СТОХАСТИЧНА ОПТИМІЗАЦІЯ НА РОЗМІЩЕННЯХ: ВЛАСТИВОСТІ ЛІНІЙНИХ БЕЗУМОВНИХ ЗАДАЧ

${ }^{1}$ Ємець О. О., ${ }^{2}$ Барболіна Т. М.
${ }^{1}$ Полтавський університет економіки і торгівлі, вул. Коваля, 3, м. Полтава, Україна
${ }^{2}$ Полтавський начіональний педагогічний університет імені В. Г. Короленка, вул. Остроградського, 2, м. Полтава, Україна
yemetsli@ukr.net, tm-b@ukr.net

Досліджуються властивості лінійних безумовних задач стохастичної оптимізації на розміщеннях, постановка яких здійснена на основі введення лінійного порядку на множині дискретних випадкових величин. Встановлено взаємозв’язок стохастичної задачі, що розглядається, зі спеціально сформульованими детермінованими задачами комбінаторної оптимізації на розміщеннях. Обгрунтовано властивості розв'язку стохастичної задачі.
Ключові слова: евклідова задача комбінаторної оптимізаиії, лінійна безумовна задача оптимізаиії на розміщеннях, стохастична оптимізаиія, стохастична комбінаторна оптимізаиія.

СТОХАСТИЧЕСКАЯ ОПТИМИЗАЦИЯ НА РАЗМЕЩЕНИЯХ: СВОЙСТВА ЛИНЕЙНЫХ БЕЗУСЛОВНЫХ ЗАДАЧ
 ${ }^{1}$ Емец О. А., ${ }^{2}$ Барболина Т. Н.
 ${ }^{1}$ Полтавский университет экономики и торговли, ул. Коваля, 3, г. Полтава, Украина

${ }^{2}$ Полтавский начиональный педагогический университет им. В. Г. Короленко, ул. Остроградского, 2, г. Полтава, Украина
yemetsli@ukr.net,tm-b@ukr.net
Исследуются свойства линейных безусловных задач стохастической оптимизации на размещениях, постановка которых осуществлена на основе введения линейного порядка на множестве дискретных случайных величин. Установлена взаимосвязь рассматриваемой стохастической задачи со специально сформулированными детерминированными задачами комбинаторной оптимизации на размещениях. Обоснованы свойства решения стохастической задачи.
Ключевые слова: евклидова задача комбинаторной оптимизачии, линейная безусловная задача оптимизачии на размещениях, стохастическая оптимизаиия, стохастическая комбинаторная оптимизачия.

STOCHASTIC OPTIMIZATION ON ARRANGEMENTS: PROPERTIES OF LINEAR UNCONSTRAINED PROBLEMS

${ }^{1}$ Iemets O. O, ${ }^{2}$ Barbolina T. M.
${ }^{1}$ Poltava university of economics and trade, Koval St., 3, Poltava, Ukraine
${ }^{2}$ Poltava V.G. Korolenko National Pedagogical University, Ostrogradsky St., 2, Poltava, Ukraine
yemetsli@ukr.net, tm-b@ukr.net

Actual trend of the modern theory of optimization is to study the problems of combinatorial nature. Important results have been obtained as a result of immersion of combinatorial sets in Euclidean space and study the properties of such problems. This paper is a continuation and development of a research within the Euclidean combinatorial optimization, it considers such an important class of Euclidean combinatorial optimization problems as arrangement problems.

We also should note that the problems with uncertainty, including probabilistic, attract the attention of researchers recently. Such problems arise and in combinatorial optimization. Stochastic combinatorial models can be used to describe and solve many other important practical problems. Earlier the authors proposed an approach for stochastic optimization problems formalization through the introduction of the order relation on the set of random variables. This order on a set of discrete random variables is defined through the comparison of the mathematical expectations, dispersions, possible values and associated probabilities.
Using introduced linear order, let us order the elements of the set of discrete random variables. The first random variable in this ordered list is the minimum value and the last one is the maximum value. The definition of the minimum and maximum allows setting the optimization problem for finding the extreme elements under existing conditions. In this article we discuss linear unconstrained problem of stochastic combinatorial optimization on the common set of arrangements when elements of multiset Γ are discrete random variables.
Some properties of such problems are obtained. The interrelation of problems with stochastic uncertainty with the determined problems is shown. Determined problems are specially constructed: coefficients of objective function are powers of coefficients of objective function of initial stochastic problem, feasible region is the general set of arrangements when multiset elements are equal to mathematical expectation (or dispersion) of discrete random variables from given multiset Γ. We prove that minimal in solution of determined problem can be received using numerical characteristics of components of minimal in the solution of stochastic problem. On the other hand if x is the minimal in the solution of determined problem then there is a minimal in solution of the stochastic problem such that mathematical expectations (dispersions) of components are equal to corresponding components of x. Further research of properties of stochastic optimization problems based on criterion of minimal in (determined) linear unconstrained optimization problem on arrangements.
A minimal in solution of linear unconstrained stochastic optimization problem on arrangements can be constrained using minimals in the problems of less dimension. The feasible sets of these problems are sets of arrangements from the elements of submultisets of given multiset Γ. The obtained result is used to prove properties of minimal in solution of linear unconstrained stochastic optimization problem on arrangements. There exists a minimal such that mathematical expectations and dispersions of its components are equal to corresponding mathematical expectations and dispersions of specific elements of multiset Γ. In particular if coefficients of objective function are positive and ordered by the lack of increase then there exists a minimal such that mathematical expectations and dispersions of its components are equal to corresponding numerical characteristics of leading elements of multiset which are located according to introduced order. If in addition there are no elements of multiset with equal mathematical expectation and dispersion then the arrangement which components are equal to corresponding elements of multiset is the minimal in solution of linear unconstrained stochastic optimization problem on arrangements .
Subsequent studies suggest further study of the properties of the considered problems that will allow developing methods and algorithms to solve them.
Key words: euclidean combinatorial optimization problem, linear unconstrained optimization problem on arrangements, stochastic optimization, stochastic combinatorial optimization.

ВСТУП

Актуальним напрямком теорії оптимізації протягом останніх десятиліть є дослідження (див., зокрема, [1-15]) задач комбінаторної природи, у тому числі на основі занурення комбінаторних множин в евклідовий простір (див., наприклад, [4-5]) у рамках евклідової комбінаторної оптимізації.

З іншого боку, значну увагу вчених привертають оптимізаційні задачі з урахуванням різних видів невизначеності, зокрема імовірнісної. Поєднання зазначених напрямків представлено, наприклад, у дослідженнях інтервальних моделей задач геометричного проектування, їх відображень в евклідові простори ([5-6] та ін.), екстремальних задач на графах з інтервальними параметрами [7], евклідових задач комбінаторної оптимізації на нечітких множинах [8], нечіткої задачі комівояжера [9], стохастичних задач, пов’язаних з комбінаторними оптимізаційними задачами на допустимій множині $F \subset\{0,1\}^{n}$ [10] тощо.

Для формулювання оптимізаційних задач з різними видами невизначеності запропоновано підхід, який грунтується на введенні порядку на множині відповідних величин. Такий підхід

для задач з інтервальною та нечіткою невизначеністю розглянуто, зокрема, в [8, 11], його поширення на оптимізаційні задачі з імовірнісною невизначеністю запропоновано в [12, 13].

