УДК 621.396.67

В.Д. Карлов¹, Н.Н. Петрушенко², Н.И. Свитенко³

¹Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков ²В/ч А0102, Винница ³Метрологический центр военных эталонов, Харьков

МЕТОД ОЦЕНКИ ЭКВИВАЛЕНТНЫХ ДИАГРАММ НАПРАВЛЕННОСТИ ИЗЛУЧАТЕЛЕЙ В МАЛОЭЛЕМЕНТНЫХ ФАЗИРОВАННЫХ АНТЕННЫХ РЕШЕТКАХ

Показана необходимость оценки диаграмм направленности каждого излучателя при диагностике малоэлементных антенных решеток. Приведены аналитические выражения для получения оценок эквивалентных диаграмм излучателей в составе фазированной антенной решетки (ФАР) методом дискретного преобразования Уолша. Результаты практической проверки метода свидетельствуют о том, что взаимные связи излучателей в малоэлементной ФАР оказывают существенное влияние на диаграммы направленности излучателей в составе решетки. Результаты эксперимента, приведенные в работе, хорошо согласуются с данными, полученными другими авторами.

Ключевые слова: фазированная антенная решетка, диаграмма направленности излучателя.

Введение

Постановка проблемы. Важнейшими характеристиками ФАР являются диаграммы направленности (ДН) излучателей $f_i(\theta)$. Эти характеристики антенны при сканировании луча изменяются, причем по-разному для излучателей, находящихся в центральной части решетки и на её краях [1].

Согласно [2, 3] $f_i(\theta)$ – это ДН излучателя, находящегося в составе решетки, измеренная как ДН всей ФАР при запитке только i-го излучателя, при этом остальные излучатели подключены к согласованным нагрузкам. Так измеряют ДН излучателей крупных ФАР, используя для этого модели части реальной конструкции, содержащей 7×7 или 9×9 излучателей [4]. Подобный подход неприемлем для малоэлементных решеток, поскольку не обеспечивает необходимую точность и, кроме того, требует вмешательства в конструкцию антенны. Таким образом, возникает потребность в разработке метода оценивания ДН излучателей в составе ФАР.

Анализ последних исследований и публикаций. Как известно [5, 6], влияние взаимных связей излучателей (ВСИ) приводит к искажению ДН излучателей в ФАР. Обычно при восстановлении ДН ФАР по результатам диагностики различиями $f_i(\theta)$ пренебрегают, считают их одинаковыми для всей решетки [4, 7]. В [4] показано, что для многоэлементной линейной ФАР с числом излучателей N >100, такое приближение приемлемо при восстановлении уровней ДН до -20 дБ. Однако при исследовании малоэлементных ФАР пренебрежение отличиями $f_i(\theta)$ в разных каналах приводит к появлению существенных ошибок в восстановлении ДН.

Это обусловлено тем, что коэффициенты отражений (КО) в СВЧ трактах $\Gamma_i(\theta)$ изменяются в каждом из каналов по-разному и различия зависят от координат излучателей в решетке, а также направления на точку наблюдения [1, 8]. ДН малоэлементной ФАР в этом случае можно представить в виде [9]

$$F(\theta) = \sum_{i} a_{i}(\theta) f_{i}(\theta) [1 - \Gamma_{i}(\theta)] \exp[j\psi_{i}(\theta)].$$
(1)

где $a_i(\theta)$ – АФР токов возбуждения излучателей; $\psi_i(\theta)$ – разность фаз волн от центрального и i -го излучателей до точки наблюдения; θ – угол, отсчитываемый от направления нормали к апертуре до направления на точку наблюдения; $\Gamma_i(\theta)$ – KO i-го канала.

В источнике [2] введено понятие эквивалентной (парциальной) ДН излучателя $f_{ei}(\theta) = f_i(\theta [1 - \Gamma_i(\theta)]$ и показано его использование при синтезе ФАР. В работе [9] предложен метод измерения эквивалентных ДН в линейной ФАР с использованием дискретного преобразования Уолша (ДПУ). Однако в данной литературе недостаточно внимания уделено исследованию метода оценивания эквивалентных ДН излучателей в малоэлементных ФАР.

Целью статьи является исследование метода оценивания эквивалентных ДН излучателей в малоэлементных ФАР и экспериментальное подтверждение его работоспособности.

Изложение основного материала

Начальные условия при применении рассматриваемого метода состоят в следующем. Исследуемая линейная ФАР функционирует в режиме передачи, а приёмный измерительный зонд (ИЗ) находится в её ближней зоне излучения. Удаление ИЗ от ФАР, согласно [4], составляет $r_0 \approx Nd$, где d – межэлементное расстояние в ФАР. При этом ИЗ находится на направлении нормали к апертуре ФАР.

Требуется определить зависимость эквивалентной ДН излучателей $f_{ei}(\theta_s)$, учитывающей ВСИ, от

дискретных углов сканирования луча ФАР θ_s , s $\in 0, S-1$. Коэффициенты передачи распределительной системы e_i и ФВ $\Phi_i(\theta)$ считаются известными $a_i(\theta) = e_i \Phi_i(\theta)$.

