Зв'язок, радіотехніка, радіолокація, акустика та навігація

УДК 621.396.6(03)

H.M. Калюжный 1 , С.А. Галкин 2 , К.Н. Коржуков 1 , А.В. Хряпкин 1

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГРУППИРОВКИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ РАЗЛИЧНОГО НАЗНАЧЕНИЯ ДЛЯ ОБЕСПЕЧЕНИЯ ЕЕ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ СО СРЕДСТВАМИ РАДИОМОНИТОРИНГА

Представлено описание алгоритмов и программного обеспечения для математического моделирования электромагнитно-объектовой обстановки в заданном регионе. Результаты расчетов могут быть использованы для выбора мест размещения стационарных и маршрутов движения мобильных средств радиомониторинга, а также для повышения эффективности планирования и ведения радиочастотного мониторинга.

Ключевые слова: информационно-расчетная система, оценка электромагнитной совместимости, радиочастотный мониторинг.

Введение

Постановка задачи. Эффективность управления использованием радиочастотного ресурса во многом зависит от объективности и актуальности информации предоставляемой системой радиочастотного мониторинга (СРЧМ). Современные тенденции увеличения количества радиоэлектронных средств (РЭС), появление новых радиотехнологий, использование новых частотных диапазонов, а также необходимость контроля лицензионных и технических требований при эксплуатации РЭС предъявляют соответствующие требования к оптимизации охвата средствами радиомониторинга(СРМ) излучений РЭС по территории, частотному диапазону, во времени и обеспечения их беспомеховой работы. Эти требования должны быть учтены как на этапе планирования топологии СРЧМ, так и в процессе ведения радиомониторинга.

Целью статьи является разработка алгоритмов и программного обеспечения для математического моделирования электромагнитно-объектовой обстановки в заданном регионе для оценивания электромагнитной доступности (ЭМД) излучений группировок РЭС средствам радиомониторинга. Программное обеспечение предназначено для использования в информационно-расчетной системе оценивания электромагнитной совместимости средств радиомониторинга на месте их размещения [1].

Основная часть

Оценивание радио доступности и возможности возникновения помех на входе СРМ должно производиться с учетом их характеристик, характеристик

контролируемых РЭС различных радиотехнологий, условий распространения радиоволн, рельефа, застройки местности, и т.д. Алгоритм принятия решения об электромагнитной доступности/недоступности РЭС или создания помех интермодуляции/блокирования СРМ заключается в расчете мощности сигнала на входе приемника и сравнении его со значениями, которые необходимы для принятия решения о доступности/недоступности, возможности возникновения помех интермодуляции и / или блокирования.

Мощность сигнала на входе радиоприемного устройства (РПУ) СРМ определяется выражением:

$$\begin{split} &P_{C(\Pi)} = P_T + \alpha_T + G(\beta_{TR}, \epsilon_{TR}) - L_{TR}(d) - \\ &-K_{\Pi} + G(\beta_{RT}, \epsilon_{RT}) - \alpha_R - FDR_{TR}(\Delta f), \end{split} \tag{1}$$

где P_T — мощность передатчика $P \ni C$; α_T и α_R — потери в антенно-фидерных трактах соответственно $P \ni C$ и CPM; $G(\beta_{TR}, \epsilon_{TR})$ — коэффициент усиления антенны $P \ni C$ в направлении на CPM; $L_{TR}(d)$ — потери сигнала на трассе распространения радиоволн (PPB); K_Π — коэффициент, учитывающий потери за счет несовпадения поляризации антенн $P \ni C$ и CPM; $G(\beta_{RT}, \epsilon_{RT})$ — коэффициент усиления антенны CPM в направлении на $P \ni C$; β_{TR} , β_{RT} — азимуты из точки стояния $P \ni C$ на CPM (β_{TR}), и из точки стояния CPM на CPM на CPM (CPM); CPM на CPM на CPM (CPM), и из точки стояния CPM на CPM на CPM (CPM), и из точки стояния CPM на CPM на CPM (CPM), и из точки стояния CPM на CPM на CPM (CPM), и из точки стояния CPM на CPM (CPM) на CPM на на