Один зі способів упорядкування дискретних випадкових величин грунтується на порівнянні математичних сподівань, дисперсій, можливих значень та відповідних імовірностей випадкових величин. Для лінійних безумовних задач стохастичної оптимізації на розміщення у такій постановці одержано властивості розв'язку у випадку додатних коефіцієнтів цільової функції [14]. Наша праця присвячена подальшому дослідженню зазначених задач й узагальненню отриманих раніше результатів.

ПОСТАНОВКА ЗАДАЧІ

Позначатимемо випадкові величини великими латинськими літерами (A, B), їх можливі значення - малими літерами $\left(a^{i}, b^{i}\right)$, а відповідні ймовірності - p_{a}^{i}, p_{b}^{i}. Нехай також $M(A)$ позначає математичне сподівання випадкової величини A, а $D(A)$ - дисперсію. Вважатимемо, що випадкові величини є дискретними, причому серед можливих значень існує найменше. Множину таких випадкових величин позначимо Ξ. Вважатимемо, що можливі значення випадкової величини упорядковані за зростанням, причому найменше значення має індекс 1.

Сформуємо для дискретної випадкової величини характеристичний вектор $H(A=(M(A) ;-D(A)))$. Через << позначатимемо лексикографічне упорядкування в m-вимірному просторі. З означення лексикографічного порядку випливає, що для двох дискретних випадкових величин A, B виконується співвідношення $H(A)<_{l} H(B)$, якщо $M(A)<M(B)$ або при $M(A)=M(B)$ має місце нерівність $-D(A)<-D(B)$ (тобто $D(A)>D(B))$.

Означення 1. Називатимемо дві дискретні випадкові величини $A, B \in \Xi$ упорядкованими у зростаючому (A передує B) порядку \prec (і позначати цей факт $A \prec B$), якщо $H(A)<_{l} H(B)$ або при $H(A)=H(B)$ знайдеться такий індекс t, що $a^{i}=b^{i}, p_{a}^{i}=p_{b}^{i}$ для всіх $1 \leq i<t$, і при цьому або $a^{t}<b^{t}$, або $a^{t}=b^{t}$ і $p_{a}^{t}=p_{b}^{t}$.

Означення 2. Називатимемо дві дискретні випадкові величини $A, B \in \Xi$ і упорядкованими в неспадному порядку \preceq (позначатимемо цей факт $A \preceq B$), якщо $A \prec B$ або $A=B$.
Аналогічно до того, як це зроблено в [12], легко показати, що відношення \preceq, уведене в означенні 2 , є лінійним порядком на множині дискретних випадкових величин Ξ. При цьому, як показано у [15], якщо для $A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{n} \in \Xi$ виконуються умови $A_{i} \preceq B_{i}$ $\forall i \in J_{n}$, то $A_{1}+A_{2}+\ldots+A_{n} \preceq B_{1}+B_{2}+\ldots+B_{n}$.

Використовуючи введений означенням 2 лінійний порядок, упорядкуємо елементи заданої скінченної підмножини Ξ^{\prime} множини Ξ дискретних випадкових величин: $A_{1} \preceq A_{2} \preceq \ldots \preceq A_{l}$. Максимумом є величина A_{t}, а мінімумом - величина A_{1}. Визначення мінімуму й максимуму дає можливість ставити задачі оптимізації для знаходження екстремальних елементів при заданих умовах.

Нехай $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ - багатовимірна випадкова величина. Розглянемо лінійну функцію $L(X)=\sum_{j=1}^{k} c_{j} X_{j}$, де $c_{j} \in R^{1} \forall j \in J_{k}$, причому значення функції належать множині Ξ^{\prime} для

всіх $X_{j} \in \Xi^{\prime} \quad \forall j \in J_{k}$. Тоді лінійна задача мінімізації в деякій області Ω може бути сформульована так: знайти пару $\left\langle L\left(X^{*}\right), X^{*}\right\rangle$, що

$$
\begin{equation*}
L\left(X^{*}\right)=\min _{x \in \Omega} \sum_{j=1}^{k} c_{j} X_{j}, \quad X^{*}=\underset{x \in \Omega}{\arg \min } \sum_{j=1}^{k} c_{j} X_{j} . \tag{1}
\end{equation*}
$$

Далі розглядається розв'язування задачі вигляду (1) у випадку, коли Ω є загальною множиною k-розміщень. Розглянемо необхідні поняття й означення евклідової комбінаторної оптимізації, спираючись переважно на [4]. Під мультимножиною розуміємо сукупність елементів, серед яких можуть бути й однакові. Будь-яку мультимножину $G=\left\{g_{1}, \ldots, g_{\eta}\right\}$ можна задати основою $S(G)$, тобто кортежем усіх ії різних елементів, і первинною специфікацією, тобто кортежем кратностей - числа повторень відповідного елемента основи мультимножини. Упорядкованою k-вибіркою з мультимножини $G=\left\{g_{1}, \ldots, g_{\eta}\right\}$ називається набір вигляду $\left(g_{i_{i}}, \ldots, g_{i_{k}}\right)$, де $g_{i_{j}} \in G, i_{j} \neq i_{t} \forall i_{j}, i_{t} \in J_{\eta}, \forall j, t \in J_{k}$ (тут і далі $J_{n}=\{1,2, \ldots, n\}$). Множина усіх упорядкованих k-вибірок з мультимножини G називається загальною множиною розміщень $E_{\eta}^{k}(G)$.

Нехай елементи G_{i} мультимножини $\Gamma=\left\{G_{1}, G_{2}, \ldots, G_{\eta}\right\} \quad є$ незалежними випадковими величинами. Розглянемо задачу вигляду(1) при $\Omega=E_{\eta}^{k}(\Gamma)$, тобто задачу пошуку пари $\left\langle L\left(X^{*}\right), X^{*}\right\rangle$ такої, що

$$
\begin{equation*}
L\left(X^{*}\right)=\min _{x \in E_{\eta}^{(}(\Gamma)} \sum_{j=1}^{k} c_{j} X_{j}, \quad X^{*}=\arg \min _{x \in E_{n}^{k}(\Gamma)} \sum_{j=1}^{k} c_{j} X_{j} . \tag{2}
\end{equation*}
$$

Вважатимемо, що елементи мультимножини упорядковані в неспадному порядку

$$
\begin{equation*}
G_{1} \preceq G_{2} \preceq \ldots \preceq G_{\eta}, \tag{3}
\end{equation*}
$$

а коефіцієнти цільової функції - за незростанням:

$$
\begin{equation*}
c_{1} \geq c_{2} \geq \ldots \geq c_{\alpha}>0=c_{\alpha+1}=\ldots=c_{\beta-1}>c_{\beta} \geq \ldots \geq c_{k}, \tag{4}
\end{equation*}
$$

причому

$$
\begin{equation*}
\text { якщо } \quad c_{i} \neq c_{j}, \quad \text { то } \quad c_{i}^{2} \neq c_{j}^{2} . \tag{5}
\end{equation*}
$$

ВЗАЄМОЗВ'ЯЗОК СТОХАСТИЧНИХ I ДЕТЕРМІНОВАНИХ ЗАДАЧ ОПТИМІЗАЦІЇ НА РОЗМІЩЕННЯХ

Нехай $h_{1}(A)=M(A), h_{2}(A)=-D(A)$. Сформуємо мультимножини $Q_{r}=\left\{h_{r}\left(G_{1}\right), \ldots, h_{r}\left(G_{\eta}\right)\right\}$ ($r \in J_{2}$) і разом із задачею (2) розглядатимемо детерміновані задачі мінімізації функцій $\bar{L}_{r}(x)=\sum_{j=1}^{k} c_{j}^{r} x_{j}$, де $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, на відповідних множинах $E_{\eta}^{k}\left(Q_{r}\right)$: знайти пару $\left\langle L\left(x^{\prime}\right), x^{\prime}\right\rangle$ таку, що

$$
\begin{equation*}
L\left(x^{\prime}\right)=\min _{x \in E_{\eta}^{k}\left(Q_{r}\right)} \sum_{j=1}^{k} c_{j}^{r} x_{j}, \quad x^{\prime}=\arg \min _{x \in E_{\eta}^{k}\left(Q_{r}\right)} \sum_{j=1}^{k} c_{j}^{r} x_{j} . \tag{6}
\end{equation*}
$$

