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Exact analytical solution for an electrostrictive plane with circular electrostrictive inclusion and an arc 
crack at the materials interface under the influence of general mechanical and electrical loadings at 
infinity is obtained. It is assumed that both materials are isotropic and linear elastic, the crack faces 
don t interact with each other and are permeable to an electric field. The problem is considered as an 
uncoupled problem of electroelasticity. Solution of electrostatics problem is obtained by complex 
potentials method. Boundary problem of electroelasticity for four complex potentials that are analogues 
of Kolosov-Muskhelishvili potentials is reduced to the problem of linear relationship at the crack. 
Unknown constants in general solution of this problem are determined from the boundary conditions at 
infinity and the restrictions imposed on stresses and displacements. Analytical expressions for the stress-
strain state in the whole plane, in particular for the crack opening, normal and shear stresses at materials 
interface and the stress intensity factors at the crack tips, are found. 
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INTRODUCTION 

Electrostrictive materials, in particular ferroelectric relaxors, become widespread in modern 
technologies because for these relaxors electrostrictive effect is close to the piezoelectric one. As 
described in [1], cracks may appear in electrostrictive materials under the action of large electrical 
and mechanical stresses. This causes the importance of studying of cracked electrostrictive 
materials behavior under the action of electrical and mechanical loads. 

In general case constitutive equations of electrostrictive materials are quite complex and require 
solving of the coupled electroelasticity problem that is associated with considerable mathematical 
difficulties. However, in the case of small deformations the constitutive equations can be simplified 
so that the electroelasticity problem becomes uncoupled. For this case an analogue of Kolosov-
Muskhelishvili equations [2] that takes into account electrostriction was developed in [3]. The 
electrostrictive body with an arc crack under the action of electrical load at infinity parallel to the 
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crack axis of symmetry is analyzed in the article [4]. The homogeneous electrostrictive plane with 
an arc crack under the action of arbitrary electrical and mechanical loads at infinity is considered in 
[5] and [6]. Stress intensity factors for electrostrictive fibrous composite with an arc-shaped 
permeable interface crack under electric loadings are found in [7]. Nevertheless, general stress-
strain state, especially crack opening, of electrostrictive composite with an arc interface crack under 
the action of arbitrary electrical and mechanical loadings has not been considered yet. Thereby 
important point related to the possible appearance of the crack faces contact zones has not been also 
investigated. 

Much more works are devoted to investigation of arc cracks in electrically passive materials. 
Firstly, an arc crack in elastic plane was considered by Muskhelishvili [2]. His method was 
extended to the case of different materials by England [8]. Method designed by England was used 
for investigation of interfacial arc crack under the action of arbitrary loading at infinity [9] and at 
the crack [10]. Partially debonded circular inclusion was also considered by means of finite 
elements method in [11]. Stress intensity factors of arc crack between homogeneous cylinder and its 
coating are obtained from system of singular integral equations in [12]. A plane containing the 
system of partially debonded circular inclusions is considered in [13] using superposition principle 
and general displacement solution.

A contact problem for the crack in a homogeneous plane [14] and for the crack between matrix and 
inclusion [15] was firstly considered by Chao and Laws. A contact problem for interfacial arc crack 
under the action of arbitrary loading at infinity was resolved using singular integral equations in 
[16]. Closure of an arc cracks in homogeneous material and its influence on stress intensity factors 
are analyzed in [17] using boundary elements method. Contact zones that arise in vicinity of 
interfacial arc crack tips are investigated also in [18] and [19] using boundary elements method. 

In the present article an electrostrictive plane with circular electrostrictive inclusion and an arc 
crack at materials interface under the influence of arbitrary mechanical and electrical loadings at 
infinity is considered. Electrostatics boundary problem for three unknown complex potentials is 
resolved by expanding these functions in Laurent series. Boundary problem of electroelasticity for 
four complex potentials that are analogues of Kolosov-Muskhelishvili potentials is reduced to the 
problem of linear relationship using the method developed by England [8]. Solution of this problem 
is obtained by well-known methods of analytical function theory described in [2] and [20]. The 
unknown constants in general solution of the problem of linear relationship are found from 
boundary conditions at infinity, displacements uniqueness condition and finiteness of displacements 
and stresses at origin. 

Analytical expressions for stresses and displacements at the whole plane are obtained, and also the 
formulas for crack opening and stress intensity factors at the crack tips are found. Crack opening, 
normal and shear stresses at materials interface and stress intensity factors at the crack tips are 
found for various material constants and loading at infinity. The figures that demonstrate the 
influence of different parameters on the crack opening, stresses and the stress intensity factors are 
presented. 

