14

VIIK 539.3

EFFECTIVE ELASTIC MODULUS DETERMINATION OF
UNIDIRECTIONAL COMPOSITE FOR STOCHASTIC GEOMETRIC
CHARACTERISTICS OF FIBER

Hrebeniuk S., associate professor, Ph. D. in Technical Sciences,
Klymenko M., associate professor, Ph. D. in Physics and Math, Omelchenko K., B.S. in Math

Zaporizhzhya National University,
Zhukovsky str., 66, Zaporizhzhya, 69600, Ukraine

gsm1212@ukr.net

This paper proposes a method of determining the effective longitudinal elastic modulus for the composite material in
the problem of longitudinal tensile composite. Object of study is unidirectional composite material with a hexagonal
arrangement of fibers. The fiber composite element is presented as a whole cylinder, to the matrix corresponds a hollow
cylinder. Included in the composite the matrix and the fiber are assumed to be isotropic. The radius of the fiber is
considered as a continuous random quantity, normally distributed, respectively, the volume content of the fiber in the
composite is also a random quantity. Its mathematical expectation is expressed through the mathematical expectation
and variance of the fiber radius.

To determine the effective elastic modulus of the composite is supposed to use the kinematic matching conditions. First,
to solve the boundary value problem for joint deformation of an isotropic matrix and isotropic fiber. For this, previously
founding a general solution of the problem on axisymmetric deformation of isotropic cylinder under longitudinal
tension, herewith uses the basic equations of elasticity theory in a cylindrical coordinate system. The obtained solution
is used for determining the constituent elements of the tension and deformation of the fiber and the matrix. It is
assumed, that at the contact surface of the matrix and the fiber is the normal displacement and tension of the fiber and
the matrix are the same, axial movement of the fiber and the matrix are also equal for all values of the axial coordinate.
The normal tension on the outer surface of the cylinder modeling the matrix are equal to zero. Found using these
conditions, axial and radial displacements and tensions are functions of the fiber volume content in the cell matrix, as
well as technical elastic constants of the matrix and the fiber.

Next, obtained a solution corresponding to the boundary value problem for the composite. Here is a model of composite
solid homogeneous transversely isotropic cylinder. This solution depends on the effective elastic constants of
transversely isotropic material. For both tasks, axial tension is assumed to be constant. The ratio between the axial
tension of the matrix and the fiber, and the axial tension in the transversely isotropic material model of the composite is
determined by the equilibrium conditions. As the matching conditions for considering the problem of longitudinal
tensile homogeneous transversely isotropic composite and joint longitudinal tensile of the isotropic matrix and the
isotropic fiber are selected conditions of the axial displacement at arbitrary axial coordinate and equality of radial
displacements on an outer surface of the cylinder, modeling composite. The use of such matching conditions allowed to
determine the effective longitudinal elastic modulus as a function of the determined values — the elastic constants of the
matrix and the fiber, as well as random argument — the volumetric fiber content in the composite cell. Found
mathematical expectation of this indicator. Proposed in the paper methodology also allows to determine the effective
elastic constants for composites, having random characteristics with different distribution laws.

Key words: composite material, matrix, fiber, effective modulus of elasticity, normal distribution, matching conditions.

BU3HAYEHHS ECEKTUBHOI'O MOAYJIA ITPYKHOCTI
OJHOCHPAMOBAHOI'O KOMITIO3UTY ITPU CTOXACTHYHHUX
IF'EOMETPUYHUX XAPAKTEPUCTHKAX BOJIOKHA
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Y poboTi NPONOHYETHCS MiAXiA A0 BU3HAYCHHS EQEKTHBHOIO MOIYJIS HPYXKHOCTI JUIi OZHOCHPSMOBAHOTO
KOMIIo3MLiifHOro Marepiasy. KoMmosuT, 1o ckiagaeTbcss 3 130TPONHOI MAaTpUIl Ta 130TPOITHOTO BOJIOKHA,
MOJIEIIIOETHCS CYLIIBHUM OJHOPIAHMM TPaHCBEPCAIBbHO-130TPOIHUM MatepianoM. [Ipu iboMy BOJIOKHO pO3IIIAAaeThCs
SIK IIJTIHJP, pasiiyc SIKOTO € BHIIA/IKOBOIO BEJIMYHMHOIO, PO3IIOIIICHOIO 32 HOPMAJILHUM 3aKOHOM.

