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Intelligent transport systems are developing to provide effectiveness and safety of transport management with 
the help of information calculations and communications between transport infrastructures and vehicles. This work 
studies key technologies for wireless sensor networks with the aim to provide safety and connections in road net-
works. To solve this problem, the work uses the fact that the vehicles move along routes with a known map, which 
means vehicle mobility predictability and the location of the road network. With the help of statistical analysis of 
vehicle detection time marks, we can obtain estimates of the distances between any pairs of sensors on the roads and 
construct a virtual graph that is associated with the topology of the known road map on them. Wireless sensor net-
works are considered to be new components for intelligent transport systems and deployed on road networks to fur-
ther enhance safety and protection of driving. In this article the system of wireless sensor network autonomic pas-
sive localization for intellectual transport systems, adapted and optimized for road networks is developed. The de-
veloped localization system is reliable and realistic, taking into account time synchronization error, vehicle speed 
deviation and various vehicular traffic intensity, as well as the lack of sensor detection and the probability of detec-
tion duplication. The APL system shows encouraging results in the localization of a road network completely cov-
ered by vehicular traffic for estimating the distance along with one vehicle speed distribution. 
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Introduction 

This work studies key technologies for wireless 
sensor networks with the aim to provide safety and con-
nections in road networks [1] in such a way: 

1) location of the sensor;
2) road inspection of car monitoring;
3) data transmission fir the road traffic protection;
4) reverse data transmission for information ex-

change about the road condition. 
With this aim the road networks characteristics are 

researched:   
1) predictable mobility of vehicles;
2) road network scheme;
3) traffic statistics;
4) vehicle trajectory.
In present times the roads are equipped with elec-

tronic sensors and variable message signs for driving, as 
well as GPS-based vehicle with navigation systems and 
systems of alarm reporting. With this tendency wireless 
sensor networks (WSN) can be deployed in road net-
works for further security enhance of traffic and mobil-
ity. US Department of Transportation and many auto-
mobile companies (for example, General Motors and 
Toyota) recognized promising features of vehicles (in-
tellectual vehicles) and have recently begun to imple-
ment BSS technology for ITS infrastructures [1–3]. 
European of telecommunication standards institute 
(ETSI) applies global standards for intellectual vehicles 

[4], such as telematics and all kinds of connection be-
tween vehicles (for example, «Vehicle» «Vehicle») 
and between vehicles and stationary location (for exam-
ple, «Vehicle» «infrastructure» or «infrastruc-
ture» «Vehicle»). Wireless sensor networks can be 
integrated in ITS for monitoring of road condition for 
traffic security providing (for example, highway build-
ing ground or obstructions) and announce such road 
condition via «Vehicle» «Vehicle» or «infrastruc-
tur» «vehicle communications». 

1. Formulation of the problem

For wireless sensor localization in this work auto-
nomic passive localization (APL), intended to the road 
networks. It is assumed that the sensors are rarely de-
ployed (hundreds of meters from each other) to save 
costs in road networks. This makes existing localization 
solutions based on ranking ineffective. To solve this 
problem, the work uses the fact that the vehicles move 
along routes with a known map, which means vehicle 
mobility predictability and the location of the road net-
work. The binary time marks of vehicle detection and 
distance estimates are obtained for any pair of sensors 
on the roads, which allows constructing a virtual graph 
consisting of sensor identifiers (i.e. vertices) and dis-
tance estimates (for example, edges). This virtual graph 
(i.e. sensor network topology) then juxtaposed with the 
topology of a road map (road network), which deter-
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mines places of sensors in the road networks. Many 
solutions were proposed for localization, using: 

- accurate range measurements (for example, TOA 
[5], TDOA [6] and AOA [7]); 

- sensor localization between sensors, Centroid [8], 
APIT [9], SeRLoc [10] and Robust Quads [11]. 

Our decision is to use vehicle on the roads as natu-
ral events for localization. The decision could be trivial, 
if all nodes have been equipped with vehicle complex 
identification sensors for localization, because distance 
measuring between two sensors by multiplying the av-
erage vehicle speed by the time difference of detection 
(TDOD) between two sensors, corresponding to the 
same vehicle reliably easy. Obviously, vehicle identifi-
cation sensors would be costly in terms of equipment, 
energy and computing. The research question is how to 
get the location of the sensors using only the results of 
binary detection without the possibility of identifying 
the vehicle in the sensors. 