Зазначимо, що коли

$$
\begin{equation*}
M\left(G_{i}\right)=M\left(G_{j}\right) \quad \forall i, j \in J_{\eta}, \tag{7}
\end{equation*}
$$

то також $M\left(L\left(X^{\prime}\right)\right)=M\left(L\left(X^{\prime \prime}\right)\right) \forall X^{\prime}, X^{\prime \prime} \in E_{\eta}^{k}(\Gamma)$. Дійсно, з $X^{\prime}, X^{\prime \prime} \in E_{\eta}^{k}(\Gamma)$ випливає, що $X_{i}^{\prime}, X_{i}^{\prime \prime} \in \Gamma \quad \forall i \in J_{k}$, а тоді, згідно з (7), $M\left(X_{i}^{\prime}\right)=M\left(X_{u}^{\prime \prime}\right)$. Отже,

$$
M\left(L\left(X^{\prime}\right)\right)=M\left(\sum_{j=1}^{k} c_{j} X_{j}^{\prime}\right)=\sum_{j=1}^{k} c_{j} M\left(X_{j}^{\prime}\right)=\sum_{j=1}^{k} c_{j} M\left(X_{j}^{\prime \prime}\right)=M\left(L\left(X^{\prime \prime}\right)\right)
$$

Позначимо $\rho_{r}(X)=\left(h_{r}\left(X_{1}\right), h_{r}\left(X_{2}\right), \ldots, h_{r}\left(X_{k}\right)\right)$.
Лема 1. Нехай $X^{*} \in E_{\eta}^{k}(\Gamma)$ - мінімаль у розв'язку задачі (2); $r=2$, якщо виконуються умови (7), інакше $r=1$. Тоді $\rho_{r}\left(X^{*}\right)$ є мінімаллю в розв'язку задачі (6).

Доведення. Очевидно, що $E_{\eta}^{k}\left(Q_{r}\right)=\left\{\rho_{r}(X) \mid X \in E_{\eta}^{k}(\Gamma)\right\}$. З властивостей математичного сподівання і дисперсії випливає, що $h_{r}(L(X))=h_{r}\left(\sum_{j=1}^{k} c_{j} X_{j}\right)=\sum_{j=1}^{k} c_{j}^{2} h_{r}\left(X_{j}\right)=\bar{L}_{r}\left(\rho_{r}(X)\right)$. Також з умови (6) маємо, що для будь-якої точки $x \in E_{\eta}^{k}\left(Q_{r}\right)$ виконується нерівність $\bar{L}_{r}\left(x^{\prime}\right) \leq \bar{L}_{r}(x)$, а оскільки $\bar{L}_{r}\left(\rho_{r}(X)\right)=h_{r}(L(X))$, то також $\bar{L}_{r}\left(x^{\prime}\right) \leq h_{r}(L(X))$ для будьякого $X \in E_{\eta}^{k}(\Gamma)$, зокрема $\bar{L}_{r}\left(x^{\prime}\right) \leq h_{r}\left(L\left(X^{*}\right)\right)$, де X^{*} - мінімаль у розв'язку задачі (2).

3 іншого боку, оскільки X^{*} - мінімаль у розв’язку задачі (2), то $L\left(X^{*}\right) \preceq L(X) \forall X \in E_{\eta}^{k}(\Gamma)$, звідки на основі означень 1,2 маємо $H\left(L\left(X^{*}\right)\right) \leq_{l} H(L(X))$. Зокрема, останнє співвідношення виконується для розміщення X^{\prime}, яке задовольняє умови $h_{r}\left(X_{j}^{\prime}\right)=x_{j}^{\prime} \quad \forall j \in J_{k}$. Отже, $M\left(L\left(X^{*}\right)\right) \leq M(L(X))$. Якщо виконуються умови (7), то $M\left(L\left(X^{*}\right)\right)=M(L(X))$ звідки $\quad-D\left(L\left(X^{*}\right)\right) \leq-D(L(X))$. Таким чином, $h_{r}\left(L\left(X^{*}\right)\right) \leq h_{r}(L(X))=\bar{L}_{r}\left(\rho_{r}\left(X^{\prime}\right)\right)=\bar{L}_{r}\left(x^{\prime}\right)$. Ураховуючи $\bar{L}_{r}\left(x^{\prime}\right) \leq h_{r}\left(L\left(X^{*}\right)\right)$, маємо, що $\bar{L}_{r}\left(x^{\prime}\right)=h_{r}\left(L\left(X^{*}\right)\right)$, тобто $\rho_{r}\left(X^{*}\right)$ є мінімаллю в розв’язку задачі (6). Лему доведено.

Лема 2. Нехай виконуються співвідношення (5); $r=2$, якщо виконуються умови (7), інакше $r=1$; $\left\langle\bar{L}_{r}\left(x^{\prime}\right), x^{\prime}\right\rangle$ - розв’язок задачі (6); $X^{*} \in E_{\eta}^{k}(\Gamma)$ - таке, що $\rho_{r}\left(X^{*}\right)$ є мінімаллю в розв'язку задачі (6). Тоді існує $X^{\prime} \in E_{\eta}^{k}(\Gamma)$ таке, що $L\left(X^{\prime}\right)=L\left(X^{*}\right)$ і

$$
\begin{equation*}
h_{r}\left(X_{j}^{\prime}\right)=x_{j}^{\prime} \quad \forall j \in J_{k} . \tag{8}
\end{equation*}
$$

Доведення. Нехай $\bar{t}_{i}\left(i \in J_{\sigma}\right)$ - кратності елементів основи мультимножини коефіцієнтів цільової функції задачі (6), індекси t_{i} визначаються так:

$$
\begin{equation*}
t_{1}=1, \quad t_{i+1}=t_{i}+\bar{t}_{i}=1+\sum_{j=1}^{i} \bar{t}_{j} \quad \text { для } \quad i \in J_{\sigma} . \tag{9}
\end{equation*}
$$

