,61$), Натрієм ($+0,55$), сульфатами ($+0,53$). Загална жорсткість досить тісно корелює з Кальцієм $(+0,96)$, слабше з сульфатами $(+0,70)$, гідрокарбонатами ($+0,65$), Магнієм $(+0,58)$. Натрій тісно корелюе $з$ хлоридами ($+0,71$), Магній - з гідрокарбонатами ($+0,67$). Для Калію відмічено тенденцію до зв'язку з нітратами ($+0,53$), карбонатами ($+0,52$), Магнієм ($+0,46$), гідрокарбонатами $(+0,38)$ та Силіцієм ($+0,31$). Це дозволяє зробити висновок про важливу роль головних іонів та мінералізації у формуванні хімічного складу грунтових вод, зумовленого складом водовміщуючих порід, які попирені в літолого-мінералогічному комплексі водного басейну.

Для амонію відмічено тенденцію до взаємозв'язку з фосфатами ($+0,41$), фторидів - $з$ гідрокарбонатами ($+0,34$), Силіцієм ($+0,33$) та мінералізацією ($+0,34$). Відомо, що в незабруднених водах присутність іонів амонію пов'язана з процесами біохімічної деградації білкових речовин, розкладом сечовини під дією уреази. При розкладанні органічних речовин у воді з'являються фосфор, фтор та ін. Поява підвищених концентрацій іонів амонію у воді може бути наслідком діяльності тваринницьких ферм та поверхневого стоку з сільгоспугідь у випадку використання аміачних добрив.

Встановлено наявність прямого кореляційного зв'язоку високого рівня між окиснюваністю перманганатною і нітритами ($+0,98$). Нітрати слабко корелюють з Калієм ($+0,53$).

На основі статистичного аналізу даних виділено 3 найсильніші фактори впливу на геохімічний склад грунтових вод (табл. 5).

Найпотужніший фактор F_{1} з максимальною вагою 27% впливає на асоціацію мінералізація - жорсткість загальна - $\mathrm{Ca}^{2+}-\mathrm{Mg}^{2+}-\mathrm{HCO}_{3}^{-}$(див. таблицю 5). Цей фактор зумовлений надходженням цих компонентів з гірських порід (геологічннй фактор).

Фактор F_{2} вагою 17% впливає на асоціацію $\mathrm{pH}-\mathrm{CO}_{3}{ }^{2-}$. Водневий показник корелює 3 карбонатами ($+0,67$). (див. табл. 4). Враховуючи вплив pH на процеси освітлення, знебарвлення і знезараження, прийнято вважати, що питна вода повинна мати активну реакцію в межах 6,5-8,5. У природних водах він визначається в основному кількісним співвідношенням концентрацій вугільної кислоти та їі іонів:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \leftrightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} .
$$

Зміна реакції води має значний вплив на міграційну здатність компонентів. Багато $з$ них рухомі в пирокому діапазоні pH і можуть інтенсивно мігрувати як у кислому, так і у лужному середовищі (Натрій, Калій, Літій, Фтор, Хлор та ін.). При рН 8,6-12 у воді присутні гідрокарбонати й карбонати. Цей фактор зумовлений кислотно-лужними умовами та хімічними властивостями елементів (фізико-хімічний фактор).

Фактор F_{3} впливає (вага 11%) на асоціацію NO_{2}^{-}- Оперм. і зумовлений техногенним походженням, пов'язаним з діяльністю людини. Підвищений вміст нітритів вказує на посилення процесів розкладу органічних речовин в умовах повільного окиснення нітритів в нітрати. Їх наявність у воді свідчить про фекальне забруднення. На забруднення вод вказують і підвищені значення окиснюваності перманганатної, що може бути зумовлено впливом стічних вод і відходів тваринництва.

Висновки

Грунтові води в межах території Львівського прогину внаслідок антропогенного впливу зазнали змін природного геохімічного складу. Зафіксовано підвищені вмісти нітратів, Силіцію, високу лужність, окиснюваність перманганатну та високі значення загальної жорсткості. Їхній геохімічний склад формується під впливом факторів геологічного, фізикохімічного та техногенного походження.

Спільною негативною рисою складу грунтових вод є проблема високої жорсткості, пов'язаної з хімічним складом грунту, в якому формується водоносний горизонт. Щоб знизити вміст йонів кальцію, воду перед вживанням необхідно кип'ятити і відстоювати.

Значна кількість населення споживає воду з високим вмістом нітратів. Відсутність ефективних методів видалення нітратів з вод в умовах децентралізованого водопостачання лише поглиблює цю проблему. 3 метою зменшення забруднення слід періодично чистити дно криниці (наприклад, негашеним вапном), а також їі стінки від органічних плівок. Доцільним є дотримання самими власниками вимог санітарного законодавства при облаштуванні та утриманні криниць, що дозволить зменшити забруднення питної води та зробити її придатною для споживання людиною.

Необхідним є проведення санітарно-епідеміологічними службами постійного контролю джерел децентралізованого водопостачання за відповідністю їх санітарним вимогам.

