ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДОВ СТАБИЛИЗАЦИОННОЙ ОБРАБОТКИ ШАХТНОЙ ВОДЫ (ШАХТА М. ГОРЬКОГО, г. ДОНЕЦК)

Н.Д. Гомеля, Т.А. Корда, К.В. Носачева, М.Н. Шуриберко, Т.В. Потильчак
Национальный технический университет Украины «Киевский политехнический институт», г. Киев
e-mail: nezvyskaya@mail.ru

Изучены прочессы накипеобразования в шахтной воде (шахта им. М. Горького) при температурах $98^{\circ} \mathrm{C}$ и $40{ }^{\circ} \mathrm{C}$. Предметом исследования были прочессы стабилизачионной обработки воды, ее реагентного, ионообменного умягчения и обессоливания. При выполнении исследований были использованы спектрофотометрический, потенциометрический и химический методы анализа для идентификачии реагентов, контроля физико-химических прочессов очистки воды. B качестве ингибиторов накипеобразования в данной работе использовали оксиэтилидендифосфоновую кислоту (ОЭДФК) и нитрилтриметилфосфоновую кислоту (НТМФК), на основе которых созданы практически все композичии, используемые как ингибиторы накипеобразования, включая и композичию МИОР. Показано, что стабильность воды по отношению к осадкоотложениям растет при кислотной обработке с увеличением дозы ингибитора.

Ключевые слова: накипеобразование, ингибитор, стабилизачия, шахтная вода.

Вступление

Украина из расчета запасов воды на душу населения или единицу площади территории относится к государствам с ограниченными водными ресурсами. Годовой запас восстанавливаемых водных ресурсов составляет 80 км 3, а в маловодный год - 48,8 км 3. Общий запас водных ресурсов, с подземными водами включительно, достигает 210 км 3. Однако, главные проблемы в водообеспечении населения и предприятий Украины связаны не столько с количеством, сколько с качеством воды в природных водоемах и неравномерным распределением водных ресурсов.

Наибольшие объемы воды потребляются в густо населенных регионах с развитой щромьшленностью - Донбассе и Приазовье, где отсутствуют мощные источники водоснабжения. Более того, вода в Сиверском Донце и реках Приазовья, равно как и подземные воды, характеризуется повышенным уровнем минерализации ($>1000 \mathrm{mг} /$ дм 3). Главной причиной засоления природных вод является сброс сточных вод предприятий и объектов теплоэнергетики, сброс шахтных вод.

Сегодня сложилась такая ситуация, что большая часть населения Украины с помощью систем централизованного водоснабжения из поверхностных водоемов, частично из артезианских скважин, потребляет некачественную питьевую воду. А в отдельных регионах используется вода с недопустимо высокой минерализацией и жесткостью. В ряде регионов подземные воды, которые используют для питьевого водоснабжения, загрязнены ионами железа и марганца, нитритами и нитратами. Это негативно влияет на здоровье людей, условия их обитания.

Известно, что в Украине по объемам забора природной воды, по объемам сброса сточных вод, а значит по уровню влияния на природные водные объекты, промышленность значительно опережает другие отрасли водопотребления. Единственно правильным подходом решения сложной задачи защиты водных объектов от загрязнения, создания условий для их возобновления является широкое внедрение замкнутых систем водопотребления в промьшленности и энергетике. Поэтому разработка современных малоотходных технологий получения высококачественной воды для обеспечения перехода к замкнутым системам водопользования, их надежной эксплуатации является актуальной и важной проблемой.

Анализ литературных данных и постановка проблем
Процессы водоподготовки для потребностей промышленности и энергетики в большинстве случаев предусматривают корректировку солевого состава воды - ее умягчение и обессоливание.

Умягение и уменьшение солесодержания - необходимые этапы подготовки воды в системах замкнутого промышленного водоснабжения и, в частности, в системах теплообменного оборотного водоснабжения, которое работает без стабилизационного сброса воды [1].