Измерительные уравнения имеют вид

$$Y(\theta_s) = x \sum_i \Phi_i(\theta_s) e_i f_{ei}(\theta_s) \rho_i(\theta_s) + n_s \qquad (2)$$

где x – комплексная амплитуда (КА) сигнала на входе решетки; $\rho_i(\theta_s)$ – известные коэффициенты передачи от входа i-го излучателя до выхода ИЗ, зависящие от геометрии измерительной системы и параметров ИЗ; n_s – КА шума при измерении отклика ИЗ $Y(\theta_s)$.

Для сокращения числа неизвестных в (2) все ΦB переведены в нулевое состояние $\Phi_i(\theta_s) = \Phi_{i0}$, где Φ_{i0} – априори известные коэффициенты передачи ΦB в нулевом состоянии (паспортные данные на ΦB). Углы θ_s представлены в виде $\theta_s = s\Delta\theta$, где $\Delta\theta$ – шаг разворота ΦAP . С учетом (2), нормированную КА сигнала на выходе ИЗ, можно представить в виде

$$\begin{split} Y_{s}^{\circ} = \sum_{i} \Phi_{i0}(0) e_{i} f_{ei}(\theta_{s}) \rho_{i}(\theta_{s}) + n_{s}^{\circ} \end{split}$$
где $Y_{s}^{\circ} = Y_{s} x^{-1}; \; n_{s}^{\circ} = n_{s} x^{-1}. \end{split}$

Для получения оценок отклика ИЗ на излучение из каждого канала ФАР $\hat{y}_{is}^{\circ} = \Phi_{i0} e_i f_{ei}(\theta_s) \rho_i(\theta_s)$ необходимо при θ_s = const применить процедуры прямого и обратного ДПУ [9]. Прямое ДПУ реализуется ФВ ФАР и сумматором в виде одиночного приемного ИЗ, а обратное ДПУ – при обработке результатов.

Каждый из отсчетов прямого ДПУ, измеренный на выходе ИЗ, можно представить в виде

$$Y_{sr}^{\circ} = \sum_{i} u_{ir} \Phi_{io} e_{i} f_{ei}(\theta_{s}) \rho_{i}(\theta_{s}) + n_{sr}^{\circ} ,$$

где $r \in 0, N-1$ – номера функций Уолша [10].

Составляющие N×S матрицы прямого ДПУ Y_{sr}° фиксируются последовательно во времени для каждого угла разворота ФАР $\theta_{s} = s\Delta\theta$ и сохраняются для дальнейшей обработки.

Процедура обратного ДПУ, примененная к Y_{sr}° , позволяет получить для каждого угла θ_s

$$\begin{split} \widehat{y}_{is}^{\circ} &= N^{-1} \sum_{r} Y_{sr}^{\circ} u_{ir} = \Phi_{i0} e_i f_{ei}(\theta_s) \rho_i(\theta_s) + \widehat{n}_{is}^{\circ}, \end{split}$$
(3)
rge $\widehat{n}_{is}^{\circ} &= N^{-1} \sum_{r} n_{sr}^{\circ} u_{ir}. \end{split}$

Массив отсчетов \hat{y}_{is}° можно использовать для получения оценок отсчетов ДН излучателей в составе решетки. Из (3) следует, что, если пренебречь влиянием шума, то

$$f_{ei}(\theta_s) = \frac{\widehat{y}_{is}}{\Phi_{i0}e_i\rho_i(\theta_s)}.$$
 (4)

В (4) \hat{y}_{is}° измеряются в процессе эксперимента, а e_i , Φ_{i0} , $\rho_i(\theta_s)$ – известные величины, методы задания которых обсуждаются выше.

Для проверки работоспособности рассматриваемого метода был поставлен эксперимент, в котором на восьмиэлементной волноводной ФАР с равномерным амплитудным распределением последовательно во времени устанавливались фазовые распределения, соответствующие функциям полного базиса Уолша для данного количества каналов. При каждом фазировании осуществлялся поворот ФАР в азимутальной плоскости в диапазоне углов -45...45° относительно нормали с дискретностью 2,5°. При каждом повороте осуществлялось измерение отклика ИЗ. Полученный массив данных позднее обрабатывался в соответствии с формулой (4) на ПЭВМ.

Экспериментально полученные оценки нормированных ДН по мощности отдельных излучателей в составе ФАР показаны на рис. 1 – 4.

Рис. 1. Нормированные ДН по мощности 0 и 7 каналов

Рис. 2. Нормированные ДН по мощности 1 и 6 каналов

Рис. 3. Нормированные ДН по мощности 2 и 5 каналов

Рис. 4. Нормированные ДН по мощности 3 и 4 каналов

На графиках приведены как необработанные оценки (линии с кружками), так и результаты обработки данных эксперимента (ломанные линии). Обработка данных имеет своей целью уменьшение высокочастотных шумов в выборке для повышения наглядности графиков и привлечения внимания к закономерностям, общим для всей совокупности оценок, а не для отдельных отсчетов.