FORMULATION OF THE PROBLEM 

Infinite plane with a circular inclusion of radius R  bonded along the whole interface except of the 
arc Rr ,  is considered. We assume that crack faces cannot interact with each other and are 

permeable to electric field. Mechanical properties of inclusion and matrix are characterized by shear 
modules 1 , 2  and Poisson s ratios 1 , 2  respectively. Electrostrictive properties of inclusion are 

determined by constants 1
1a  and 1

2a , and the matrix electrostrictive properties are determined by 

constants 2
1a  and 2

2a  [21]. The dielectric permittivities of inclusion, matrix and crack filler are 

denoted as 1 , 2  and c , accordingly. Principal stresses 1N  and 2N  act at infinity; the angle 
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between the direction of 1N  and the abscissa axis is N . Also the electric field with intensity vector 

of magnitude 0E that forms the angle with abscissa axis is applied at infinity (Fig. 1).

Fig. 1 

Analogues of Kolosov-Muskhelishvili equations for electrostrictive materials are [3, 21] 
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Boundary conditions for displacement and stresses at the interface are the following [4]: 

2211 ~~~~
rrrrrr ii , 1 1 2 2

r ru iu u iu for   Rr , , (4) 
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where zwc  is an electrostatic complex potential of the crack, 2zwzW cc . The boundary 

conditions at infinity can be presented as 

Ni
rrr e

NNNN
i 2212122

22
for   r . (6) 

Electrostatic complex potentials zw1 , zw2  and zwc  are determined by boundary problem of 

electrostatics which solution is given in the next section. 
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BOUNDARY PROBLEM OF ELECTROSTATICS 

The equations of electrostatics are as follows [22, 23]:

01 for   Rr , 02 for   Rr , 0c    for   Rr , , (7) 

1
1E , 2

2E , c
cE , (8) 

1
1

1 ED , 2
2

2 ED , c
c

c ED , (9) 

where 1 , 2 , c  are the potentials of electrostatic field, 1E , 2E , cE  are the intensities of 

electrostatic field, 1D , 2D , cD  are the electric displacements in inclusion, matrix and crack 
filler respectively. 

Electrostatic boundary condition at infinity are 

sincos 00
2 EE 21 iiE for   r , (10) 

and electrostatic boundary conditions on the interface have the form [22, 1 4] 

nDnD 21 , tEtE 21 for   Rr , , (11) 

nDnDnD c21 , tEtEtE c21 for   Rr , , (12) 

where sincos 21 iin  is the vector of outward unit normal to the circle Rr  and 

cossin 21 iit is unit vector tangent to this circle. 

Complex potentials zw1 , zw2 and zwc are determined as 

1 1
1x yE iE w z for Rr , 2 2

2x yE iE w z for Rr ,

c c
x y cE iE w z for Rr , ,

where functions zw1 , zw2  and zwc  are analytical in the correspondent areas. This choice of 

unknown functions allows satisfy Laplace equations (7) completely. 

As the boundary conditions (11)-(12) are formulated for iz Re , they may be written by 
presenting of complex potentials in the following way: 

zwzzwz 1122 ReRe , zwzzwz 12 ImIm for Rr , . (13) 

zwzzwz c 11 ReRe , zwzzwz c 1ImIm for Rr , . (14) 

It follows from boundary condition at infinity (10) that
i

z
eEzw 02 . (15) 

Thereby boundary problem of electrostatics is reduced to determination of three unknown complex 
potentials zw1 , zw2  and zwc  that are analytical in correspondent areas from boundary 

conditions (13)-(15). Unknown coefficients of Laurent series for functions zw1 , zw2  and zwc

are determined from these boundary conditions. Thus, the electrostatic potentials are given in the 
following way: 
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PROBLEM OF LINEAR RELATIONSHIP 

Functions z  and z  are introduced to satisfy boundary conditions at electrostrictive materials 
interface (4) by the formulas 
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The derivatives of these functions are analytical at the complex plane with cut along the arc Rr ,
 except of infinity and zero points. Further the function zKzzF ,

1

1 21K ,
212

121 is used instead of z .

