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The mixed problem of the elasticity theory for the homogeneous isotropic half-space with the infinite 
circular cylindrical cavity, parallel to the boundary of the half-space, is considered. These investigations 
are of practical interest in connection with problems of geomechanics and geotechnical engineering. The 
aim of the work is to substantiate and to apply the research method of the stress-strain state of elastic 
half-space with a circular cylindrical cavity in the case when the stresses are set on a half-space 
boundary and the displacements are set on a cavity surface. 
A boundary value problem for the Lame equation with the appropriate boundary conditions in the given 
domain is solved by the generalized Fourier method. The general solution of the boundary value 
problem is presented as a superposition of the external basis solutions of the Lame equation for the 
cylinder and the internal basis solutions for the half-space. The addition theorems of the basis solutions 
of the Lame equations for the cylinder and the half-space allow to satisfy the boundary conditions and to 
reduce the problem to the infinite system of linear algebraic equations which is solved by the reduction 
method. It is proved that the operator of the system is quite continuous in space 2l . The results of 

numerical calculations have been presented. 
Key words: generalized Fourier method; elastic half-space; cylindrical cavity; basis solutions of the Lame 
equation; addition theorems; reduction method. 
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INTRODUCTION 

Questions of calculation of strength and reliability arise in the design of underground tunnels, mines 
and mining [1, p.24]. As a model of such objects we can use an infinite hollow cylinder in an elastic 
half-space. We can consider this domain as a multiply connected elastic body and solve the main 
problems of the elastic theory for this body, in particular, determine the stress and the strain near a 
cylindrical surface. 

The stress-strain state of an elastic half-space having a cavity of finite size has been studied 
intensively by many authors. For an infinite half-space with the cylindrical cavity the main 
problems of the potential theory and the elastic theory have been considered in the papers [2, p.52; 
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3, p.102; 4, p.17; 5, p.189; 6, p.192]. The generalized Fourier method [7, p.83] was used for the 
solution of these problems. However justification of this method to the solution of the mixed 
problem of the elastic theory was not given. 

The aim of this work is justification and applying of the generalized Fourier method for 
investigation of the stress-strain state of an elastic half-space with a circular cylindrical cavity in a 
case when the stresses are set on a half-space boundary and the displacements are set on a cavity 
surface. This problem is of special interest for practice. 

FORMULATION OF THE PROBLEM 

Denote by  a half-space with an infinite circular cylindrical cavity. Suppose the cylinder is 
parallel to the boundary of the half-space. The domain  is filled with a homogeneous isotropic 
elastic medium. We introduce a rectangular Cartesian coordinate system , ,x y z  and a cylindrical 

coordinate system , ,z . The z -axis coincides with the cylinder axis. The y -axis is directed 

vertically upward. Let 1S  y h  be the boundary of the half-space, and 2S  a  the surface of 

the cylinder. Here, a  is radius of the cylinder, and h  is the distance between the cylinder axis and 
the boundary of the half-space, with a h . The domain  is defined by the system of inequalities 

,y h a . 

Consider the boundary value problem for the Lame equation 

 :   
1

0
1 2

u divu , (1)

 
1

01 ,
S

Fu Fu x z , (2)

 
2

02 ,
S

u u z , (3)

where  is the Poisson's ratio. We use the generalized Fourier method for the solution of the 
problem (1)-(3). 

GENERALIZED FOURIER METHOD 

According to the generalized Fourier method, the system of basis solutions of the Lame equation is 
introduced for each boundary surface of the domain . These solutions are written in the coordinate 
system associated with the corresponding surface. 

We seek the general solution of the boundary value problem as superposition of the basis solutions 
with unknown integral densities and unknown series coefficients. These integral densities and series 
coefficients are determined by the boundary conditions. 

The basis solutions of the Lame equation for the half-space and the cylinder are constructed in the 
papers [2, p.53; 3, p.103]. These solutions are written in the Cartesian and the cylindrical coordinate 

systems respectively. By , , ; ,ku x y z  denote the internal (external) basis solutions for the half-

space. They are the vector functions regular in y h  y h . By , , , ;k mR z

, , , ;k mS z  denote the internal (external) basis solutions for the cylinder. They are the vector 

functions regular in a  a . These basis solutions have the form 

1
, , ; , , , ; ,i iu x y z N u x y z , 

1
2 2

4 1 1
, , ; , , , ; , , , ; ,u x y z u x y z e yu x y z , 
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2
, , , ; , , ;k m mkR z N r z , 

2
, , , ; , , ;k m mkS z N s z . 