Тоді $c_{t_{1}}^{r}=\ldots=c_{t_{2}-1}^{r}>c_{t_{2}}^{r}=\ldots=c_{t_{3}-1}^{r}>\ldots>c_{t_{\sigma}}^{r}=\ldots=c_{k}^{r}$. Оскільки $\rho_{r}\left(X^{*}\right)$ - мінімаль у розв'язку задачі (6), то, як випливає з критерію екстремалі в лінійній безумовній задачі оптимізації на розміщеннях [16], виконуються умови: якщо $c_{t_{i}} \neq 0$, то вектор
$\left(h_{r}\left(X_{t_{i}}^{*}\right), h_{r}\left(X_{t_{i}+1}^{*}\right), \ldots, h_{r}\left(X_{t_{i+1}^{-1}}^{*}\right)\right) \quad$ є перестановкою 3 елементів мультимножини $\left\{x_{t i}^{\prime}, x_{t_{i+1}^{\prime}}^{\prime}, \ldots, x_{t_{+1+1}-1}^{\prime}\right\}$. Ураховуючи, що виконуються умови (5), маємо також $c=c_{t_{i}}=c_{t_{i+1}}=\ldots=c_{t_{+1+1}-1}$ для всіх $i \in J_{\sigma}$ таких, що $c_{t_{i}} \neq 0$. Отже, закон розподілу випадкової величини $\sum_{j=t_{i}}^{t_{+1+}-1} c_{j} X_{j}=\sum_{j=t_{i}}^{t_{i+1}-1} c X_{j}$ (де $c=c_{t_{i}}=c_{t_{i}+1}=\ldots=c_{t_{i+1}-1}$) не залежить від порядку величин X_{j}, тобто $\sum_{j=t_{i}}^{t_{t+1}-1} c_{j} X_{j}^{*}=\sum_{j=t_{i}}^{t_{t+1}-1} c X_{j}^{\prime}$, де вектор $\left(X_{t_{i}}^{\prime}, X_{t_{i}+1}^{\prime}, \ldots, X_{t_{i+1}-1}^{\prime}\right)$ є такою перестановкою елементів мультимножини $\left\{X_{t_{i}}^{*}, X_{t_{i}+1}^{*}, \ldots, X_{t_{t+1}-1}^{*}\right\}$, для якої $h_{r}\left(X_{j}^{\prime}\right)=x_{j}^{\prime} \forall j \in J_{t_{i+1} 1^{-1}}^{t_{i}}$ (тут і далі $J_{s}^{r}=\{r, \ldots, s\}$). Отже, розміщення $X^{\prime}=\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{t_{i}}^{\prime}, X_{t_{i}+1}^{\prime}, \ldots, X_{t_{i+1}-1}^{\prime}, \ldots, X_{k}^{\prime}\right)$ задовольняє умову (8) і при цьому

$$
L\left(X^{\prime}\right)=\sum_{j=1}^{k} c_{j} X_{j}^{\prime}=\sum_{w=1}^{\sigma} \sum_{j=t_{i}}^{t_{t+1}-1} c_{j} X_{j}^{\prime}=\sum_{w=1}^{\sigma} \sum_{j=t_{i}}^{t_{t+1}-1} c_{j} X_{j}^{*}=L\left(X^{*}\right) .
$$

Лему доведено.

ВЛАСТИВОСТІ ЕКСТРЕМАЛІ В ЛІНІЙНІЙ БЕЗУМОВНІЙ СТОХАСТИЧНІЙ ЗАДАЧІ НА РОЗМІЩЕННЯХ

Нехай коефіцієнти цільової функції задачі (6) задовольняють умову (5) та

$$
\begin{equation*}
c_{p_{1}}^{r} \geq c_{p_{2}}^{r} \geq \ldots \geq c_{p_{\gamma}}^{r}>0=\ldots=c_{p_{s}-1}^{r}>c_{p_{s}}^{r} \geq \ldots \geq c_{p_{k}}^{r} . \tag{10}
\end{equation*}
$$

Зазначимо, що коли в умові (4) $\alpha=k$ або $r=1$, то $p_{j}=j \forall j \in J_{k}$. Якщо серед коефіцієнтів цільової функції є від'ємні і при цьому $r=2$, то упорядкування коефіцієнтів цільової функції в задачах (2) i (6) може відрізнятися.
Нехай, як і вище, $r=2$, якщо виконуються умови (7), інакше $r=1$. Нехай також мультимножина $Q_{r}=\left\{h_{r}\left(G_{1}\right), \ldots, h_{r}\left(G_{\eta}\right)\right\}$ має основу $S\left(Q_{r}\right)=\left(\bar{H}_{1}, \bar{H}_{2}, \ldots, \bar{H}_{\sigma}\right)$ і первинну специфікацію $\left[Q_{r}\right]=\left(\bar{t}_{1}, \bar{t}_{2}, \ldots, \bar{t}_{\sigma}\right)$, тобто

$$
\begin{equation*}
Q_{r}=\left\{h_{r}\left(G_{1}\right), h_{r}\left(G_{2}\right), \ldots, h_{r}\left(G_{\eta}\right)\right\}=\left\{\bar{H}_{1}^{\bar{T}_{1}}, \bar{H}_{2}^{\bar{L}_{2}}, \ldots, \bar{H}_{\sigma}^{\tau_{\tau}}\right\} . \tag{11}
\end{equation*}
$$

Тоді з умови (3) та означень 1,2 випливає, що

$$
\begin{equation*}
h_{r}\left(G_{1}\right) \leq_{l} h_{r}\left(G_{2}\right) \leq_{l} \ldots \leq_{l} h_{r}\left(G_{\eta}\right), \tag{12}
\end{equation*}
$$

елементи основи $S\left(Q_{r}\right)$ також вважатимемо впорядкованими за неспаданням. Також для індексів t_{i}, визначених згідно з (9), матимемо

$$
\begin{equation*}
h_{j}\left(G_{t_{i}}\right)=\ldots=h_{j}\left(G_{t_{i}+t_{i}-1}\right)=\bar{H}_{i} \quad \forall i \in J_{\sigma} \quad \forall j \in J_{r} . \tag{13}
\end{equation*}
$$

Лема 3. Нехай виконуються співвідношення (5), (7), (10) $i(12) ; X^{\prime} \in E_{\eta}^{k}(\Gamma)$ таке, що

$$
\begin{equation*}
h_{r}\left(X_{p_{j}}^{\prime}\right)=h_{r}\left(G_{j}\right) \quad \forall j \in J_{\gamma}, \quad h_{r}\left(X_{p_{l}}^{\prime}\right)=h_{r}\left(G_{\eta-k+t}\right) \quad \forall j \in J_{k}^{\delta} . \tag{14}
\end{equation*}
$$

Нехай також мультимножина Q_{r} визначається згідно з (11), а індекси t_{i} - згідно з (9);

$$
\begin{equation*}
q=\min \left\{j \mid t_{j+1}>\gamma\right\}, \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
s=\max \left\{j \mid t_{j} \leq t-k+\delta\right\}, \tag{16}
\end{equation*}
$$

для всіх $i \in J_{\sigma}$

$$
\begin{gather*}
\Gamma_{r}^{i}=\left\{G_{t_{i}}, G_{t_{i}+1}, \ldots, G_{t_{i}+\bar{i}_{i}-1}\right\}, \tag{17}\\
u_{i}=\left\{\begin{array}{ccc}
t_{i}, & \text { якщо } \quad i \leq q, \\
k-\eta+t_{i}, & \text { якщо } \quad i>s, \\
\delta, & \text { якщо } i=s>q ;
\end{array} \quad v_{i}=\left\{\begin{array}{cl}
t_{i}+\bar{t}_{i}-1, & \text { якщо } i<q, \\
k-\eta+t_{i}+\bar{t}_{i i}-1, & \text { якщо } i \geq s, \\
\gamma, & \text { якщо } i=q<s .
\end{array}\right.\right. \tag{18}
\end{gather*}
$$

Тоді для всіх $i \in J_{q} \cup J_{\sigma}^{s}$

$$
\begin{equation*}
\left(\tilde{X}_{u_{u}}^{\prime}, \tilde{X}_{u_{i}+1}^{\prime}, \ldots, \tilde{X}_{v_{i}}^{\prime}\right) \in E_{\bar{l}_{i}}^{k_{i}}\left(\Gamma_{r}^{i}\right), \tag{19}
\end{equation*}
$$