¹ Харьковский национальный университет радиоэлектроники, Харьков

² Национальный технический университет «ХПИ», Харьков

РЭС и приемника СРМ. Критерием принятия решения об ЭМД является выполнение условия:

$$P_C \ge P_{R_{_MUH}}$$
, (2)

где $P_{R_{\perp}^{MUH}}$ – чувствительность РПУ СРМ.

В случае, если условие (2) не выполняется, то принимается решение о недоступности РЭС для мониторинга заданным средством.

Критерием принятия решения об электромагнитной совместимости РЭС сосредством радиомониторингаявляется выполнение условия:

$$P_{\Pi} \ge P_{\Pi_{\perp} \pi 0 \Pi}, \qquad (3)$$

где P_{Π_{-} доп -допустимая мощность помехи на входе РПУ СРМ. В случае если условие (3) не выполняется, то принимается решение о возможности помех от заданного РЭС средству радиомониторинга, т.е. условия ЭМС не соблюдаются.

Разработанный алгоритм оценки радиодоступности РЭС в укрупненном виде представлен на рис. 1. Алгоритм принятия решения о возможности возникновения на входе РПУ СРМ помех интермодуляции и/или блокирования отличается от алгоритма оценки ЭМД только уровнями, предопределяющими возможность возникновения помех интермодуляции и/или блокирования.

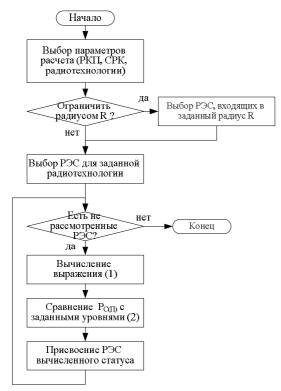


Рис. 1. Укрупненный алгоритм оценки радиодоступности РЭС

Приведенный алгоритм реализует программный модуль информационно-расчетной системы оценивания электромагнитной совместимости средств радиоконтроля на месте их расположения [1]. Модуль обеспечивает:

- выбор условий и задание параметров расчета по существующему или исследуемому СРМ;
 - задание радиотехнологии;
- задание радиуса, в пределах которого будут отбираться РЭС группировки для моделирования;
- отбор РЭС, заданной технологии, в пределах заданного радиуса вокруг СРМ;
- расчет уровня потерь и/или напряженности поля, от каждого из РЭС группировки в каждой точке трассы распространения радиоволн;
- расчет мощности сигнала на входе приемника СРМ от каждого из РЭС группировки;
- принятие решения об электромагнитной доступности/недоступности для мониторинга излучений РЭС;
- принятие решения о возможности создания излучением РЭС помех интермодуляции и/или блокирования на входе приемника СРМ;
- отображение результатов расчетов на фоне электронной карты местности;
- импортирование и отображение на фоне электронной карты местности (ЭКМ) предварительно рассчитанных зон электромагнитной доступности (ЭМД) и защитных зон от помех интермодуляции и/или блокирования и сравнение их с результатами расчета радиодоступности и ЭМС СРМ.

На рис. 2 представлены основные формы интерфейса и результаты проведения расчета радиодоступности на примере СРМ типа АИК-С на посту радиомониторинга «Симферополь-2» Крымского региона по базовым станциям радиотехнологии GSM-900 в радиусе 30 км. Выбор условий проведения расчета осуществлялся с помощью выпадающего окна представленного в правой части рис. 2. После выбора условий, необходимые для проведения расчетов параметры СРМ и РЭС заданной радиотехнологии (координаты, административные данные, параметры антенн, параметры приемника СРМ, передатчика РЭС, и др.) автоматически вводятся в алгоритм расчета из соответствующих баз данных.