В практике водоподготовки котельных для глубокого умягчения воды традиционно применяют технологию натрий-катионирования на сульфокатионитах отечественного или зарубежного производства [2]. Использование сулфокатионитов в стандартных параллельных фильтрах позволяет снизить общую жесткость воды до 0,1 ммоль/дм ${ }^{3}$ в одноступенчатом процессе и до 0,01 ммоль/дм ${ }^{3}$ - натрий-катионированием в две стадии. Одним из наиболее перспективных методов одновременного удаления карбонатной жесткости, щелочности и частичного обессоливания воды для котельных является ее обработка на карбоксильных катионитах, которые регенерируются стехиометричным расходом серной кислоты, то есть Н-катионирование с "голодной" регенерацией. Авторы [3] приводят описание метода и эффективности его использования.

В работе [4] проведены сравнительные исследования сильнокислотного волокнистого ионита ФИБАН К-1 и гранулированного КУ-2 в процессах умягчения воды модельных растворов. Определенно влияние высоты слоя ионита, плотности упаковки волокнистого материала в колонке, которая отвечает объемной емкости и скорости потока раствора, на эффективность удаления ионов кальция из модельного раствора жесткой воды.

Компания "Евровода" (Беларусь) и другие исследователи [5, 6] использует новые современные ионообменные смолы для умягчения воды, изготовленные фирмой "Пьюролайт" (Англия). Приводятся сравнительные характеристики смолы Пьюролайт С-100, сульфоугля СМ-1 и катионита КУ-2-8. Демонстрируется явное преимущество смолы С-100 по сравнению со своими аналогами. В частности, рабочая обменная емкость для смолы С-100 составляет 1184.2 мт-экв/дм ${ }^{3}$, в то время как для сульфоугля СМ-1 - 230 мт-экв/дм ${ }^{3}$, для смолы КУ-2-8 900 мт-экв/дм ${ }^{3}$.

Результаты проведенных сравнительных исследований степени чистоты, физикохимических и эксплуатационных свойств импортных и отечественных ионообменных материалов, относительно использования в локальных установках малой и средней производительности, показали, что оптимальными характеристиками отличаются катиониты производства компании Dow Chemical - Dowex Marathon C и Dowex HCR-S, а также катионит Еколайт СК, разработанный НПО "Екософт". Последний практически не уступает по своим свойствам катиониту Dowex HCR-S, существенно превосходит катионит КУ-2-8 и может быть эффективно использован в локальных установках водоподготовки [7].

В [8] рассматривается метод умягчения воды, которая применяется в производстве пищевых продуктов, с использованием слабокислотных ионообменных смол (СИОС). Указывается, что с применением СИОС удаляются не только карбонаты, но и ряд компонентов других видов.

В патенте [9] предлагается модифицировать природный цеолит с целью получения недорогого материала, который имеет ионообменные свойства. Рассматривается обработка исходного цеолита с использованием щелочей и фирменных препаратов, при этом образуются частицы размером около 0,05 мкм. Сообщается про эффективное удаление из воды ионов кальция и магния, данный материал может быть регенерирован.

В патенте [10] предложен способ, предназначенный для умягчения и деминерализации воды. В соответствии со способом устройство имеет установленный вертикально цилиндрический корпус со сферическими крьшками, они отделяются от другого объема перфорированными поверхностями. В корпусе установлены на небольшом расстоянии одна

от другой (симметрично) еще 2 такие же перфорированные поверхности, пространство между ними и поверхностями крышек образует 2 фильтровальных камеры, заполненные ионообменной смолой. Устройство имеет систему клапанов, соединяющих гидравлические потоки. В рабочем режиме исходная вода подается через штуцеры в крьшках, а фильтрат удаляется из центрального зазора между камерами. При регенерации (осуществляется для камер по очереди) раствор поступает в камеры через боковые штуцера и выделяется через крышки.

Цели и задачи исследования. Целью работы была оценка эффективности методов стабилизационной обработки шахтной воды (шахта М. Горького г. Донецк).