де $\tilde{X}_{j}^{\prime}=X_{p_{j}}^{\prime} \quad \forall j \in J_{k}, k_{i}=v_{i}-u_{i}+1$.
Доведення. Другу частину співвідношень (14) можна записати таким чином: $h_{r}\left(X_{p_{k-\eta+j}}^{\prime}\right)=h_{r}\left(G_{j}\right) \forall j \in J_{k}^{\eta-k+\delta}$. Позначимо $\tilde{X}_{j}=X_{p_{j}}^{\prime} \forall j \in J_{k}$. Тоді

$$
\begin{equation*}
h_{r}\left(\tilde{X}_{j}\right)=h_{r}\left(G_{j}\right) \quad \forall j \in J_{\gamma}, \quad h_{r}\left(\tilde{X}_{k-\eta+j}\right)=h_{r}\left(G_{j}\right) \quad \forall j \in J_{k}^{\eta-k+\delta} . \tag{20}
\end{equation*}
$$

Якщо q задовольняє (15), тобто q - найменший індекс, для якого виконується умова $t_{q+1}>\gamma$, то з умов (13) і (20) випливає, що $h_{r}\left(\tilde{X}_{j}\right)=\bar{H}_{i} \forall j \in J_{t_{i}+\bar{t}_{i}-1}^{t_{i}} \quad \forall i \in J_{q-1}, h_{r}\left(\tilde{X}_{j}\right)=\bar{H}_{q}$ $\forall j \in J_{\gamma}^{t_{q}}$. Аналогічно для s, визначеного згідно з (16), маємо $h_{r}\left(\tilde{X}_{k-\eta+j}\right)=\bar{H}_{i} \quad \forall j \in J_{t_{i}+\bar{t}_{i}-1}^{t_{1}}$ $\forall i \in J_{\sigma}^{s+1}, h_{r}\left(\tilde{X}_{k-\eta+j}\right)=\bar{H}_{s} \forall j \in J_{t_{s}+\bar{t}_{s}-1}^{\eta-k+\delta}$.

Отже, $\quad\left(\tilde{X}_{i_{i}}, \tilde{X}_{i_{i}+1}, \ldots, \tilde{X}_{t_{i}+\bar{t}_{i}-1}\right) \in E_{\bar{i}_{i}}\left(\Gamma_{r}^{i}\right) \quad \forall i \in J_{q-1} \quad$ (очевидно, що $\left.\quad\left|\Gamma_{r}^{i}\right|=\bar{t}_{i}\right)$, $\left(\tilde{X}_{i_{q}}, \tilde{X}_{i_{q}+1}, \ldots, \tilde{X}_{\gamma}\right) \in E_{\tau_{q}}^{k_{q}}\left(\Gamma_{r}^{q}\right), k_{q}=t_{q}-\gamma+1 ;\left(\tilde{X}_{k-\eta+l_{q}}, \tilde{X}_{k-\eta_{i}+t_{i}+1}, \ldots, \tilde{X}_{k-\eta+l_{i}+T_{i}-1}\right) \in E_{\bar{i}_{i}}\left(\Gamma_{r}^{i}\right) \forall i \in J_{\sigma}^{s+1}$, $\left(\tilde{X}_{\delta}, \tilde{X}_{\delta+1}, \ldots, \tilde{X}_{k-\eta+t_{s}+\bar{t}_{s}-1}\right) \in E_{\bar{t}_{s}}^{k_{s}}\left(\Gamma_{r}^{s}\right), k_{s}=k+\eta+t_{s}+\bar{t}_{s}-\delta$.

Разом $з$ тим, при $q=s$ маємо, що $\left(\tilde{X}_{\epsilon_{q}}, \tilde{X}_{\delta+1}, \ldots, \tilde{X}_{k-\eta+\epsilon_{q}+\tau_{q}-1}\right) \in E_{t_{s}}^{k_{s}}\left(\Gamma_{r}^{s}\right)$ є елементом множини розміщень з елементів мультимножини Γ_{r}^{q}. 3 урахуванням позначень (18) маємо виконання співвідношення (19). Лему доведено.

Лема 4. Нехай виконуються співвідношення (5), (7), (10) i (12). Нехай також мультимножина Q_{r} визначається згідно з (11), а мультимножини Γ_{r}^{i} - згідно з (9), (17), виконуються співвідношення (15), (16), (18), $k_{i}=v_{i}-u_{i}+1$. Тоді справедливі такі твердження:

1) якщо для всіх $i \in J_{q} \cup J_{s}^{s}$ виконуються співвідношення (19), то існує таке $X^{\prime} \in E_{\eta}^{k}(\Gamma)$, що $X_{p_{j}}^{\prime}=\tilde{X}_{j}^{\prime} \quad i \in J_{q} \cup J_{s}^{s}$;
2) $L(X)=\sum_{i \in T} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}$, де $T=J_{q} \cup J_{s}^{s}$.

Доведення. Нехай для всіх $i \in J_{q} \cup J_{s}^{s}$ виконуються співвідношення (19). 3 (9), (17) випливає, що $h_{r}\left(G_{i}\right) \neq h_{r}\left(G_{j}\right) \forall G_{i} \in \Gamma_{r}^{i}, \forall G_{j} \in \Gamma_{r}^{j} \forall i, j \in J_{\sigma}$, тому $\Gamma_{r}^{i} \cap \Gamma_{r}^{j}=\varnothing \forall i, j \in J_{\sigma}$. Якщо $q \neq s$,

то $v_{q}=\gamma, u_{s}=\delta$ і вибірки ($\left.\tilde{X}_{u_{i}}^{\prime}, \tilde{X}_{u_{i}+1}^{\prime}, \ldots, \tilde{X}_{v_{i}}^{\prime}\right)$ при різних значеннях i не містять однакових елементів. Отже, існують такі $\tilde{X}_{\gamma+1}^{\prime}, \tilde{X}_{\gamma+2}^{\prime}, \ldots, \tilde{X}_{\delta-1}^{\prime}$, що $\left(\tilde{X}_{u_{1}}^{\prime}, \tilde{X}_{u_{1}+1}^{\prime}, \ldots, \tilde{X}_{v_{1}}^{\prime}, \tilde{X}_{\gamma+1}^{\prime}, \ldots, \tilde{X}_{\delta-1}^{\prime}, \tilde{X}_{u_{s}}^{\prime}, \ldots, \tilde{X}_{v_{\sigma}}^{\prime}\right) \in E_{\eta}^{k}(\Gamma)$. А тоді також $\left(\tilde{X}_{1}^{\prime}, \tilde{X}_{2}^{\prime}, \ldots, \tilde{X}_{k}^{\prime}\right) \in E_{\eta}^{k}(\Gamma)$, де $X_{p_{j}}^{\prime}=\tilde{X}_{j}^{\prime} \quad i \in J_{k}$. Якщо $q=s$, то $\Gamma_{r}^{q}=\Gamma_{r}^{s}$, однак, згідно з (18) при цьому також $\left(\tilde{X}_{u_{q}}^{\prime}, \tilde{X}_{u_{q}+1}^{\prime}, \ldots, \tilde{X}_{v_{q}}^{\prime}\right)=\left(\tilde{X}_{u_{s}}^{\prime}, \tilde{X}_{u_{s}+1}^{\prime}, \ldots, \tilde{X}_{v_{s}}^{\prime}\right)=\left(\tilde{X}_{t_{q}}^{\prime}, \tilde{X}_{t_{q}+1}^{\prime}, \ldots, \tilde{X}_{k-\eta+t_{q}+T_{q}-1}^{\prime}\right)$. Таким \quad чином, $\left(\tilde{X}_{u_{1}}^{\prime}, \tilde{X}_{u_{1}+1}^{\prime}, \ldots, \tilde{X}_{v_{q}-1}^{\prime}, \tilde{X}_{u_{q}}^{\prime}, \ldots, \tilde{X}_{v_{s}}^{\prime}, \tilde{X}_{u_{s+1}}^{\prime}, \ldots, \tilde{X}_{v_{\sigma}}^{\prime}\right) \in E_{\eta}^{k}(\Gamma)$, а тоді також $\left(\tilde{X}_{1}^{\prime}, \tilde{X}_{2}^{\prime}, \ldots, \tilde{X}_{k}^{\prime}\right) \in E_{\eta}^{k}(\Gamma)$, де $X_{p_{j}}^{\prime}=\tilde{X}_{j}^{\prime} \quad i \in J_{k}$. Отже, при виконанні співвідношень (19) знайдеться $X^{\prime} \in E_{\eta}^{k}(Г)$, що $X_{p_{j}}^{\prime}=\tilde{X}_{j}^{\prime} \forall j \in J_{v_{i}}^{u_{i}} \forall i \in J_{q} \cup J_{s}^{s}$.