With the help of statistical analysis of vehicle de-
tection time marks, we can obtain estimates of the dis-
tances between any pairs of sensors on the roads and 
construct a virtual graph that is associated with the to-
pology of the known road map on them. This display 
allows one to identify the sensor locations on the roads. 

In particular, our localization scheme consists of 
three stages: 

1) assessment of the distance between two arbi-
trary sensors in the same segment of the road;  

2) construction of connectivity sensors on the
roads; 

3) Identification of sensors' locations by compar-
ing the constructed connectivity of sensors with the 
graphic model for the roadmap. 

The purpose of the article is to develop: 
• new architecture of autonomous passive localiza-

tion in sparse sensor networks; 
• a statistical method for estimating the lengths of

road segments between two arbitrary sensors based on 
the time difference of detection (TDOD) concept. The 
TDOD operation uses a correlation between the time 
stamp of sensors, geographically close to each other; 

• the pre-filtering algorithm to selection of only re-
liable estimates of the distance between two arbitrary 
sensors in the same segment of the road; 

• algorithm for graph matching to coordinate the
identification of the sensor with the position on the road 
map of the target area. 

2. Basic Definitions

We consider a network model in which the sensors 
are placed both at intersection points and at points with-
out road networks intersection. The goal is to locate the 
wireless sensors deployed in the road networks, only 
with the roadmap and timestamps for detecting binary 
TS, taken by the sensors, as shown in fig. 1. 

a – Road network with wireless sensors  

b – Virtual topology of wireless sensors: v v v )(H V , M  

c – Virtual graph, presentive network of sensors: 

v v v )(G V , E

d – Road network only with nodes  
intersecting the virtual graphics 

Fig. 1. Wireless sensor network deployed in the road 
network (beginning) 
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e – Reduced virtual subgraph consisting  

of the virtual intersection graph nodes: v v vG V E )( ,  

f – Real graph, corresponding to the roadmap: 

r r r )(G V , E

Fig. 1. Wireless sensor network deployed in the road 
network (ending) 

2.1. Definitions 
Define the following eight terms: 
Definition 1 (intersection nodes). Sensors located 

at the intersection and having more than two neighbor 
sensors (i.e. degree 3 ). On the fig. 1, a sensors a  and 
c  are intersection nodes. 

Definition 2 (nodes without intersection). Sen-
sors on the road without intersection and having one or 
two neighbor sensors. On the fig. 1, а sensors b  and d
are nodes without intersection. 

Definition 3 (Virtual topology). Let virtual topol-
ogy v v v )(H V , M , where v 1 2 nV s ,s ,.{ ..,s }  – a set of 

sensors in the road network, and v ijM [v ]  - path 

length matrix ijv  for sensors is  and js . Virtual sensors 

topology in the road network is shown on the fig. 1. b, 
fig. 1, a. vM  – full simple graph, because the edge be-

tween two arbitrary sensors exists. We define the edge 
of virtual topology as virtual edge. On the fig. 1, b a 
solid thick line represents a segment of the road be-
tween two sensors, which means that they are adjacent 
to the road network. A dashed thin line is an estimate of 
the path between two sensors, which means that they are 
not adjacent to the road network. 

Definition 4 (Virtual graph). Let v v v )(G V , E  - 

virtual graph, where v 1 2 nV s ,s ,.{ ..,s }  – a set of sen-

sors in the road network and v ijE [v ]  represents a 

matrix of the road segment length ijv  between sensors 

is  and js . Fig. 1, с shows virtual graph of the net, de-

ployed in the road network, fig. 1, a, where black node 
represents intersection nod, and grey nod represents a 
not without intersection.  

Definition 5 (Abbreviated virtual subgraph). 

v v vG V E )( ,    - abbreviated virtual subgraph, where 

v 1 2 nV s ,s ,.{ ..,s }  – A set of sensors at intersections in 

the road network, and v ijE [v ]  - road segment length 

matrix ijv  between intersection nodes is  and js . Ab-

breviated virtual subgraph vG  is obtained by removing 

nodes without intersection and their edges from the vir-
tual graph vG  through information on the degree of 

vG . For example, on the fig. 1e given virtual subgraph, 

consisting only of intersection nodes on the fig. 1, c is 
shown. 