Kniouosi cnosa: komnosuyitinuti mamepian, Mmampuysi, 60J10KHO, eeKmusHULl MOOYIb NPYICHOCH, HOPMATbHUL 3AKOH
PO3NOOINY, YMOBU Y3200HCEHOCI.
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B pabote mpemraraercs mOaXoa K ompencicHu0 3(Q(EeKTUBHOrO MOMIYNsA YNPYroCTH MJs OJHOHAMPABICHHOTO
KOMITO3UIIMOHHOTO Martepuana. Kommo3uT, cocrosmmii M3 M30TPOMHOM MaTpUllbl U HM30TPOMHOTO BOJIOKHA,
MOJETUPYETCS]  CIUIOIIHBIM ~ OJHOPOJHBIM  TPaHCBEPCAJIbHO-U30TPOMHBIM MaTepuaioMm. [Ipy 3TOM  BOJOKHO
paccmaTpuBaeTcsi Kak IWIMHApP, pPaaAUyC KOTOPOro SIBIAETCS CIAy4yailHOW BENMYMHOM, pachpeleseHHON TIo
HOPMalbHOMY 3aKOHY.

Kniouegvie crosa: komnosuyuonnsil Mamepuai, Mampuya, 6010KHO, IPHeKmusnvlii MOOYab YNpy2oCmu, HOPMATbHbIU
3aKOH pacnpeoenenus, YCA08uUs Co2NacO8AHHOCTIL.

INTRODUCTION

One of the most common modeling method in the mechanics of composite materials is to build a
model of the composite as a homogeneous continuous medium with elastic constants, which is
adequately reflected the most important mechanical properties of the material. These steels, which
are called effective, are defined as coefficients, that connect average by value components of the
stress tensor and deformation under certain boundary conditions. Definition of constants for
transverse elastic matrix and fiber with deterministic geometrical characteristics studied in several
works. The most widespread is the ratio obtained in [1, 2] for an isotropic matrix and fiber. In the
work [3] for the plane mechanics problem of rubber cord materials, offered values, taking into
account the properties of transversely isotropic values of the fiber. The same ratio but for the spatial
mechanics problem of composites obtained in the work [4], based on kinematic conditions of
approval. For transversely isotropic matrix and fiber obtained elastic characteristics of the
composite material in the three-dimensional case, based on kinematic [5] and energy [6] approval
conditions. Asymptotic approach to determine elastic-plastic, thermoelastic and other characteristics
of fibrous composites described in [7]. Based on asymptotic approaches obtained effective elastic
constants for composite material with transversely isotropic properties of the matrix and the fiber in
the hexagonal reinforcement’s structure [8]. Determination of effective constants for the composite
material with a number of stochastic characteristics suggested in these works. In the work [9]
defined the effective elastic characteristics of the fibrous composite with randomly oriented and
randomly arranged fibers. The paper [10] is based on homogenization methods obtained
transversely isotropic properties of the composite material reinforced by randomly distributed
unidirectional circular fibers based on their interaction.

The current state of the composite materials production technologies allows to draw conclusions,
about the mathematical modeling relevance of their properties in view of some stochastic
composites characteristics. The aim of this paper is to determine the dependence of the effective
longitudinal elastic modulus of the composite under volume content of fibers with a radius, by the
normal distribution.

PROBLEM STATEMENT AND ITS GENERAL SOLUTION SCHEME

Research object is the one directional composite material with hexagonal arrangement of fibers,
where the matrix and the fiber are considered to be isotropic. The diameter of the fiber is a random
variable, by the normal distribution. It is needed to find effective longitudinal elastic modulus of the
composite during its presentation in the form of homogeneous transversely isotropic materials, for
the case of axially symmetric longitudinal tension.
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An element of the fibrous composite material represented as a combination of two infinite isotropic
cylinders, radial section scheme of which is shown in Fig. 1.

_ 0
(o

Fig. 1. The fibrous composite element

Fiber is considered as a solid cylinder with the radius a, an elementary hexagonal cell of the matrix
approximates a hollow cylinder, whose radius is equal to b (Fig. 2).