Boundary condition (5) specifies that 2211 ~~~~
rrrrrr ii  at the crack. It follows from this 

condition and equations (2) and (18) that zz . Also formulas (17)  (18) specify that the 

functions z  and zF  are finite at infinity and have second-order poles at zero point. Since the 

function z  is analytical at the whole complex plane except of zero point it is given by 
expression 

2
21

0 z

A

z

A
Az . (19) 

It follows from the boundary conditions (5) that the function zF  should satisfy the following 
problem of linear relationship at the crack: 

2 2 2

1 2 2 2 1 12
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Using formulas (16) equation (20) is transformed to the following form: 

zfzFzF for Rr , , (21) 

where 2
322

1 zCC
z

C
zf .

The stresses and displacements of the inclusion are expressed in terms of functions zF  and z
by the following way: 
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Stresses and displacements of matrix may be obtained from expressions (22) and (23) by replacing 
suffix 1 by 2, 2 by 1 and by /1 .

SOLUTION OF PROBLEM OF LINEAR RELATIONSHIP 

General solution of the problem of linear relationship (21) has the form [2, 20]
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where 
2

ln
, L  is the arc Rr ,  that is bypassed counterclockwise. It should be noted 

that the branch of the function zX 0  that satisfies conditions 1
z

i

i

i

eRz

eRz
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1
zii eRzeRz

z
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Contour integral from (24) is given by the following expression [2]: 
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therefore 
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Expressions (19) and (25) contain seven unknown constants 0A , 1A , 2A , 0B , 1B , 1D  and 2D  that 

need to be determined. 

The function zX 0 is expanded in the following series near zero and a point at infinity: 
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function has the following representations near zero point and point at infinity: 
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It follows from finiteness of stresses and displacements at zero point, boundary condition at infinity 
(6) and condition of displacements uniqueness that 
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As one can see, system of linear algebraic equations (28) fully determines the unknown constants. 
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STRESSES, CRACK OPENING AND STRESS INTENSITY FACTORS 

As it follows from (23), crack opening 12
rr uu is given by expression 

zFzFe iRe
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21

, ieRz , . (29) 

Using equations (21) and (25) the expression (29) is transformed to the form 
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Stresses on the bonded part of the interface are given by the following equation: 

zFi rrr 1
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Crack opening (30) and stresses on the bonded part of the interface (31) have a physically unreal 
oscillation near crack tips in case of different materials of matrix and inclusion. Such oscillation of 

crack model that was described, for example, in [8]. However, in most cases the oscillation zones 
[24] approach.

Thereby stress intensity factors at the crack tips are introduced as
1

1 1
2

1 2
0

lim 2
i

rr rK iK R i . (32) 

After calculation of the limits they get the following form: 
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NUMERICAL RESULTS 

All results presented in this section are obtained for plane stress state, Poisson s ratios 
26,021 and uniaxial tension at infinity 0/ 12 NN , 01N .

Fig. 2-4 show the crack opening, normal and shear stresses at the interface, respectively, for the 
ratios of the intensities of electrical and mechanical loads at infinity 0/ 1

2
01 NE ,

4
1

2
01 105,0/ NE  and 4

1
2
01 10/ NE . These Figures are obtained for 60 , 2

1

2 ,

4

1

10c , 2
1

2 , 200
1

1
1a

, 45
1

1
2a

, 400
1

2
1a

, 75
1

2
2a

, 45 , 0N . As it is 

shown in Fig. 2, an increasing of electrical load intensity leads to decrease of the crack opening. 
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Also it should be noted from Fig. 3-4, that intensity of the electrical load influences the normal 
stresses at the interface much more essentially than the shear ones.

Fig. 2

Fig. 3 Fig. 4

Fig. 5 Fig. 6

The crack opening for various parameters of materials and applied loads is shown in Fig. 5-8. All 

these results are obtained for 60 , 4

1

10c , 4
1

2
01 10/ NE . Particularly, Fig. 5 shows the 

crack opening for the ratios of materials dielectric permittivities 5,0
1

2 , 1
1

2  and 2
1

2 , and 
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also 5,0
1

2 , 400
1

1
1a

, 75
1

1
2a

, 0
1

2
1a

, 0
1

2
2a

, 30 , 0N . As it is shown in this 

figure, increasing of the matrix dielectric permittivity decreases the crack opening. Fig. 6 shows the 
crack opening for the direction angles of mechanical load at infinity 0N , 45N  and 

90N , and also 5,0
1

2 , 5,0
1

2 , 400
1

1
1a

, 75
1

1
2a

, 200
1

2
1a

, 45
1

2
2a

, 45 .