Here 

1
1j

N ,   3 3
j ji

N rot e , 

2 2
2 3

1
4 4N e

z
, 

1,3i , 1,2j , 1 3k .. , 0, 1, 2,...m . 

In these expressions the vectors ( )k
je  are the orts of the Cartesian 1k  and cylindrical 2k

coordinate system, and the functions , , ; ,u x y z , , , ;mr z , , , ;ms z  represent the 

Cartesian and cylindrical basis solutions of the Laplace equation [8, p.58, p.73] 

, , ; , i x i z yu x y z e , 

, , ; im i z
m mr z e I , 

, , ;
m im i z

m ms z sign e K , 

where mI , mK  are the modified Bessel functions of the first and second kind of order 

m  respectively, 2 2 , , , . 

The general solution of the boundary value problem (1)-(3) can be represented as a superposition of 

the external basis solutions of the Lame equation for the cylinder , , , ;k mS z  and the internal 

basis solutions for the half-space , , ; ,pu x y z  

 
3 3

,
1 1

, , ; , , , ; ,km k m p p
k m p

u B S z d H u x y z d d . (4)

In our case kmB  and pH ,  are unknown integral densities. 

Consider the boundary conditions (2) and (3). We write the second term of the expression (4) in the 
cylindrical coordinate system. Then, to satisfy the boundary condition (3) we apply the re-

expansion formulas of the internal basis solutions for the half-space , , ; ,pu x y z  on the 

internal cylindrical basis solutions , , , ;k mR z  [2, p.53]. We obtain a system of linear algebraic 

equations with respect to the integral densities kmB  1..3, 0, 1, 2,...k m . Let 1
mD a,

be the determinant of this system. This determinant is not equal to zero and bounded below [4, p.20]

 
1

1
1

, 4(1 2 )m
mD a K a . (5)

To satisfy the boundary condition (2), we write the first term of the expression (4) using the re-

expansion formulas of the external cylindrical basis solutions , , , ;k mS z  on the external basis 

solutions for the half-space , , ; ,lu x y z  [2, p.54]. We obtain a system of linear algebraic 
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equations defining the functions ,pH  1..3p . Let 2 ,D  be the determinant of this 

system. This determinant is given by 3 4 3 2
2 , 4 hD G e , where G  is the shear modulus. 

This determinant is not equal to zero. Solving this system, we express the integral densities 
,pH  in terms kmB . As a result the first system of linear algebraic equations reduces to the 

infinite system of linear algebraic equations defining kmB  

3

1

mn m
km kj jn k

j n

B G B Q , 

 1..3k , 0, 1, 2,...m . (6)

This system can be rewritten as I G b q , where G  is an operator of the system, I the unit 

operator, b  the column vector of the unknowns jnB , and q  the column vector of right part 
m
kQ . 

Theorem The operator G  of the system (6) is quite continuous in 2l  if boundary surfaces 1S and 

2S  are not intersect a h . 

Proof. Consider a double series 

 mn
kj

m n

G , (7)

where , 1..3k j . Let's prove the convergence of this series. The functions mn
kjG  include the 

integrals reducible to the Laplace integral. The Laplace integral may be given by 2 2m nK h , 

where . The series (7) contains expressions 

 
1 2 3 2

2
1

1 2
1 ,

m p mr ms

n m nm
m nm

f a f a f a
n I a K h

m I a D a
. (8)

Here 1
mpf a  is one of the functions m pK a  0p , m p

a

K
, 

2
mr

m rf a K a , 3
msf a  is one of the functions m sI a , m s

a

I
, with 

0, 1p , 1r , 0, 1s . 

Assume that 0 . We write the addition theorem for the modified Bessel functions 

 m n n m
n

K y I x cos n K z cos m , (9)

where 2 2 2 cosz x y xy , sin sin
x

z
. Differentiating this equality on a variable twice, 

we will put 0 , 0 , x a , 2y h , then 

 2
1 12m n n m m

n

ah
n K h I a K K , (10)
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where 2h a . On applying the equalities (9), (10), we summarize the series (8) over an index n
and obtain 

 1 2 3
1 12

11 ,

m p mr ms

m m mm
m m

f a f a f a ah
K K K

m I a D a
. (11)

By , ,L a h  denote the expression (11). Taking into account the estimate (5), we get 

1 2 3

1 1

1
, ,

4 1 2

mp mr ms

m m m m

f a f a f a
L a h

K a K a K a
 

 1 1

2 21 1
m m m

m m

K K Kah

m I a m I a
. (12)

By , ,prsL a h  denote a series contained in right part of this inequality. For example,  

0
110 1 12

1
, ,

1
m m m

m m

ah
L a h K K K

m K a
. 