При запуске программы расчет мощности сигнала на входе приемника СРМ производится согласно выражению (1). Потери сигнала на трассе РРВ (L_{TR}(d))диапазоне частот от 30 до 3000 МГц и рассчитываются в соответствии с рекомендациями Международного союза электросвязи Р.1546-4 [3], в диапазоне частот свыше 3000 МГц – согласно рекомендации МСЭ Р.526-12 [4]. Принятие решения об электромагнитной доступности/недоступности согласно с критерием (2), о возможности создания помех – согласно критерию (3).

По окончании расчетов окно выбора условий расчета исчезает с экрана, и на фоне ЭКМ отображаются значки выбранного СРМ и РЭС выбранной радиотехнологии, цвет и форма значков зависит от принятого решения:

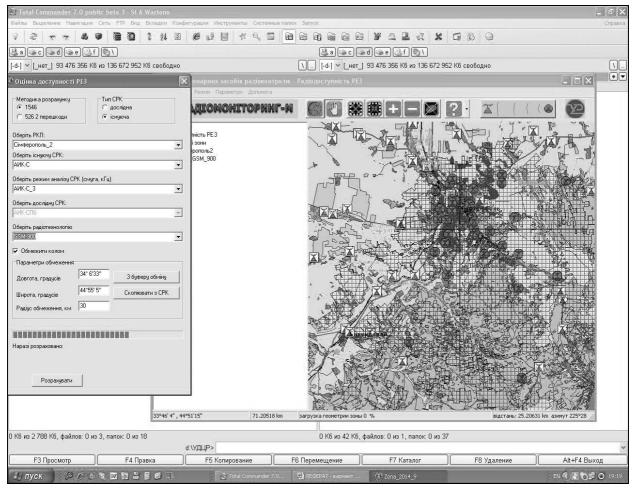


Рис. 2. Результаты расчета радиодоступности средству ралиомониторинга типа АИК-C радиоэлектронных средств радиотехнологии GSM-900

- в кружочке РЭС излучения которых доступны, для решения задач радиомониторинга;
- в белом квадратике РЭС излучения которых недоступны, для решения задач радиомониторинга;
- в серых квадратике РЭС излучения которых могут создавать помехи интермодуляции; РЭС излучения которых могут создавать помехи блокирования; группы РЭС, антенны которых размещаются на одной мачте.

В программе предусмотрена возможность для просмотра статуса каждого из РЭС, антенны которых размещаются на одной мачте.

Разработанное программное обеспечение позволяет получить информацию в табличном виде о статусе РЭС, его технических характеристиках, размещении, владельце, проверить правильность расчетов, построив кривые напряженности поля и мощности сигнала на входе приемника СРМ. Кроме того, пользователь может импортировать предварительно рассчитанную и сохраненную зону ЭМД (штрихованная перпендикулярными линиями область на рис. 2), и наложить ее на результаты расчета радиодоступности РЭС.

При увеличении масштаба можно детально проанализировать полученные результаты на фоне

ЭКМ. На рис. 3 показан пример результатов оценки ЭМС РЭС с СРМ, по которым принято решение о возможности создания на входе приемника СРМ помех интермодуляции и блокирования. Пример иллюстрирует возможности программного обеспечения по увеличению/уменьшению масштаба.

Таким образом, разработанные алгоритмы и программное обеспечение позволяют в интерактивном режиме проводить расчет радиодоступности РЭС СРМ и электромагнитной совместимости СРМ с группировкой РЭС различного назначения, а также отображать результаты расчетов на фоне ЭКМ и в табличном виде по всей группировке РЭС заданной радиотехнологии.

Выводы

Разработанные алгоритмы и программное и обеспечение позволяют оценивать электромагнитнообъектовую обстановку как в зоне действия СРМ, так и заданном регионе.

Результаты расчетов могут быть использованы для выбора мест размещения стационарных СРМ и маршрутов движения мобильных СРМ, а также для повышения эффективности планирования и ведения радиомониторинга.