Материалы и методы исследования

Были исследованы шахтные воды шахты им. М. Горького г. Донецк (таблица 1).
Таблица 1. Характеристики воды из шахты им. М.Горького

$\begin{aligned} & \text { № } \\ & \text { I.I. } \end{aligned}$	Показатель	Значение показателя			
		Номер пробы (время отбора)			
		1 (февраль)	2 (март)	3 (апрељь)	4 (май)
1	pH	7,89	7,71	7,70	7,63
2	Жесткость, мг-экв/дм ${ }^{3}$	14,3	12,50	14,60	16,3
3	Концентрация Ca^{2+}, мг-экв/дм ${ }^{3}$	5,50	4,70	5,80	6,2
4		8,80	7,80	8,80	10,10
5	Щелочность, мг-9кв/дм ${ }^{3}$	16,0	13,8	13,5	11,6
6	Концентрация $\mathrm{SO}_{4}{ }^{2-}$, мг/дм ${ }^{3}$	780,0	815,0	610	850,0
7	Конщентрация Cl^{-}, мг/ $/$m 3	336,8	331,0	302,3	297,7
8	Минерализация, г/дм ${ }^{3}$	2,64	2,61	2,58	2,53
9	Концентрация $\mathrm{Fe}, \mathrm{mг} /$ дм 3	0,09	0,12	0,11	0,1

Предметом исследования были процессы стабилизационной обработки воды, ее реагентного, ионообменного умягчения и обессоливания.

При выполнении исследований были использованы спектрофотометрический, потенциометрический и химический методы анализа для идентификации реагентов, контроля физикохимических процессов очистки воды.

В качестве ингибиторов накипеобразования в данной работе использовали оксиэтилидендифосфоновую кислоту (ОЭДФК) и нитрилтриметилфосфоновую кислоту (НТМФК), на основе которых созданы практически все композиции, используемые как ингибиторы накипеобразования, включая и композицию МИОР. Композицию МИОР также использовали в этой работе.

Результаты исследований ингибиторов накипеобразования

В таблице 2 приведены результаты по оценке стабилности воды после ее обработки серной кислотой и ОЭДФК.

Таблица 2. Влияние типа и дозы реагента на стабильность воды из шахты им. М.Горького (проба №1) к осадкоотложениям при $98^{\circ} \mathrm{C}$ в течение 6 часов ($\mathrm{K}_{\mathrm{y}}=1$)

Реагент	$\begin{aligned} & \text { Доза, мг/дм } \\ & \left(\mathrm{mI}-9 \mathrm{xB} / \mathrm{Zm}^{3}\right) \end{aligned}$	$\begin{gathered} \text { W }_{\mathbf{H}} \\ \text { мг-Экв/дм } \end{gathered}$	$Ж_{\text {上 }}$, мг-экв/дм ${ }^{3}$	$\begin{gathered} \Delta Ж, \\ \mathrm{ML}-э \mathrm{~KB} / \text { дм }^{3} \end{gathered}$	СЭ.\%
1	2	3	4	5	6
-	-	14,3	9,9	4,4	0,0
$\mathrm{H}_{2} \mathrm{SO}_{4}$	49 (1)	14,3	9,9	4,4	0,0
	98 (2)	14,3	10,0	4,3	2,3

Продолжение таблицы 2

1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
	$147(3)$	14,3	11,6	2,7	42,6
	$245(5)$	14,3	14,3	0,0	100,0
	$490(10)$	14,3	14,3	0,0	100,0
	$735(15)$	14,3	14,3	0,0	100,0
	1	14,3	10,1	4,2	4,5
	2	14,3	10,5	3,8	13,6
	5	14,3	11,8	2,5	78,8
	10	14,3	13,5	0,8	81,8
	20	14,3	14,2	0,1	97,7

Как видно из таблищы, нет необходимости снижать щелочность воды кислотой до нуля. Уже при дозе серной кислоты $5 \mathrm{mг-экв/дм}{ }^{3}$ при исходной щелочности воды 16 мг-экв/дм ${ }^{3}$ был достигнут стабилизационный эффект 100% при температуре $98{ }^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{y}}=1\right)$. При этом использование ОЭДФК без кислотной обработки было малоэффективным. СЭ достиг 97% только при дозе реагента $20 \mathrm{~m} /$ мм 3.