Fig. 2. Hexagonal cell

The value b is selected in order the fiber f volume content in the hexagonal cell and the cylinder
was the same. In this case carried out the following equality

a.2

Technological processes of composite materials production in many cases determine the random
nature of certain composites parameters. In particular, the absence of systematic deviations in the
application of industrial technologies, the following parameters can be considered as random
variables with normal distribution. Let the radius a of the fiber is a random variable, normally
distributed with known distribution parameters: the mathematical expectation a, and standard

deviation s (these parameters can be determined on the basis of statistical quality control data of
composite materials production). Then the f fiber’s volume content in the cell is also a random

variable, f, mathematical expectation of which is equal to:

f 1)

fo=m(f)_m£f)—a55;52. @
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To determine the effective longitudinal elastic modulus of the composite, it is necessary to solve
two boundary value problems. First, we solve the boundary value problem of joint deformation of
the isotropic matrix and the isotropic fiber, where we will find components of the composite stress-
strain state as a function of elastic constants of matrix and fiber materials as well as their volume
fraction in the composite. Then solve the same boundary value problem for the composite,
represented as homogeneous transversely isotropic materials with unknown elastic constants. In this
case we obtain stress-strain state components as a function of elastic constants of a homogeneous
material, which modeling the composite, i.e. effective elastic constants. These unknown values we
will define using consistency conditions. These conditions, in particular, are the equality component
of the displacement vector for the first and the second boundary value problems [5].

DETERMINATION OF THE COMPOSITE’s EFFECTIVE ELASTIC
MODULUS FOR LONGITUDINAL TENSION

Find the general solution of the problem on axisymmetrical deformation of an isotropic infinite
cylinder with longitudinal tension in the cylindrical coordinate system, i.e. find components of the
stress-strain state of this object.

These include radial (u, (r)) and axial (u, (z)) displacements of its points as well as radial (o),
tangential (o,,) and axial (o, ) tensions and corresponding deformations. Axial stress o,, is
constant: o,, = o, =const.

From the basic relations of elasticity theory [11] we obtain the equation, relative to the radial
displacement of u, :

d’u. 1 du
—r +_.—r __I‘ :0 3
ar? r dr r? ®)

The general solution of this equation is:
u =Cr+—, 4)

where C, and C, — arbitrary constants.

Obtained expression for the displacement and the main value of the elasticity theory for
axisymmetrical problem allow to get the following expressions for the components of the stress-
strain state:

du C
u, C
599:T:C1+r_22; (6)
E[%gu +C1+(2v—1)czj
o, = L2, ™
" (1-2v)(1+v) ’

E(V £, +C +(1- 21/)?22)

(8)

Ogp =

(1-2v)(1+v)
Given these correlations and equality o,, = o,,, we get an expression for the axial deformation of
&yt
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9
gzz (1—]/) ( )
ou . : .
As g = 822 =const and while u, (0) =0, the axial movement u, (z) is as follows:
4 1-2v)(1 —2vEC
0, (2) = [ oy, = PULT2NLTV) Z2VEC, (10)
! E1-v)

Due to equation (10), the expressions for tensions o, and o, is written in the following form:

— vo, . G, : C, : (11)
EQ-v) 1-v r’(1+v)]

o, =E| %0 G ZCZ . (12)
EQ-v) 1-v r*(l+v)

Thus, we got the tension, deformations and displacements as functions of elastic properties of
materials and arbitrary constants of integration, determined with the boundary conditions. Then we
use them to determine the components of the stress-strain state of the solid cylinder (0 <r <a) that
simulates the fiber and the hollow cylinder (a <r <b), which simulates matrix.

In the following designations we use the symbol ° to denote quantities, characterizing the fiber and
the symbol * to denote variables, related to the matrix.