Definition 6 (Real graph). r r r )(G V , E  real 

graph, where v 1 2 nV s ,s ,.{ .., s }  – set of intersections in 

the road network around the target area, and r ijE [r ]  – 

road segment length matrix ijr  for intersections ip  and 

jp . The real graph can be obtained with the help of car-

tographic services, such as Google Earth and Yahoo 
Maps. A real graph, corresponding to the road network, 
intersection points of which have nodes of the intersec-
tion sensors are shown on the fig. 1, d. It is isomorphic 

to the reduced virtual graph of the graph vG , shown on 

the fig. 1, e [12]. 
Dеfinition 7 (The shortest path matrix). Way M  – 

the shortest path matrix for G )(V, E , such that 

r ijM [m ]  - shortest-length matrix between two arbi-

trary nodes i  and j  in G . M  is calculated of E  algo-

rithm All-Pairs Shortest Paths, such as the Floyd-
Warsell algorithm [13]. We define rM  as a shortest path 

matrix for a real graph r r r )(G V , E  and define vM  as 

a shortest path matrix for a virtual graph v v v )(G V ,E . 

Definition 8 (APL Server). Computer, which per-
forms the localization algorithm with binary vehicle 
detection timestamps collected from the sensor network. 

2.2. Assumptions 
APL localization construction is based on the fol-

lowing assumptions:  
• The sensors have simple sensitive devices for de-

tecting binary vehicles without any expensive devices or 
GPS devices [14]. Each detection represents a set 

i j(s , t ) , consisting of the sensor identifier is  and time-

stamps jt . 

• Ad-hocor network with tolerant delay for wire-
less sensors for delivery of timestamps vehicle detection 
to the APL server exists. 



Збірник наукових праць Харківського національного університету Повітряних Сил, 2017, 5(54)       ISSN 2073-7378 

128 

• The sensors are synchronized in time in ms. This
can be easily achieved [15–16]. 

• APL server has information about the road map
for the target zone under surveillance and can build a 
real graph consisting of intersections in the road net-
work. 

• Vehicle passes through all segments of the road
in target road networks. Vehicle average speed is close 
(not identical) to the speed limit, assigned to the roads. 
It is assumed that the standard deviation of the vehicle 
speed is a reasonable value based on real traffic statis-
tics [17]. 

3. APL System projecting

3.1. System architecture 
We use an asymmetric architecture for localization, 

fig. 2 to simplify the functionality of the sensors for 
localization. As simple devices, the sensors only moni-
tor the traffic and record the time of detection of the 
vehicle in their local stores. The APL server processes 
complex calculations for localization. The localization 
procedure consists of the following steps, fig. 2:  

Fig. 2. APL system architecture 

Step 1: After measuring the traffic, the sensor is

sends to the server APL. Its timestamps of detection of 
the vehicle together with its identifier of the sensor, i.e. 
( is , iT ), where is  – sensor identifier, and iT  – time-

stamps. 
Step 2: The traffic analysis module estimates the 

length of the road segment between two arbitrary sen-
sors with time stamp information and builds a virtual 
topology v v v )(H V , M , where vV  – set of vertex sen-

sor identifiers, and vM  – matrix, containing an estimate 

of the distance of each sensors pair.  
Step 3: The pre-filtering module converts the vir-

tual topology vH  into a virtual graph v v v )(G V , E , 

where vV  – set of vertices of sensor identifiers, and vE  – 

adjacency matrix of the expected length of the road 
segment.  

Step 4: The graph comparison module is con-

structed on the given virtual subgraph v v vG V E )( ,  

from the virtual graph rG , where vV  – a set of only 

nodes of intersection among vV , а vE  – a set of edges 

whose endpoints belong to vV . vG  is isomorphic to the 

real graph r r r )(G V , E . Then the graph mapping 

module calculates the permutation matrix P , making 

the reduced virtual subgraph v v vG V E )( ,    isomorphic 

to the real graph r r r )(G V ,E . 

Step 5: The location identification module deter-
mines the location of each sensor on the roadmap using 
the permutation matrix P  as to the given virtual sub-

graph vG , and to the real graph rG . Through this dis-

play, the nodes location information (s, l)  is constructed 

in such a way, that s  is the vector of the sensor identi-

fie, and l  - corresponding to the plocation vector, i.e. 

i i i )(xl , y , where is  – sensor identifier  ix  – coordi-

nate x , iy  – coordinate y  in the roadmap. 

Step 6: With (s, l)  APL server sends each sensor 

is  to its location with a message i i(s , l ) . 