Подобные результаты были получены при обработке 2 -й партии воды из шахты им. М.Горького (табл. 3). В этом случае стабилизационный эффект был достигнут только при дозах НТМФК и ОЭДФК 10 мг/дм ${ }^{3}$.

Таблица 3. Влияние тиша и дозы реагента на стабильность воды (шахта им. М.Горького, проба №2) по отношению к накипеобразования ($\mathrm{T}=98^{\circ} \mathrm{C}$, $\mathrm{t}=6$ часов, $\mathrm{K}_{\mathrm{y}}=1$)

Реагент	Доза, мг/дм ${ }^{3}$		Δ К, мп-экв/дм ${ }^{3}$	СЭ, \%
		7,9	4,6	0,0
ОЭДФК	1,0	7,9	4,6	0,0
	2,0	9,6	2,9	37,0
	5,0	11,6	0,9	80,4
	10,0	12,0	0,5	89,1
НТМФК	1,0	8,0	4,5	2,2
	2,0	9,3	3,2	30,4
	5,0	11,7	0,8	82,6
	10,0	12,2	0,3	93,5
$\mathrm{H}_{2} \mathrm{SO}_{4}$; ОЭДФК	98; 1	11,9	0,6	87,0
	98; 2	12,2	0,3	93,5
	98; 5	12,5	0,0	100,0
	98; 10	12,5	0,0	100,0
	148; 2	12,5	0,0	100,0
	245; 2	12,5	0,0	100,0
$\mathrm{H}_{2} \mathrm{SO}_{4}$; HTMФК	98; 1	12,0	0,5	89,1
	98; 2	12,1	0,4	95,8
	98; 5	12,5	0,0	100,0
	98; 10	12,5	0,0	100,0
	148; 2	12,5	0,0	100,0
	245; 2	12,5	0,0	100,0

При комбинированной обработке шахтной воды серной кислотой и фосфоновой кислотой удалось достичь высоких показателей стабильности воды при расходе кислоты от 2 до 5 мт-экв/дм ${ }^{3}$. При дозе $\mathrm{H}_{2} \mathrm{SO}_{4} 2$ мг-экв $/$ м $^{3}\left(98 \mathrm{r} / \mathrm{m}^{3}\right)$ стабилизационный эффект на уровне 100% был достигнут при дозе фосфоновых кислот $5 \mathrm{mг} /$ дм 3, а при расходе серной кислоты 3 мг-экв/дм ${ }^{3}\left(48 \mathrm{r} / \mathrm{m}^{3}\right) \mathrm{C}$ = 100% был достигнут при дозах фосфоновых кислот 2 мг-экв/дм ${ }^{3}$.

В данном случае при совместном использовании фосфоновых кислот и серной кислоты можно достичь полной стабильности воды при значительном снижении расхода как серной

кислоты, так и фосфоновых кислот. Эффективность ОЭДФК практически не отличалась от эффективности НТМФК.

Для оценки эффективности реагентов в условиях, близких к условиям использования воды в оборотных системах, воду нагревали при $40{ }^{\circ} \mathrm{C}$ до достижения значений $К у \approx 1,5$. Результаты приведены в табл. 4.

Таблица 4. Зависимость СЭ от типа и дозы реагента при нагревании воды из шахты им. М. Горького (проба №2) при $40^{\circ} \mathrm{C}$ (Ку $\approx 1,5$)