Using the addition theorem (9) and the inequality [9, p.426] 

21
4 1 m

m

e m I
K

, 

with 0 , 1m , it can be shown that 0
110 , ,L a h  is bounded above by a continuous positive 

function of  0
110 , ,L a h g . The function g  has a finite limit at the point 0 , and 

0g  as . The function 0
110 , ,L a h  is positive and bounded for all 0,

0 0 0
110 110 110

0,
, , , ,L a h max L a h L , 

where 0
110L const . 

Similarly, it can be proved that the function , ,prsL a h  is positive and bounded above for all 

values p , r , s  and . It follows that series (7) converges for positive values of the  under the 
condition a h . Under the same condition the series made from the squares of the modules 

2mn
kjG  also converges. 

The case of the negative values  is reduced to previous by means of replacement , with 
0 . 

Hence the series 
2mn

kj
m n

G  converges for all ,  under the condition a h , and 

the operator G  of the system (6) is quite continuous in 2l . The Theorem is proved. 

In the same way, it can be proved that under the condition a h  the series made from the modules 

of the right parts m
kQ  of the system (6) converges for all , . Thus, the right parts 

m
kQ  of the system (6) belong to the space 2l . 
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From Gilbert's alternative and belonging the right parts of (6) to the space 2l , it follows that the 

system of equations (6) is solvable and has a unique solution in the space 2l . An approximate 

solution of the problem can be obtained by the reduction method. 

RESULTS 

According to a reduction method, the infinite system of the linear algebraic equations for the 
unknown integral densities kmB  was replaced by the finite system of the linear algebraic 

equations. To estimate the rate of convergence for the method we calculate an approximation of the 
function u  on the cylinder surface and of the function Fu  on the boundary of the half-space. We 
consider that the solution is found if an error of approximation of the boundary conditions does not 
exceed 610 . 

We compute the solution of the problem (1)-(3) for the functions 01 , 2Fu x z G
2

0, cos 1 ,0z x l  and 02 , 0u z  and for various values of a geometrical parameter 

a h . Calculations show that the stresses in the body concentrate near the cavity surface. The 
stress distribution on the cylinder is presented in Fig. 1, 2. 

Fig. 1 shows the normal stresses ,  and the tangential stress  on the cylinder surface in a 

plane 0z  for 0 3. , 0 25. , 1 and 1l . The dimensionless stresses are presented. They 
are non-  component reaches the greatest 

values. At 0,   is compressive stress and at ,2  is tensile stress. 

Fig. 2 gives the  on the cylinder surface for various values of the parameter . The stress in the 

body significantly depends on the geometrical parameter . They sharply increase as 1. The 
largest compressive stresses act in the domain between the boundary of the half-space and the 
cavity. The largest tensile stresses arise in symmetrically located areas under the cylinder at 

7 6 and 11 6 . The occurrence of the tensile stresses can lead to destruction of the 
elastic body. 

 

Fig. 1. The stress distribution on the cylinder surface:  

(solid line),  (dashed line) and  (dotted line) 

Fig. 2. The normal stress  on the cylinder surface for 

0 3.  (dotted line), 0 5.  (dashed line) and 0 9.  
(solid line) 
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In conclusion we note that the known numerical methods of solution of the space problems for the 
multiply connected elastic body, for example, a finite element method, are not applicable for the 
infinite domains and are ineffective in case of close located boundary surfaces. The generalized 
Fourier method, used in the present paper, allows to obtain the solution in case of close located 
boundary surfaces by rather small increase in an order of the system of the linear algebraic 
equations. 

CONCLUSIONS 

The mixed problem of the elastic theory for a half-space with a circular cylindrical cavity is 
considered. The generalized Fourier method is used for the solution of the problem. Application of 
addition theorems of the basis solutions of the Lame equation for the half-space and for the cylinder 
allows to satisfy the boundary conditions and to reduce the problem to the infinite system of the 
linear algebraic equations. The theorem that the operator of the system is quite continuous in space 

2l  was proved. The system was solved by a reduction method. Results of calculations have been 

discussed. 
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