On the surface of the fiber-matrix combination, radial displacements and tension are continuous,
axial displacements with a fixed z=h are matching. The outer surface of the cylinder, which
modeling the matrix, the radial tension is missing. Thus, we have the boundary conditions:

O (a) =0, (a)’
u;(a) =uy (a),
u; (h)=u; (h),

o, (b)=0.

rr

(13)

Radial displacement of an isotropic fiber (4), taking into account the equality u,’ (0) =0, take the
form of u; (r) = Cr. Given this equality, of the relations (7), (8) and (10) for the fiber, we get:

o (1—v° =22

T of ) 26, 7, (14)
1-v° E°
o =L |2V ¢ (15)
1-v° E°

E° (ov’
= +C |. 16
O 1—1/0[ = ] (16)

Similarly, we can write the ratio, describing the stress-strain state of the matrix:

u;‘(r):Ar+$, (15)
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* 1_ *_2 %2
o= 1*[0‘)( roe ) oa e, (16)
1-v E
o,V A B
* :E* 0 _ , 17
o [E*(lv*)+1v* 2 (Lo o) an

o, =E" % V. + A + B
% E'(1-v') 1-v r*(1+v') )

(18)

A, B andC constants values, as well as the relationship between the axial tensions o,and o, we
find, using the boundary conditions (13). From the second of these equations it follows, that

czA+a—'32. (19)

From o, (b) =0 we receive:

A= N (20)

Then the expression (19) can be written as:

C=B[f(1—v*)+1+v*a;v* . 1)
a2(1+v*) E

Using the first of equations (13), we find an expression for the constant B as:

B =(va° B agv*j. a’E’ (1+v*)
BB ) E(f-n)(1-v)-E(F(1-v)+1ev)

Designate d, = E"( f —1)(1—1/"), d, =E°(f (1—v*)+1+ v"). After transformations, we get A, B
and C constant values as follows:

fvi(l-v) = fE(1-v')+d,-d,

A=——0, — o,, 22
dl—dz 0 E* dl—dz 0 ( )

vial(1+v’ a’E (1+v")
52 )as— ( )V*ao, (23)

d, —d, d-d, E

d ’ od
S S s L (24)
d,—d, E ° E'd,—d,
From the condition of u; (h)=u; (h) find a ratio between o; and oy
o,d° =o,d", (25)
E'(f-1)(1-v' —2v?)-E"(f(1-v" = 2v V" )+1+V"

B )-E(f( Jr1v) 6)

E’
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E"(f —1)(1—v° —2V°v*)— E° ( f (l—v* —2v*2)+1+ v*>
E*
Let’s consider a similar problem for a homogeneous transversely isotropic materials, modeling

characteristics of the composite. In this case, the stress field will be determined by the following
relations:

d* = (27)

o, =0, =const, o, =0, 0, =0, o, =0,, =0,, =0. (28)

Under this, equilibrium condition for both problems must match and in this case, carried out the
following equality za’c; + 7z(b2 —a’ )a;; = b’c,, which can be written as:

fo,+(1-f)oy =0,. (29)
Due to equation (25), from the last formula we get:
. o,d’
o, = , 30
Dod+f(dT—d) (30
d*
o 0 (31)

Cd e+ f(d-d)
Using equations (30) and (31), from the formulas of Hooke’s law for transversely isotropic

. . . . V. O . -
materials, we obtain expressions for the deformation: &, :_f%’ & :_EO' This equalities

7z
2 1

allow us to determine the displacement u, (r) and u, (z):

ur(r)z—%aowcl,
2
u, (z):%Z+C2.
1

From the conditions of u, (0)=0 and u, (0)=0 it follows that C, =C, =0, i.e. expressions for the
displacements take the form of:

ur(r):—%o—or, (32)
uz(z):%z. (33)

Let us choose agreeing conditions to the problem of longitudinal tensile of homogeneous
transversely isotropic composite, and the problem of compatible longitudinal tensile isotropic
matrix and fiber conditions of equality axial displacement for an arbitrary z = h:

0, (h)=u; (h)=u: (h). (34)

Due to the obtained expression (33) for moving u, (z), from equation (34) we obtain:

Gg(l—v*—Zv*z)_ZAV* 1
E'(1-v) 1-v E

0, -
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Hence, using formula (22), (30) and (31), we obtain an expression for the effective longitudinal
elastic modulus E, of the composite material:

(d (1= F)+d"F)(E"(f-2)(1-v")+E (v'(f -1)-1-f))E"

. (35)
E(f-1)(1-v')=E (1+v" +f (1-v" =2v?)))d" —2fv'V E'd’

T

The formula (35) of effective longitudinal elastic modulus of the composite coincides with a similar
formula obtained in the study [5] for the case of transversely isotropic matrix and fiber, if we take
the matrix and the fiber as isotropic materials.