Реагент	Доза, $\mathrm{mT} /$ дm 3	Коэффициент упаривания, Ку	Ж $_{\text {к }}$ мгэкв $/$ дм 3	$Ж_{\text {т }}$ мгэкв/ дm 3	$\Delta Ж, ~ м г-$ экв/дм ${ }^{3}$	СЭ, \%
-	-	1,57	14,4	20,9	6,3	-
ОЭДФК	1	1,60	16,3	20,0	3,7	41,3
	2	1,69	18,1	20,9	2,8	55,5
	5	1,43	17,9	17,9	0,0	100,0
	10	1,54	19,3	19,3	0,0	100,0
НТМФК	1	1,52	15,9	19,0	3,1	50,8
	2	1,49	17,4	18,6	1,2	81,0
	5	1,57	19,6	19,6	0,0	100,0
	10	1,59	19,9	19,9	0,0	100,0
$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{SO}_{4} ; \\ & \text { ОЭДФК } \end{aligned}$	98; 1	1,50	17,5	18,8	1,1	82,9
	98; 2	1,51	18,7	18,9	0,2	96,8
	98; 5	1,49	18,6	18,6	0,0	100,0
	98; 10	1,55	19,4	19,4	0,0	100,0
	147; 2	1,49	18,6	18,6	0,0	100,0
	147; 5	1,47	18,4	18,4	0,0	100,0
	147; 10	1,50	18,8	18,8	0,0	100,0
	196; 2	1,52	19,0	19,0	0,0	100,0
	196; 5	1,51	18,9	18,9	0,0	100,0
	245; 2	1,49	18,6	18,6	0,0	100,0
	245; 5	1,56	19,5	19,5	0,0	100,0
$\mathrm{H}_{2} \mathrm{SO}_{4}$; НТМФК	98; 1	1,52	17,8	19,0	1,2	81,0
	98; 2	1,49	18,5	18,6	0,1	98,4
	98; 5	1,45	18,1	18,1	0,0	100,0
	98; 10	1,63	20,4	20,4	0,0	100,0

Как видно из таблицы, в данном случае можно достичь полной стабильности воды при дозах фософоновых кислот $5 \mathrm{mг} /$ дм 3, а при использовании серной кислоты дозы фосфоновых кислот можно снизить до $2 \mathrm{mг} /$ дм 3.

В предыдущих опытах серную кислоту использовали в концентрациях $2-5$ мг-экв/дм ${ }^{3}$ ($98-245 \mathrm{mг} /$ м 3). Интересно было проверить стабильность воды при снижении расхода серной кислоты в присутствии фосфоновых кислот - ОЭДФК и НТМФК. Результаты приведены в табл. 5 и 6.

Как видно из табл. 5 , при $98^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{y}}=1\right)$ полной стабилизации воды удалось достичь при дозе ОЭДФК 1 мг/дм ${ }^{3}$ при расходе серной кислоты 49 мг/дм ${ }^{3}$. Без обработки серной кислотой использование ОЭДФК в дозах $1-5$ мг/дм ${ }^{3}$ было малоэффективным. При $40^{\circ} \mathrm{C}\left(\mathrm{K}_{y} \approx 1,5\right) \mathrm{C} Э=100$ $\%$ при расходе ОЭДФК 2 мг/дм ${ }^{3}$ при дозе серной кислоты $25 \mathrm{r} / \mathrm{m}^{3}$ и вышше.

Для сравнения эффективности ингибиторов ОЭДФК, НТМФК и МИОР при кислотной обработке шахтной воды были проведены испытания при $40^{\circ} \mathrm{C}$ при расходе серной кислоты от 25 до 74 г/ M^{3}, а также без кислотной обработки (табл. 7).

Таблица 5. Влияние реагентов на стабильность воды (шахта им. М. Горького, проба №3) при температуре $98^{\circ} \mathrm{C}\left(\mathrm{t}=6\right.$ часов, $\left.\mathrm{K}_{\mathrm{y}}=1\right)$