Доведемо тепер друге твердження леми. Якщо $q=s$, то $T=J_{\sigma}$ i $L(X)=\sum_{i=1}^{\sigma} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}=\sum_{j=1}^{k} c_{p_{j}} X_{p_{j}} . \quad$.ри $\quad q \neq s \quad 3 \quad$ урахуванням $\quad v_{q}=\gamma, \quad u_{s}=\delta$, $c_{q+1}=c_{q+2}=\ldots=c_{s-1}=0$ отримаємо

$$
\sum_{i \in T} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}=\sum_{i=1}^{q} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}+\sum_{i=s}^{\sigma} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}=\sum_{j=1}^{\gamma} c_{p_{j}} X_{p_{j}}+\sum_{j=\delta}^{k} c_{p_{j}} X_{p_{j}}=L(X) .
$$

Лему доведено.
Теорема 1. Нехай елементи мультимножини задовольняють умову (3), а коефіцієнти цільової функції - умови (4), (5) і (10); мультимножина $Q_{r}(r=1,2)$ визначається згідно з (11), а мультимножини Γ_{r}^{i} - згідно з (9), (17); виконуються співвідношення (15), (16), (18), $k_{i}=v_{i}-u_{i}+1$. Якщо при цьому для всіх $i \in J_{q} \cup J_{\sigma}^{s}$ справедливе співвідношення

$$
\begin{equation*}
\left(\tilde{X}_{u_{i}}^{*}, \tilde{X}_{u_{i}+1}^{*}, \ldots, \tilde{X}_{v_{i}}^{*}\right)=\arg \min _{\left(\tilde{X}_{u_{i}}, \tilde{X}_{u_{i}+1}, \ldots, \tilde{X}_{v_{i}}\right) \in E_{z_{i}^{\prime}}^{*}\left(\Gamma_{r}^{i}\right)} \sum_{j=u_{i}}^{v_{i}} c_{p} \tilde{X}_{j}, \tag{21}
\end{equation*}
$$

то $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{k}^{*}\right) \in E_{\eta}^{k}(\Gamma)$ таке, що $X_{p_{j}}^{*}=\tilde{X}_{j} \forall j \in J_{k}$ є мінімаллю в розв’язку задачі (2).

Доведення. Нехай X - деяка мінімаль у розв’язку задачі (2). Тоді на основі леми 1 отримуємо, що $\rho_{r}(X)$ задовольняє (6), а тоді з леми 2 випливає існування такого $X^{\prime} \in E_{\eta}^{k}(\Gamma)$, що $L\left(X^{\prime}\right)=L(X)$ (тобто X^{\prime} - мінімаль у розв’язку задачі (2)) і $h_{r}\left(X_{j}^{\prime}\right)=x_{j}^{\prime}$ $\forall j \in J_{k}$, де $\left\langle\bar{L}_{r}\left(x^{\prime}\right), x^{\prime}\right\rangle$ — розв'язок задачі (6). 3 умов (10), (12) і критерію мінімалі в лінійній безумовній задачі оптимізації на розміщеннях випливає, що одна з мінімалей у розв'язку задачі (6) задовольняє умови

$$
x_{p_{j}}^{\prime}=h_{r}\left(G_{j}\right) \forall j \in J_{\gamma}, x_{p_{t}}^{\prime}=h_{r}\left(G_{\eta-k+t}\right) \forall t \in J_{k}^{\delta},
$$

тому X^{\prime} задовольняє співвідношення (20). Отже, згідно з лемою 3, для всіх $i \in J_{q} \cup J_{\sigma}^{s}$ виконуются умови (19), де $\tilde{X}_{j}^{\prime}=X_{p_{j}}^{\prime} \forall J_{k}$.

3 першого твердження леми 4 випливає, що $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{k}^{*}\right) \in E_{\eta}^{k}(\Gamma)$ таке, що $X_{p_{j}}^{*}=\tilde{X}_{j}$ $\forall i \in J_{q} \cup J_{\sigma}^{s} \quad$ існує. Оскільки також згідно з другим твердженням цієї леми $L(X)=\sum_{i \in T} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}$, де $T=J_{q} \cup J_{s}^{s}$, то на основі твердження 1 для X^{*} маємо

$$
L\left(X^{*}\right)=\sum_{i \in T} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} X_{p_{j}}^{*}=\sum_{i \in T} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} \tilde{X}_{j} \preceq \sum_{i \in T} \sum_{j=u_{i}}^{v_{i}} c_{p_{j}} \tilde{X}_{j}^{\prime}=L\left(X^{\prime}\right) .
$$

3 іншого боку, $L\left(X^{\prime}\right) \preceq L\left(X^{*}\right)$, оскільки $X^{*} \in E_{\eta}^{k}(\Gamma)$ і X^{\prime} - мінімаль у розв’язку задачі (2). Отже, $L\left(X^{\prime}\right)=L\left(X^{*}\right)$, тобто X^{*} також є мінімаллю в розв’язку задачі (2). Теорему доведено.
Використовуючи теорему 1 , встановимо властивості мінімалі в розв’язку задачі (2). Як показано при доведенні теореми 1 , існуе мінімаль у розв’язку задачі (2), для якої виконуються умови (20). Останні при $r=1$ набувають вигляду

$$
\begin{equation*}
M\left(\tilde{X}_{j}\right)=M\left(G_{j}\right) \quad \forall j \in J_{\alpha}, \quad M\left(\tilde{X}_{k-\eta+j}\right)=M\left(G_{j}\right) \quad \forall j \in J_{k}^{\eta-k+\beta} . \tag{22}
\end{equation*}
$$

Сформуємо мультимножини Q_{1} і Γ_{1}^{i} згідно з (9), (11) і (17) відповідно. 3 теореми 1 випливає, що для деякої мінімалі X у розв'язку задачі (2) виконуються умови (21), причому $p_{j}=j$ $\forall j \in J_{k}$.