As the radius of the fiber a is a random variable having a normal distribution of the mathematical
2

expectation a, and standard deviations, the volume content f (a)= Z_Z of the fiber in the cell is
also a random variable, the distribution density of (o( f) is determined by taking into account the
fact that the function f (a) is not monotonous:

(o) (oyTa)’

p(f)=——=|e » +e =

if f>0.

Then, the mathematical expectation value of a random variable E, is determined by convergent
improper integral:

M(E,)= [ E (f)-p(f)df, (36)

where the random function argument E, ( f ) determined by the equality (35).

Thus, we have identified the mathematical expectation of effective longitudinal modulus of the
composite material that allows to use this indicator in the study of mechanical properties of
composites, matrix and fiber of which are isotropic.

CONCLUSIONS

Proposed approach for determining the effective longitudinal elastic modulus for composite
material composed of an isotropic matrix and fiber, on the basis of kinematic conditions of
approval. The radius of the fiber was considered as a continuous random variable, normally
distributed, so the volume content of fibers is also a random variable, the mathematical expectation
of which is expressed through the mathematical expectation of the fiber’s radius. To determine the
effective longitudinal elastic modulus of the composite initially is solved boundary value problem
for joint deformation of the isotropic matrix and the isotropic fiber, which determine the
components of stress and strain as a function of technical elastic constants of the matrix and fiber as
well as fiber volume content in the cell of the matrix. And then, the acquired solution of the
corresponding boundary-value problem for a composite model of which considers homogeneous
transversely isotropic cylinder. Using kinematic coordination conditions allowed us to determine
the effective longitudinal modulus of the composite, as a function of the determined values - elastic
constants of the matrix and the fiber, as well as occasional argument — fiber volume content. It is
defined the mathematical expectation of this indicator.

Proposed in the paper methodology allows to carry out further research towards the determining of
effective elastic constants for composites with properties, that are random variables with different
distributions of these quantities.
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VJIK 539.3

HEJITHIMHUA AHAJII3 TMHAMIKA MEXAHIYHOI CHICTEMHA
I3 30CEPEJKEHUM ABCOPBEPOM

I'pumax B. 3., n.1.H., mpodecop, I’ suenko T. A., marictp

3anopizbkuii HaYioHALHUL YHI8epcumen,
8y1. Kykoscvrozo, 66, m. 3anopixcoics, 69600, Vipaina

TANUSHKOD@rambler.ru

VY poboTi gocnipKeHo KONIMBAHHS JITAIBHOTO anapary 3 abcopoepom nobamsy 30ypeHoi noBepxHi. [lokazaHo, mo nei
MIPOLIEC MOJEITIOETHCSI CUCTEMOIO TN epeHIiabHIX PIBHAHb Y YaCTMHHHUX NOXigHuX. L{1o cucremy po3B’si3aHo y 1BOX
BHUIIAJIKaxX: FTeOMETPUYHO JiHIHHOMY Ta HEJTiHIHHOMY, III0 XapaKTepu3ye co00I0 MOXKIIMBI BEJIMKI fedopMaii Oaaku npu
BUMYIIECHUX KOJIMBaHHAX. [yl po3B’s3aHHs 3ajadi B JIHIHHOMY BHINAJIKY 3acTOCOBYIOTBCS Meron Dyp’e, Meron
Bapiallii JAOBITbHUX CTAJIMX, a B HENIHIHHOMY — METOJ] MaJloTO IapamMeTpa Ta BWINE 3a3HadeHi MeTomu. YMCIoBi
PE3yNIbTaTH Bi3yasi30BaHO TpadidHoO.

Kuouosi crosa: memoo ®@yp’e, memod manoco napamempa, memoo eapiayii 008iIbHUX CMAUX, cucmema
ougepenyianbHux pieHsAHb, NONEPeUHe HABAHMAIICEHHS, NPOSUH OAIKU, 30CePeddceHa Maca, OeMn@epHa cucmema,
HENTHItIHI KONUBAHHSL.

Bicnuxk 3anopizbkozo nayionanvhozo ynisepcumemy MNel, 2014
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