Реагент	Доза, мг/ дм 3	$Ж_{\text {к, }}$ мг-экв/дм ${ }^{\text {3 }}$	Δ Ж, мг-экв/дм ${ }^{3}$	CЭ, \%
-	-	9,0	5,6	-
ОЭДФК	1	9,0	5,6	0,0
	2	9,4	5,2	7,1
	5	10,3	4,3	23,2
$\mathrm{H}_{2} \mathrm{SO}_{4} ;$ ОЭДФК	25; 1	13,6	1,0	82,1
	49; 1	14,6	0,0	100,0
	74; 1	14,6	0,0	100,0
	98; 1	14,6	0,0	100,0
	147; 1	14,7	0,0	100,0
	25; 2	14,6	0,0	100,0
	49; 2	14,6	0,0	100,0
	74;2	14,6	0,0	100,0
	98; 2	14,6	0,0	100,0
	147; 2	14,6	0,0	100,0

Таблица 6. Влияние реагентов на стабильность воды (шахта им. М. Горького, проба №3) при температуре $40^{\circ} \mathrm{C}\left(\mathrm{K}_{y} \approx 1,5\right)$

Реагент	Доза, $\mathbf{~ м г / ~} /$ м 3	Коэффициент упаривания, K_{y}	$\begin{aligned} & \mathcal{K}_{\mathrm{x}, \mathrm{M} \mathrm{\Gamma}} \\ & \mathrm{\Im KB/AM}^{3} \end{aligned}$		$\begin{aligned} & \Delta Ж, \text { мг- } \\ & \text { экв } / \text { дм }^{3} \end{aligned}$	CЭ, \%
-	-	1,39	12,10	18,63	6,53	-
$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{SO}_{4} ; \\ & \text { ОЭДФК } \end{aligned}$	25; 1	1,47	15,4	21,46	6,06	7,2
	49; 1	1,43	19,8	20,9	1,10	83,2
	74; 1	1,49	19,9	21,8	1,9	70,9
	25; 2	1,49	21,9	21,8	0,0	100,0
	49; 2	1,51	22,0	22,0	0,0	100,0
	74;2	1,50	21,9	21,9	0,0	100,0

Таблица 7. Зависимость стабильности воды (шахта им. М. Горького, проба №4) от типа и дозы реагента при температуре $40^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{y}} \approx 1,5\right)\left(Ж_{\mathrm{H}}\right)=15,6$ мг-экв $/$ мм $\left.{ }^{3}\right)$

Реагент	Доза, $\mathrm{Mr} / \mathrm{ZM}^{3}$	Коэффициент упаривания, Ку	$\text { экв } / \text { / } / \mathrm{M}^{3}$	$\begin{aligned} & \text { K }_{\mathrm{T}, \mathrm{MT}-} \\ & \text { эKB/ } / \mathrm{Mm}^{3} \\ & \hline \end{aligned}$	Δ К, мгэкв/дм ${ }^{3}$	СЭ, \%
1	2	3	4	5	6	6
-	-	1,50	23,4	16,2	7,23	-
ОЭДФК	1	1,58	24,6	24,3	0,3	95,9
	2	1,56	24,4	24,3	0,1	98,6
	5	1,50	23,4	23,4	0,0	100,0
НТМФК	1	1,56	24,4	24,2	0,2	97,2
	2	1,57	24,5	24,4	0,1	98,6
	5	1,51	23,5	23,5	0,0	100,0
MИOP	2	1,50	23,4	20,6	2,8	61,3
	5	1,52	23,7	22,2	1,5	79,3
	10	1,50	23,4	23,2	0,2	97,2
	15	1,60	25,0	24,9	0,1	98,6
	25	1,60	25,0	25,0	0,0	100,0
$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4} ; \\ & \text { ОЭДФК } \end{aligned}$	25; 1	1,60	24,9	24,6	0,3	95,9
	25; 2	1,87	29,2	29,0	0,0	97,2
	25; 5	1,87	29,2	29,2	0,2	100,0
	49; 1	1,57	24,5	24,3	0,1	97,22
	49; 2	1,76	27,5	27,4	0,0	98,6
	49; 5	1,50	23,4	23,4	0,0	100,0
	74; 1	1,60	25,0	25,0	0,0	100,0