Fig. 7 shows crack opening for the direction angles of electrical load at infinity 0 , 45  and 

90 , and also 5,0
1

2 , 2
1

2 , 200
1

1
1a

, 45
1

1
2a

, 400
1

2
1a

, 75
1

2
2a

, 0N . As 

one can see, angles  and N  have a great influence on the crack faces intersection zones 

appearing. The cases of none intersection zones, one zone and two zones are presented. Fig. 8

shows the crack opening for ratios of elastic modules 5,0
1

2 , 1
1

2  and 2
1

2 . These results 

are obtained for 5,0
1

2 , 400
1

1
1a

, 75
1

1
2a

, 200
1

2
1a

, 45
1

2
2a

, 0 , 15N . As it 

is shown in this figure, decreasing of the matrix elastic modulus increases the crack opening. 

Fig. 7 Fig. 8

Fig. 9-14 show the dependencies of the normal and shear stress intensity factors at the upper crack 

tip from different variables. All these results are obtained for 5,0
1

2 , 400
1

1
1a

, 75
1

1
2a

,

200
1

2
1a

, 45
1

2
2a

. Particularly, Fig. 9-10 show variation of stress intensity factors from crack 

angle  for ratios of the intensities of electrical and mechanical loads at infinity 0/ 1
2
01 NE ,

4
1

2
01 10/ NE  and 4

1
2
01 102/ NE . These results are obtained for 4

1

10c , 5,0
1

2 , 0 ,

0N . As one can see, increasing of the electrical load intensity decreases the absolute values of 

both normal and shear stress intensity factors. 
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Fig. 9 Fig. 10

Fig. 11-12 show variation of stress intensity factors with respect to the angle of mechanical load 

applying at infinity N  for ratios of elastic modules 5,0
1

2 , 1
1

2  and 2
1

2 . These results 

are obtained for 60 , 4

1

10c , 4
1

2
01 10/ NE , 0 . As it can be seen from these figures, 

increasing of the matrix elastic modulus decreases the absolute values of the stress intensity factors. 

Fig. 13-14 show variation of stress intensity factors on the angle  of electrical load applying at 

infinity for the ratios of dielectric permittivities 4

1

105,0c , 4

1

10c  and 4

1

102c . These 

results are obtained for 60 , 2
1

2 , 4
1

2
01 10/ NE , 0N .

Fig. 11 Fig. 12

As it is shown in above figures, various combinations of materials and parameters of electrical and 
mechanical loadings may cause intersection of crack faces. It is obvious that appearance of the 

that in reality the crack faces contact 
with each other and the crack model, which takes into account the crack faces contact should be 

configuration of the contact zones for such cases. Furthermore, the obtained results are precise 
enough at a certain distance from the contact zones; in particular, they are reliably applicable for the 
determination of the fracture parameter at the most dangerous crack tips, where the crack is 
completely open except small zones of oscillation. 
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Fig. 13 Fig. 14

SUMMARY 

An electrostrictive plane with a circular electrostrictive inclusion made of another material and 
having an arc crack at the material interface under the influence of arbitrary mechanical and 
electrical loadings at infinity is considered. Crack faces are assumed to be non-interacting and 
permeable to an electric field. Specified problem is resolved within the framework of uncoupled 
problem of electroelasticity. 

At the beginning the boundary problem of electrostatics is resolved by expanding three unknown 
complex potentials in Laurent series. Further, the problem of electroelasticity is resolved taking into 
account the obtained solution of electrostatics problem. Boundary problem of electroelasticity is 
formulated for four complex potentials that are analogues of Kolosov-Muskhelishvili potentials. It 
is reduced to the problem of linear relationship at the crack, which is resolved by the methods of 
analytical function theory. Unknown constants in the general solution of the problem of linear 
relationship are found from the boundary conditions at infinity and from the limitations imposed on 
stresses and displacements at origin, at infinity and near the crack.

The obtained solution determines completely the stress-strain state of the plane with circular 
inclusion and an interface arc crack under arbitrary electro-mechanical loading at infinity. 
Particularly, the formulas determining stress-strain state at any point of the plane are found and also 
the exact analytical expressions for the crack opening and the main fracture mechanical parameters 
are obtained. Dependencies of the crack opening and the stress intensity factors near crack tips from 
mechanical and dielectric properties of materials and from applied mechanical and electrical 
loadings are analyzed. The scope of 
importance of this model for the determination of the fracture parameter at the most dangerous 
crack tips is emphasized. 

REFERENCES 

1. Gao C.-F., Mai Y.-W. Fracture of electrostrictive solids subjected to combined mechanical and electric loads. Eng. 
Fract. Mech. 2010. Vol. 77. P. 1503 1515.