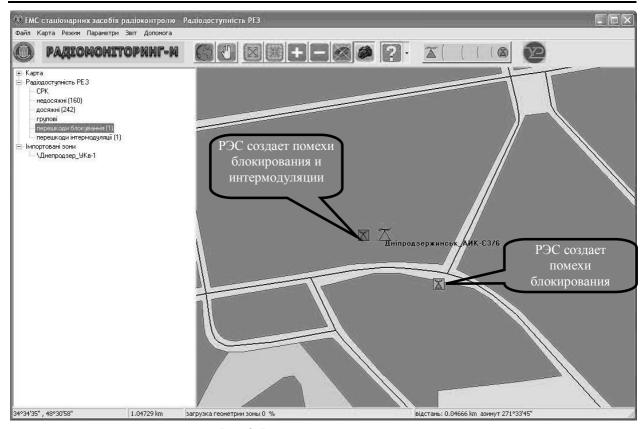


Рис. 3. Радиоэлектронные средства, которые создают помехи блокирования и интермодуляции

Список литературы

- 1. Комп'ютерна програма «Інформаційно-розрахункова система оцінювання електромагнітної сумісності засобів радіоконтролю на місці їх розташування» («Зона 1.0») / Калюжный Н.М., Галкин С.А. Коржуков К.М. Попов О.М. Семенов Г.М. Чернов А.Б.. Свідоцтво про реєстрацію авторського права на твір №53956 видане Держаною службою інтелектуальної власності України, дата реєстрації 05.03.2014.
- 2. Управление радиочастотным спектром и электромагнитная совместимость радиосистем / Под ред. М.А. Быховского. М: Эко-Трендз, 2006. 376 с.
- 3. Рекомендация МСЭ-R P.1546. Метод прогнозирования для трасс связи "пункта с зоной" для наземных служб в диапазоне частот от 30 МГц до 3000 МГц. 57 с.
- 4. Рекомендация МСЭ-R Р.526. Распространение радиоволн за счет дифракции.- 37 с.

Поступила в редколлегию 12.03.2015

Рецензент: д-р техн. наук, проф. А.А. Можаев, Национальный технический университет «Харьковский политехнический институт», Харьков.

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ УГРУПОВАННЯ ДЖЕРЕЛ РАДІОВИПРОМІНЮВАННЯ РІЗНОМАНІТНОГО ПРИЗНАЧЕННЯ ДЛЯ ЗАБЕЗПЕЧЕННЯ ЇЇ ЕЛЕКТРОМАГНІТНОЇ СУМІСНОСТІ ІЗ ЗАСОБАМИ РАДІОМОНІТОРИНГУ

М.М. Калюжний, С.О. Галкин, К.М. Коржуков, О.В. Хряпкин

Представлено опис алгоритмів і програмного забезпечення для математичного моделювання електромагнітнооб'єктової обстановки в заданому регіоні. Результати розрахунків можуть бути використані для вибору місць розміщення стаціонарних і маршрутів руху мобільних засобів радіомоніторингу, а також для підвищення ефективності планування та ведення радіочастотного моніторингу.

Ключові слова:інформаційно-розрахункова система, оцінка електромагнітної сумісності, радіочастотний моніторинг.

MATHEMATICAL MODELING OF RADIO SOURCES GROUPING OF VARIOUS PURPOSE FOR ELECTROMAGNETIC COMPATIBILITY WITH ITS RADIO-MONITORING

M.M. Kalyuzhnyy, S.O. Galkin, K.M. Korzhukov, O.V. Khryapkin

An algorithm and software for mathematical modeling of electromagnetic environment of the object in a given region is represented. The results of calculations can be used to select the placement of fixed and mobile routes of Radio-monitoring facilities, as well as to improve the efficiency of planning and management of the radio frequency monitoring.

Keywords: information and accounting system, the estimate of electromagnetic compatibility, radio frequency monitoring.