Продолжение таблицы 7

1	2	3	4	5	6	7
	74; 2	1,56	24,3	24,3	0,0	100,0
	74; 5	1,62	25,2	25,2	0,0	100,0
$\mathrm{H}_{2} \mathrm{SO}_{4} ;$НТМФК	25; 1	1,58	24,7	24,5	0,2	97,2
	25; 2	1,92	29,9	29,9	0,0	100,0
	25; 5	1,90	29,7	29,7	0,0	100,0
	49; 1	1,63	25,4	25,3	0,1	98,6
	49; 2	1,70	26,5	26,5	0,0	100,0
	49; 5	1,56	24,3	24,3	0,0	100,0
	74;1	1,65	25,7	25,7	0,0	100,0
	74; 2	1,79	28,0	28,0	0,0	100,0
	74; 5	1,69	26,4	26,4	0,0	100,0
$\begin{array}{\|l} \begin{array}{l} \mathrm{H}_{2} \mathrm{SO}_{4} ; \\ \text { MИOP } \end{array} \end{array}$	25; 2	1,50	23,4	21,6	1,8	75,1
	25; 5	1,45	22,6	21,6	1,0	86,2
	25; 10	1,50	23,4	22,5	0,9	87,6
	25; 25	1,50	23,4	22,6	1,2	83,4
	49; 2	1,49	23,2	22,1	1,1	84,8
	49; 5	1,49	23,2	23,1	0,1	98,6
	49; 10	1,50	23,4	23,2	0,2	97,2
	49; 25	1,50	23,4	23,4	0,0	100,0
	74;2	1,50	23,4	22,6	0,8	88,9
	74; 5	1,45	22,6	21,8	0,8	88,9
	74; 10	1,47	22,9	22,9	0,0	100,0
	74; 25	1,44	22,6	22,6	0,0	100,0

Как видно из табл. 7, в данной партии воды, которая характеризовалась относительно невысокой щелочностью (11,6 мг-экв/дм²), ингибиторы накипеобразования были достаточно эффективны.

Стабилизационный эффект на уровне 95-100 \% ОЭДФК и НТМФК обеспечивали при дозах 1-5 мг/дм ${ }^{3}$, МИОР при дозах $10-25 \mathrm{mг} /$ м 3. При расходе серной кислоты $25 \mathrm{r} / \mathrm{m}^{3}$ дозы ОЭДФК и НТМФК $1-2 \mathrm{mг} /$ дм 3 обеспечивали полную стабильность воды.

Ингибитор МИОР обеспечивал степень защиты на уровне $98,6 \%$ при дозе 5 мг/дм ${ }^{3}$ при расходе серной кислоты 49 г/ \mathbf{m}^{3}.

Выводы

Изучены процессы накипеобразования в шахтной воде (шахта им. М.Горького) при температурах $98^{\circ} \mathrm{C}$ и $40^{\circ} \mathrm{C}$ при использовании ингибиторов накипеобразования ОЭДФК, НТМФК и МИОР-О. Показано, что стабильность воды по отношению к осадкоотложениям растет при кислотной обработке с увеличением дозы ингибитора. Полная стабильность воды была достигнута при расходе серной кислоты $25 \div 49$ г/ m^{3} при дозах ОЭДФК, НТМФК $-2 \mathrm{r} / \mathrm{m}^{3}$, МИОР-О - $10 \mathrm{\Gamma} / \mathrm{m}^{3}$.

ОЦІНКА ЕФЕКТИВНОСТІ МЕТОДІВ СТАБІЛЗАЦІЙНОЇ ОБРОБКИ ШАХТНОЇ ВОДИ (ІІАХТА М.ГОРЬКОГО, М. ДОНЕЦЬК)

М.Д. Гомеля, Т.А. Корда, Ю.В. Носачова, М.М. Шуриберко, Т.В. Потильчак Національний технічний університет України «Київський політехнічний інститут», м.Київ e-mail: nezvyskaya@mail.ru

Вивчено прочеси накипоутворення в шахтній воді (шахта ім. М.Горького) при температурах $98^{\circ} \mathrm{C}$ і $40^{\circ} \mathrm{C}$. Предметом дослідження були прочеси стабілізачійної обробки води, їі реагентного, іонообмінного пом'якиення і знесолення. При виконанні досліджень були