Перспективою подалших доспіджень є розширення мережі спостереження, оцінка ступеня реальної небезпеки забруднення нітратами, гідрокарбонатами, нітритами, Кальцієм, Калієм грунтових вод і розробка методів прогнозуванвя екостанів водних об' 'ктів з урахуванням безперервно поновлюованої інформації про стан навколишніх ландшафтів і господарську діяльність у межах досліджуваної території.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ГРУНТОВЫХ ВОД В ПРЕДЕЛАХ ТЕРРИТОРИИ ЛЬВОВСКОГО ПРОГИБА

Р. П. Панькив, М. В. Кость, И. И. Сахнюк, О. М. Майкут, О. Б. Мандзя, И. П. Навроцкая, Р. П. Козак
Институт геологии и геохимии горючих ископаемых НАН Украины, г. Львов e-mail: M_Kost_2007@ukr.net

В данной работе на основе определения показателей химического состава грунтовых вод оценены их экологическое состояние и степень загрязнения. Зафиксировано повышенные содержания нитратов, Кремния, высокие значения щелочности и общей жесткости. Выявлены отклонения показателей физиологической полноченности минерального состава питьевых вод от нормативных величин. Установлено, что формирование геохимического состава грунтовых вод обусловлено влиянием факторов геологического, физико-хииического и техногенного происхождения. Приведень рекомендачии по уменьшению загрязения питьевой воды и улучшения ее качества.

Ключевые слова: грунтовые воды, геохимические особенности, степень загрязнения, коэффичиент коррелячии, факторы влияния.

GEOCHEMICAL PECULIARITIES OF GROUNDWATER WITHIN THE TERRITORY OF LVIV TROUGH

R. P. Pankiv, M. V. Kost, I. I. Sakhhyuk, O. M. Maikut, O. B. Mandzya, I. P. Navrotska, R. P. Kozak
Institute of Geology and Geochemistry of Combustible Minerals of NAS, Lviv, Ukraine e-mail: M Kost2007@ukr.net

In this paper based on the definition of indicators of the chemical composition of the groundwater its ecological status and degree of contamination is appraised. Increased content of nitrates, silicon, alkalinity and high values of the general hardness were fixed. Deviations of physiological full value of the mineral composition of drinking water from guideline values were revealed. It was established that the formation of geochemical composition of ground water was due to the influence of factors of geological, physical, chemical and man-made origin. Recommendations for reduction of pollution of drinking water and improvement its quality were cited.

Key words: groundwater, geochemical features, degree of contamination, the correlation coefficient, factors of influence.

Список літератури

1. Закон України "Про охорону навколишнього природного середовища" № 1264-XII від 25 червня 1991 p. - 50 с. - [Електронний ресурс]. - Режим доступу: http://zakon4.rada.gov.ua/laws/show/1264-12
2. Водна Рамкова Директива ЄС 2000/60/ЕС. Основні терміни та іх визначення. - К., 2006. -240 c .
3. ЗаконУкраїни "Про питну воду та питне водопостачання" № 2918-III від 10 січня 2002 p. [Електронний ресурс]. - Режим доступу: http://zakon4.rada.gov.ua/laws/show/2918-14
4. Закон України про Загалнодержавну програму "Питна вода України" ва 2006-2020 роки від 03.03.2005 № 2455-IV. - 23 с. - [Електронний ресурс]. - Режим доступу: http://zakonoposlusnik.narod.ru/oflain/za_89.htm
5. Руденко С. С., Том'юк Б. П., Бербець М. А., Філянович Т. М. Вплив взаємодії Алюмінію і Фтору на захворювання карієсом мешканців Північної Буковини // Екологія та ноосферологія. - 2005. - Т. 16. - № 3-4. - С. 243-248.
6. Архіпова Г. І., Мудрак Т. О., Завертана Д. В. Вплив надлишкового вмісту важких металів у питній воді на організм людини // Вісник НАУ. - 2010. - № 1. - С. 232-235.
7. Волошин П. Просторово-часові закономірності змін хімічного та динамічного режиму підземних вод урбосистеми Львова // Вісник Львів. ун-ту. Серія геогр. - 2010. - Вип. 38. - C. 58-68.
8. Бойко I. А. Загањна характеристика та особливості умов формування підземних вод на території Полтавської області як основного джерела питного водопостачання // Вісник Полтавської державної аграрної академії. - 2011. - № 2. - С. 169-173.
9. Бордюг Н. С. Аналіз санітарного стану якості питної води децентралізованого водопостачання // Технологический аудит и резервы производства. - 2013. - № 5/4(13). - С. 4951.
10. Державні санітарні норми та правила "Гігієнічні вимоги до води питної, призначеної для споживання людиною" (ДСанПіН 2.2.4-171-10) / Наказ МОЗ України № 400 від 12.05 .2010 р. - K., 2010. - 48 c.
11. Підземні води західних областей України / Під ред. О. Д. Штогрин, К. С. Гавриленко. - К.: Наук. думка, 1968. - 315 с.
12. Націонаљна доповідь "Про якість питної води та стан шитного водопостачання в Україні у 2012 p". - 2013. - 450 с. - Режим доступу $\mathrm{http}: / /$ minregion.gov.ua
13. Горбань Н. Убивча вода. Кожна восьма криниия Львівщини забруднена нітратами // Львівська газета Ратуша. - 2011. - Режим доступу http://ratusha.lviv.ua/index.php?dn=news\&to=art\&id=1275
14. Пікуль К.В. Стан здоров’я школярів, які мешкають в умовах нітратного навантаження організму. // Педіатрія, акушерство та гінекологія. - 2004. - №2. - С. 39-43.
15. Адаменко О.М., Крижанівський Є.І., Нейко Є.М., Русинов Г. Г., Журавель О. М., Міщенко Л. В., Кольцова Н. І. Екологія міста Івано-Франківська. - Івано-Франківськ: Сіверсія MB, 2004. - 200 c .