Графики приведены попарно для каналов симметричных относительно центра решетки, то есть таких, для которых граничные условия приблизительно одинаковы.

Анализ рис. 1 – 4 позволяет утверждать, что ДН излучателей отдельных каналов волноводной решетки по форме близки к ДН открытого конца волновода. Отличия ДН различных каналов проявляются в смещении лепестка относительно нормали к решетке и изменении ширины главного лепестка ДН. Эти эффекты наглядно показаны на рис. 5, 6.

Рис. 5. Нормированные ДН по мощности 0, 1, 2, 3 каналов

Рис. 6. Нормированные ДН по мощности 4, 5, 6, 7 каналов

Выводы

Искажения ДН излучателей отдельных каналов решетки, подобные экспериментально обнаруженным, описаны в ряде источников [1], при этом в данных исследованиях применялись классические методы оценивания ДН отдельных излучателей в составе решетки. Данный факт свидетельствует о работоспособности метода оценки ДН отдельных излучателей в составе ФАР, который впервые предложен в данной работе.

Список литературы

1. Амитей Н. Теория и анализ фазированных антенных решеток / Н. Амитей, В. Галиндо, Ч. Ву. – М.: Мир, 1974. – 455 с.

2. Воскресенский Д.И. Автоматизированное проектирование антенн и устройств СВЧ / Д.И. Воскресенский и др. – М.: Радио и связь, 1988. – 240 с.

3. Сазонов Д.М. Антенны и устройства СВЧ / Д.М. Сазонов. – М.: Высш. шк., 1988. – 432 с.

4. Бубнов Г.Г. Коммутационный метод измерения характеристик ФАР / Г.Г. Бубнов, С. М. Никулин, Ю.Н. Серяков. – М.: Радио и связь, 1988. – 120 с.

5. Wang Y. Mutual coupling calibration of DBF array with Combined Optimization Method / Y. Wang, S. Xu. // IEEE Trans. AP – Oct. 2003. – V. 51, № 10. – P. 2947-2951.

6. Wallace J.W. Termination-dependent diversity performance of coupled antennas / J.W. Wallace, M.A. Jensen // IEEE Trans. AP. – Jan. 2004. – V. 52, № 1. – P. 98-105.

7. Денисенко В.В. Многоэлементная ФАР Кадиапазона волн / В.В. Денисенко, Ю.Б. Дубров, Ю.Б. Корченкин и др. // Антенны. – 2005. – Вып. 1(92) – С. 7-14.

8. Tomasic B. Analisis of finite arrays - a new approach / B. Tomasic, A. Hessel // IEEE Trans. AP. -March, 1999. – V. 47, № 3. – P. 99-107.

9. Лиепинь У.Р. Метод измерения диаграмм направленности излучателей в составе ФАР / У.Р. Лиепинь, Н.И. Свитенко // Успехи современной радиоэлектроники. 2005. – № 7. – C. 10-14.

10. Хармут Х. Теория секвентного анализа. Основы ее применения: пер. с англ. / Х. Хармут – М.: Мир, 1980. – 574 с.

Поступила в редколлегию 10.02.2009

Рецензент: д-р техн. наук, проф. В.И. Карпенко, Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков.

МЕТОД ОЦІНКИ ЕКВІВАЛЕНТНИХ ДІАГРАМ СПРЯМОВАНОСТІ ВИПРОМІНЮВАЧІВ В МАЛОЕЛЕМЕНТНИХ ФАЗОВАНИХ АНТЕННИХ РЕШІТКАХ

В.Д. Карлов, М.М. Петрушенко, М.І. Світенко

Показано необхідність оцінки діаграм спрямованості кожного випромінювача при діагностиці малоелементних антенних решіток. Наведено аналітичні вирази для одержання оцінок еквівалентних діаграм випромінювачів у складі фазованої антенної решітки (ФАР) методом дискретного перетворення Уолша. Результати практичної перевірки свідчать про те, що взаємні зв'язки випромінювачів у малоелементної ФАР впливають на діаграми спрямованості випромінювачів у складі решітки. Результати експеримент, що наведені в роботі, добре погодяться з даними отриманими іншими авторами. Ключові слова: фазована антенна решітка, діаграма спрямованості випромінювача.

METHOD OF THE ESTIMATION OF EQUIVALENT RADIATION PATTERN OF RADIATORS IN LOW-ELEMENT PHASED ANTENNA ARRAYS

V.D. Karlov, N.N. Petrushenko, N.I. Svitenko

Necessity of an estimation of radiation pattern of each radiator is shown at diagnostics low-element antenna arrays. Analytical expressions for reception of estimations of equivalent pattern of radiators in phased array are resulted by a method of discrete transformation Walsh. Results of practical check testify that mutual couplings of elements of low-element phased array essentially influence of radiation pattern of radiators in antenna array. Results of experiment are well be matched with the given received other authors.

Keywords: phased array, radiation pattern of radiator.