використані спектрофотометричний, потенчіометричний і хімічний методи аналізу для ідентифікації реагентів, контролю фізико-хімічних прочесів очищення води. Як інгібітори накипоутворення в даній роботі використовували оксиетилідендифосфонову кислоту (ОЕДФК) і нітрилтриметілфосфонову кислоту (НТМФК), на основі яких створені практично всі композиції, використовувані лк інгібітори накипоутворення, включаючи і композичію МІОР. Показано, що стабільність води по відношенню до осадовідкладення зростає при кислотній обробиі зі збільшенням дози інгібітору.

Ключові слова: накипоутворення, інгібітор, стабілізачія, цахтна вода.

EVALUATION OF METHODS STABILIZATION TREATMENT OF MINE WATER (MINE M. GORKY, DONETSK)

N. Gomelya, T. Korda, J. Nosachova, M. Shuriberko T. Potylchak National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv e-mail: nezvyskaya@mail.ru

The processes of the scale formation in the mine water (mine them. Gorky) at a temperature of $98^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ were studied. The stabilization of water treatment processes, its reagent, ion exchange softening and demineralization were an object of research. Spectrophotometric, potentiometric and chemical analysis methods for identifying reagents, control of physical and chemical processes of water purification were used at the investigation. Oxyethylidenphosphonic (OEDFK) and nitrilemethylphosphonic (NTMFK) acids used as a basis for all compositions of the scale formation inhibitors (including the IIED composition). The stability of water relative to the surface deposits (at the acid processing) increases with increase of a dose of inhibitor.

Key words: scale formation inhibitor, stabilization, mine water.

Список литературы

1. Когановский А. М. Адсорбция и ионный обмен в процессах водо-подготовки и очистки сточных вод. - К.: Наукова думка, 1983. - 239 с.
2. Амосова Э. Г., Долгополов П. И. Применение карбоксильных катионитов и оргднопоглопаюпцх анионитов в технология подпоооки воды в колельных. // Энергосбережение и водоподгот. - 2003. - № 1. - С. 25-28.
3. Резник Я. Натрий-катионированиевводоподғтовке для паровых коллов// Аква-Терм. - 2003. - № 6. - C. 40-41,43.
4. Солдатов В. С. Шункевич А. А., Марцинкевич В. В. Сравнительнье исследования процесса умяाчения водыгранульнымии волокнистыми ионитами//Ж. прикл. химии.-2001.-74, №9.- С. 1477-1480.
5.Саевич С. Г. Жесккостьводы, методыи мппериалыдпяюеликвидации// Вода. -2002.-№ 7-8.- С.9.
5. Саевич С. Г. Жесткость воды, методы и материаыыдояликвидации // Вода.-2003.- № 5.C. 2 .
6. Сравнительная оценка эффективности действия катионитов в установках умягчения воды малой и средней производительности / Т. Е. Митченко, П. В. Козлов, Н. В. Макарова, П. В. Стендер, И. С. Ермоленко, В. А. Резаненко // Вода и водоочис. технол. - 2005. - № 1. - С. 33-36.
7. Kunzmann Ch., Teubner M., Ahrens A. Im Spannungsfeld zwischen Menge und Kosten // Brauindustrie. - 2007. - 92. №10. - C. 38-42.
8. Пат. 6572776 США, MIIК ${ }^{7}$ C 02 F 1/42. Method of static water softening using zeolites of novel morphology / Kuznicki Steven M., Bell Valerie A., Langner Tadeusz W., Curran Jacqueline S Engelhard Corp. - № 09/737063; Заявл. 14.12.2000; Опубл. 03.06.2003; НПК 210/670.
9. Пат. 6972091 США, МПКК ${ }^{7}$ B 01 D 23/24. Ion exchange resin plant / Becucci Piero, TM. E. S. p. A. - Termomeccanica Ecologia. - № 10/346785; Заявл. 17.01.2003; Опубл. 06 12.2005; НПК 210/275.