Розглянемо питання про розв'язування задачі мінімізації функції $L^{i}(\tilde{X})=\sum_{j=u_{i}}^{v_{i}} c_{j} \tilde{X}_{j}$, де $\tilde{X}=\left(\tilde{X}_{u_{i}}, \tilde{X}_{u_{i}+1}, \ldots, \tilde{X}_{v_{i}}\right)$, на множині $E_{\bar{t}_{i}}^{k_{i}}\left(\Gamma_{1}^{i}\right)$. Задача вигляду (6) полягає в пошуку мінімуму і мінімалі функції $\bar{L}_{2}^{i}(\tilde{x})=\sum_{j=u_{i}}^{v_{j}} c_{j}^{2} \tilde{x}_{j}$ на множині розміщень з елементів мультимножини $Q_{2}=\left\{-D\left(G_{1}\right),-D\left(G_{2}\right), \ldots,-D\left(G_{\eta}\right)\right\}$. Оскільки математичні сподівання всіх випадкових величин із мультимножини Γ_{1}^{i} рівні між собою i виконується умова (3), то $-D\left(G_{u_{i}}\right) \leq-D\left(G_{u_{i}+1}\right) \leq \ldots \leq-D\left(G_{v_{i}}\right)$.

Якщо $i<q$, де q задовольняє (16), то $c_{j}>0 \quad \forall j \in J_{v_{i}}^{u_{i}}$. Тоді з умови (4) випливає, що також $c_{u_{i}}^{2} \geq c_{u_{i}+1}^{2} \geq \ldots \geq c_{v_{i}}^{2}$, тому для деякої мінімалі функції $L^{i}(\tilde{X})$ виконується умова $D\left(X_{j}\right)=D\left(G_{j}\right) \forall j \in J_{v_{i}}^{u_{i}}$. Отже, для всіх $i \in J_{q-1}$ маємо

$$
\begin{equation*}
H\left(X_{j}\right)=H\left(G_{j}\right) \quad \forall j \in J_{v_{i}}^{u_{i}} . \tag{23}
\end{equation*}
$$

При $i>s$, де s визначається згідно з (15), маємо, що $c_{v_{i}}^{2} \geq c_{v_{i}-1}^{2} \geq \ldots \geq c_{u_{i}}^{2}$, тому одна 3 мінімалей функції $L^{i}(\tilde{X})$ задовольняє співвідношення $\quad D\left(X_{v_{i}-j}\right)=D\left(G_{u_{i}+j}\right) \quad \forall j \in J_{k_{i}-1}^{0}$. Ураховуючи також, що $M\left(G_{u_{i}+j}\right)=D\left(G_{u_{i}}\right) \forall j \in J_{k_{i}-1}^{0}$, отримуємо, що при будь-якому $i \in J_{k}^{s+1}$

$$
\begin{equation*}
H\left(X_{v_{i}-j}\right)=H\left(G_{u_{i}+j}\right) \quad \forall j \in J_{k_{i}-1}^{0} . \tag{24}
\end{equation*}
$$

Якщо $q<s$, то $v_{q}=\alpha$ і співвідношення (23) виконуються і при $i=q$. Отже, співвідношення (23) виконуються при всіх $j \in J_{q}$, де $\bar{q}=\min \{q, s-1\}$. Аналогічно з $u_{s}=\beta$ випливає виконання (24) при $i=s$, а отже, при всіх $i \in J_{k}^{s}$, де $\bar{s}=\max \{q+1, s\}$.

Нехай тепер $q=s$, причому для коефіцієнтів цільової функції виконується нерівність

$$
\begin{equation*}
c_{u_{q}+p_{1}}^{2} \geq c_{u_{q}+p_{2}}^{2} \geq \ldots \geq c_{u_{q}+p_{k}}^{2} \tag{25}
\end{equation*}
$$

де $k=v_{q}-u_{q}+1, p_{j} \in J_{k-1}^{0} \forall j \in J_{k}$. Тоді $\forall j \in J_{k}$ виконуються співвідношення

$$
\begin{equation*}
H\left(X_{v_{i}+p_{j}}\right)=H\left(G_{u_{i}+j-1}\right) . \tag{26}
\end{equation*}
$$

Отже, доведено таку теорему.
Теорема 2. Нехай елементи мультимножини задовольняють умову (3), а коефіцієнти цільової функції - умови (4), (5) і (10); мультимножина $\Gamma_{1}=\left\{M\left(G_{1}\right), M\left(G_{2}\right), \ldots, M\left(G_{\eta}\right)\right\}=$ $=\left\{\bar{H}_{1}^{\bar{T}_{1}}, \bar{H}_{2}^{\bar{L}_{2}}, \ldots, \bar{H}_{\sigma}^{\bar{\sigma}_{\sigma}}\right\}$, мультимножини Γ_{1}^{i} визначаються згідно з (9), (17); виконуються співвідношення (15), (16), (18), $k_{i}=v_{i}-u_{i}+1$. Тоді існує мінімаль у розв'язку задачі (2) така, що для всіх $j \in J_{\bar{q}}$, де $\bar{q}=\min \{q, s-1\}$, виконуються співвідношення (23), а для всіх $i \in J_{k}^{\bar{s}}$, де $\bar{s}=\max \{q+1, s\}$, - співвідношення (24). Якщо також $q=s$ і має місце нерівність (25), то виконується умова (26).

Наслідок 1. Якщо усі коефіцієнти цільової функції $L(X)$ у задачі (2) додатні, то існує мінімаль у розв’язку задачі (2), для якої умова (15) виконується при всіх $j \in J_{k}$.

Наслідок 2. Якщо усі коефіцієнти цільової функції $L(X)$ у задачі (2) додатні, а також

$$
\begin{equation*}
H\left(G_{i}\right) \neq H\left(G_{j}\right), \text { якщо } \quad G_{i} \neq G_{j} \quad i, j \in J_{k}, \tag{27}
\end{equation*}
$$

то розміщення $X_{j}^{*}=G_{j} \forall j \in J_{k} \in$ мінімаллю в розв'язку задачі (2).
Зазначимо, що коли елементи мультимножини Г упорядковані у неспадному порядку, але умова (27) не виконується, то твердження, аналогічне наслідку 2 , місця не має.

ВИСНОВКИ

У статті розглядаються задачі стохастичної оптимізації на розміщеннях, постановка яких здійснена на основі введення лінійного порядку на множині дискретних випадкових величин. Установлено взаємозв'язок деяких властивостей розв'язування лінійної безумовної задачі стохастичної комбінаторної оптимізації з розв'язуванням спеціально побудованих детермінованих задач на розміщеннях. Доведено можливість отримати розв'язок стохастичної задачі на основі екстремалей задач меншої вимірності. На основі зазначених результатів встановлено умови для математичного сподівання та дисперсії компонентів екстремалі стохастичної задачі.
Як напрямок подальших досліджень можна розглядати формулювання алгоритмів розв'язування задачі, що використовують отримані у статті властивості.