2. Muskhelishvili N. I. Some Basic Problems of the Mathematical Theory of Elasticity. Leyden: Noordhoff 
International Publishing, 1977. 732 p. 

3. Knops R. J. Two-dimensional electrostriction. Q. J. Mech. Appl. Math. 1963. Vol. XVI, Pt. 3. P. 377 388. 

4. Zheng M., Gao C.-F. An arc-shaped crack in an electrostrictive material. Int. J. Eng. Sci. 2010. Vol. 48.  
P. 771 782.

5. Hodes A. J., Loboda V. V. Arc Crack in a Homogeneous Electrostrictive Material. J. Math. Sci. 2017. Vol. 222, 
Iss. 2. P. 114 130.

6. Hodes A. Yu., Loboda V. V. The contact problem for an arc crack in an electrostrictive material. Bulletin of Taras 
Shevchenko National University of Kyiv Series: Physics & Mathematics. 2015. Vol. 5. P. 69 72 (in Ukrainian). 

7. Dai M., Gao C.-F., Schiavone P. Arc-shaped permeable interface crack in an electrostrictive fibrous composite 
under uniform remote electric loadings. Int. J. Mech. Sci. 2016. Vol. 115-116. P. 616 623. 

8. England A. H. An Arc Crack Around a Circular Elastic Inclusion. J. Appl. Mech. 1966. Vol. 33. P. 637 640.



94 -

- ISSN 2518-1785 (Online), ISSN 2413-6549 (Print) 

9. Hodes A. Yu., Loboda V. V. Stress-strain state of an elastic plane with an arc crack between circular inclusion and 
matrix. Bulletin of Dniepropetrovsk University: Mechanics. 2013. Iss. 17, Vol. 1. P. 3 10 (in Russian). 

10. Hodes A. Yu. An arc interfacial crack with loaded sides. Bulletin of Dniepropetrovsk University: Mechanics.
2014. Iss. 18, Vol. 1. P. 33 43 (in Russian). 

11. Brighenti R., Carpinteri A., Scorza D. Fracture mechanics approach for a partially debonded cylindrical fibre. 
Composites: Part B. 2013. Vol. 53. P. 169 178. 

12. Li Y.-D., Zhang N., Lee K. Y. Fracture analysis on the arc-shaped interfacial crack between a homogeneous 
cylinder and its coating. Eur. J. Mech. A/Solids. 2010. Vol. 29. P. 794 800. 

13. Kushch V. I, Shmegera S. V., Mishnaevsky Jr. L. Elastic interaction of partially debonded circular inclusions. I. 
Theoretical solution. Int. J. Solids Struct. 2010. Vol. 47. P. 1961 1971. 

14. Chao R., Laws N. Closure of an arc crack in an isotropic homogeneous material due to uniaxial loading. Q. J. 
Mech. Appl. Math. 1992. Vol. 45. P. 629 640.

15. Chao R., Laws N. The Fiber-Matrix Interface Crack. J. App. Mech. 1977. Vol. 64. P. 992 999.

16. Hodes A. Yu., Loboda V. V. A contact problem for an arc interfacial crack. Bulletin of Dniepropetrovsk 
University: Mechanics. 2015. Iss. 19, Vol. 2. P. 3 17 (in Russian). 

17. Ritz E., Pollard D. D. Closure of circular arc cracks under general loading: effects on stress intensity factors. Int. J. 
Fract. 2011. Vol. 167. P. 3 14.

18. Paris F., Cano J. C., Varna J. The fiber-matrix interface crack  A numerical analysis using Boundary Elements. 
Int. J. Fract. 1996. Vol. 82. P. 11 29. 

19. Varna J., Paris F., Cano J. C. The effect of crack-face contact on fiber/matrix debonding in transverse tensile 
loading. Compos. Sci. Technol. 1997. Vol. 51. P. 523 532. 

20. Gakhov F. D. Boundary Value Problems. Oxford: Pergamon Press, 1966. 561 p. 

21. Jiang Q., Kuang Z.-B. Stress analysis in two dimensional electrostrictive material with an elliptic rigid conductor. 
Eur. J. Mech. A/Solids. 2004. Vol. 23. P. 945 956. 

22. Stratton J. A. Electromagnetic Theory. New York: McGraw-Hill, 1941. 648 p. 

23. Landau L., Lifshitz E. Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1960. 417 p. 

24. Rice J. R. Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 1988. Vol. 55. P. 98 103.

1 - 2 -
2 - 2

1

2

ayagrigorenko@yandex.ru, maxborisenko530@mail.ru

FEMAP 