ЛІТЕРАТУРА

1. Сергиенко И. В., Каспшицкая М. Ф. Модели и методы решения на ЭВМ комбинаторных задач оптимизации. Киев: Наукова думка, 1981. 288 с.
2. Згуровский М. З., Павлов А. А. Принятие решений в сетевых системах с ограниченными ресурсами. Киев: Наукова думка, 2010. 573 с.
3. Papadimitriou C. H., Steiglitz K. Combinatorial optimization: algorithms and complexity. Mineola, NY: Dover Publications, 1998. 496 p.
4. Стоян Ю. Г., Ємець О. О. Теорія і методи евклідової комбінаторної оптимізації. Київ: Інститут системних досліджень освіти, 1993. 188 с. URL: http://dspace.puet.edu.ua/handle/123456789/487.
5. Стоян Ю. Г., Романова Т. Е., Сысоева Ю. А. Оптимизационная задача размещения правильных интервальных многоугольников. Доклады НАН Украины. 1998. № 9. С. 114-120.
6. Гребенник И. В., Евсеева Л. Г., Романова Т. Е. Основная оптимизационная задача геометрического проектирования в интервальном виде. Радиоэлектроника. Информатика. Управление. 2004. № 2. С. 68-72.
7. Perepelitsa V. A., Kozina G. L. Interval Discrete Models and Multiobjectivity. Complexity Estimates. Interval Computations. 1993. № 1. P. 51-59.
8. Nikolova E. Approximation algorithms for reliable stochastic combinatorial optimization. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer: Berlin Heidelberg, 2010. P. 338-351.
9. Серая О. В. Нечеткая задача коммивояжера. Математическое моделирование. 2007. № 2(17). С. 13-15
10. Ємець О. О., Ємець Ол-ра О. Розв'язування задач комбінаторної оптимізації на нечітких множинах. Полтава: ПУЕТ, 2011. 239 с. URL: http://dspace.puet.edu.ua/handle/123456789/352.
11. Сергиенко И. В., Емец О. А., Емец А. О. Задачи оптимизации с интервальной неопределенностью: метод ветвей и границ. Кибернетика и системный анализ. 2013. № 5. С. 38-50.
12. Емец О. А., Барболина Т. Н. Об оптимизационных задачах с вероятностной неопределенностью. Доповідi Наиіональної академії наук України. 2014. № 11. С. 40-45.
13. Барболина Т. Н. О подходе к оптимизации с вероятностной неопределенностью с использованием упорядочивания случайных величин. Вісник Запорізького національного університету: Фізикоматематичні науки. 2016. № 1. С. 11-20.
14. Емец О. А., Барболина Т. Н. О свойствах линейной безусловной задачи комбинаторной оптимизации на размещениях с вероятностной неопределенностью. Кибернетика и системный анализ. 2016. Т. 52, № 2. C. 127-139.
15. Ємець О. О., Барболіна Т. М. Побудова і дослідження математичної моделі задачі директора зі стохастичними параметрами. Вісник Черкаського університету. Серія Прикладна математика. Інформатика. 2014. № 18(311). С. 3-11.
16. Барболіна Т. М. Властивості лінійних безумовних задач оптимізації на розміщеннях. Збірник наукових прачь викладачів, аспірантів, магістрантів і студентів фізико-математичного факультету. Полтава: Астрая, 2015. С. 12-14.

REFERENCE

1. Sergienko, I. V. \& Kaspshitskaya, M. F. (1981). Models and methods of solving combinatorial optimization problems by computers. Kyiv: Naukova dumka, Ukraine.
2. Zgurovsky, M. Z. \& Pavlov, A. A. (2010). Decision making in the network systems with limited resources. Kyiv: Naulova dumka, Ukraine
3. Papadimitriou, C. H. \& Steiglitz, K. (1998). Combinatorial optimization: algorithms and complexity, Dover PublicationsMineola, NY.
4. Stoyan, Yu. G. \& Iemets, O. O. (1993). Theory and methods of euclidian combinatorial optimization. Instytut systemnykh doslidzhen osvity. Retreived from http://dspace.puet.edu.ua/handle/ 123456789/487.
5. Stoyan, Yu. G., Romanova, T. Ye. \& Sysoeva, Yu. A. (1998). Optimization promlem of placement of regular interval polygons. Reports of the National Academy of Sciences of Ukraine, No. 9, pp. 114-120.
6. Grebennik, I. V., Yevseeva, L. G. \& Romanova, T. Ye. (2004). Basic optimization problem of geometic designn in the interval form. Radio Electronics, Computer Science, Control, No. 2, pp. 68-72.
7. Perepelitsa, V. A. \& Kozina, G. L. (1993). Interval Discrete Models and Multiobjectivity. Complexity Estimates. Interval Computations, No. 1, pp. 51-59.
8. Nikolova, E. (2010). Approximation algorithms for reliable stochastic combinatorial optimization. Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. Springer: Berlin Heidelberg, pp. 338-351.
9. Sira, O. V. (2007). Fuzzy task of traveling salesman. Matematichne modelyuvannya, No. 2(17), pp. 13-15.
10. Iemets, O. O. \& Yemets, O. O. (2011). Solving combinatorial optimization problems on fuzzy sets. Poltava: PUET, Ukraine.
11. Sergienko, I. V., Iemets, O. O. \& Yemets, O. O. (2013). Optimization problems with interval uncertainty: Branch and bound method. Cybernetics and Systems Analysis, No. 5, pp. 673-683.
12. Iemets, O. O. \& Barbolina, T. M. (2014). About optimization problems with probabilistic uncertainty. Reports of the National Academy of Sciences of Ukraine, No. 11, pp. 40-45.
13. Barbolina, T. M. (2016). About approach to optimization with probabilistic uncertainty using ordering of random variables. Visnyk of Zaporizhzhya National University. Physical and Mathematical Sciences, No. 1, pp. 11-20.
14. Iemets, O. O. \& Barbolina, T. M. (2016). Properties of the linear unconditional problem of combinatorial optimization on arrangements under probabilistic uncertainty. Cybernetics and Systems Analysis, Vol. 52, No. 2, pp. 285-295.
15. Iemet, O. O. \& Barbolina, T. M. (2014). Construction and research of mathematical model of director's task with stochastic parameters. Visnyk Cherkaskoho universytetu. Seria Prykladna matematyka. Informatyka, No 18(311), pp. 3-11.
16. Barbolina, T. M. (2015). Properties of linear unconstrained optimization problems on arrangements. Zbirnik naukovikh prats' vikladachiv, aspirantiv, magistrantiv i studentiv fiziko-matematichnogo fakul'tetu, Poltava: Astraya, pp. 12-14.

УДК 519.8

СИМПЛЕКСНА ФОРМА МНОГОГРАННИКА СПОЛУЧЕНЬ 3 НЕОБМЕЖЕНИМИ ПОВТОРЕННЯМИ

Ємець О. О., д. ф.-м. н., професор, Ємець Ол-ра О., к. ф.-м. н., доцент, Ванжа С. В.
Полтавський університет економіки і торгівлі, вул. Коваля, 3, Полтава, Україна
yemetsli@ukr.net, yemets2008@ukr.net
у статті наводиться правило утворення симплексної форми многогранника сполучень 3 необмеженими повтореннями. Для симплексної форми многогранника сполучень з необмеженими повтореннями доведено ряд тверджень. На прикладі проілюстровано формування симплексної форми многогранника сполучень з необмеженими повтореннями.
Ключові слова: многогранник сполучень, симплексна форма многогранника, сполучення з необмеженими повтореннями.

СИМПЛЕКСНАЯ ФОРМА МНОГОГРАННИКА СОЧЕТАНИЙ С НЕОГРАНИЧЕННЫМИ ПОВТОРЕНИЯМИ

Емец О. А., д. ф.-м. н., профессор, Емец А. О., к. ф.-м. н., доцент, Ванжа С. В.
Полтавский университет экономики и торговли, ул. Коваля, 3, Полтава, Украина
yemetsli@ukr.net, yemets2008@ukr.net

В статье приводится правило образования симплексной формы многогранника сочетаний с неограниченными повторениями. Для симплексной формы многогранника сочетаний с неограниченными повторениями доказан ряд утверждений. На примере проиллюстрировано формирование симплексной формы многогранника сообщений с неограниченными повторениями.
Ключевые слова: многогранник сочетаний, симплексная форма многогранника, сочетания с неограниченными повторениями.