Let’s start from the step 2, i.e. step 1 is clear/ 
3.2. Step 2: Traffic analysis for estimating the 

length of the road segment 
The closer the two sensors are located, the more 

the vehicle detection time marks are correlated. There-
fore, we can estimate the length of the road segment by 
the time of travel between two neighboring sensors us-
ing the correlation of the time stamp sets of these two 
sensors, as well as the average speed of the vehicle on 
the road segment. 

Time difference on detecting (TDOD) for time-
stamps iT  and jT  from two sensors is  and js  is defined 

as follows: 
ij
hk ih jkd | t t |  , (1)

where ih it T  for ih 1, , ,.,| T |  - h - sensor timestamp 

is  and jkt  for jk 1, , ,.,| T |  - k - sensor timestamp js . 

Let’s determine TDOD: 
ij ij
hk hkd g(d )


, (2)

where g  - the quantization function for displaying the 

actual value ij
hkd  to a discrete value. Number m  quanti-

zation levels (i.e. kq  for k 1,..., m ) is determined tak-

ing into account the expected time of the vehicle 
movement on the longest segment of the road of the 
corresponding road network  (1 s, 0,1 s or 1 ms). 

After TDOD operation for two timestamps with 

the highest frequency (i.e. ijd


) it is considered as the 

driving time of the vehicle for the carriageway between 
these two sensors is  and js  in the following way: 

k
k

ij

q
arg max )d f (q


, (3)
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where f  – quantization level frequency kq  at 

k 1,..., m , i.e. in (3) meaning ijd


 is set for the quanti-

zation level kq  with maximal frequency.  The driving 

time on the road section can be converted to the seg-
ment length of the road using formula l vt , where l  – 
segment length of the road, v  – average vehicle speed, 
t  – average time of the vehicle on the road segment. 

For example, on the fig. 3, а the sequence of vehi-
cle detection at the intersection nodes is shown 1s , 2s

and 3s  on the fig. 1, f, where 2s  - a common neighbor 

1s  and 3s . Fig. 3, b and 3, c show TDOD operation for 

nods 1s  and 2s , which is a Cartesian product for time 

stamps of two sets. 

a – Detection of the sequence for the vehicle by sensors 

1s , 3s  and 2s

b –  TDOD между метками времени 1,1t  и 2,it

c – TDOD between timestamps 1,2t  and 2,it

Fig. 3. Time difference at (TDOD) detection 

On the fig. 4 histogram [18], obtained by the op-
eration TDOD for two timestamps is shown. Time dif-
ference value (7,3 s) with the highest frequency indi-
cates the estimated time of travel between the two 
nodes. 

Fig. 4. Estimated travel time through the operation 
TDOD 

We conducted an external test to check whether 
our TDOD operation can give good estimates for the 
length of the road segments in terms of vehicle travel 
time. The results of external testing show that our 
TDOD can give reasonable indicators of the length of 
the road segment. On the fig. 5 the test roads consist of 
four intersections A , B , C  and D . The speed limit on 
these sections of the road is 64 km/h (or 40 miles/h). 

Fig. 5. Road network for outdoor testing 

We conducted a manual detection of the vehicle 
for more accurate observation. Due to the possibility of 
the sensor and the physical size of the vehicle, it is diffi-
cult to obtain an accurate detection of the vehicle at in-
tersections, so the development of an algorithm for de-
tecting a vehicle based on its movements remains the 
prospect of work. 

Table 1 
Results of external testing 

Segment of 
the road 

Distance
Expected

travel time 
Measured 
travel time

A  and B 800 m 45 s 43 s
C  and D 800 m 45 s 43 s

B  and C 900 m 51 s 54 s
D  and A 900 m 51 s 56 s
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Tabl. 1 shows the expected and measured travel 
time for these four road segments through the TDOD. It 
can be seen that the estimated travel time is close to the 
expected travel time. Although manual measurement 
can lead to some human errors, this experimental result 
shows substantial evidence that TDOD can provide us 
with estimates that are enough accurate to perform lo-
calization and obtaining edges in the virtual topology, 
fig. 1, b. 

Fig. 6. Comparison between the method  
without aggregation and the aggregation method 

Strengthening the evaluation of the road seg-
ment length 

We found that an estimate close to the length of the 
road segment cannot always be obtained by the maxi-
mum frequency previously described by the TDOD op-
eration. The reason is in noise estimates with higher 
frequencies. To solve this problem, we introduce the 
aggregation method when the average of several adja-
cent time differences becomes a new value of TDOD, 
and the sum of frequencies from them corresponds to 
the corresponding frequency. This is based on the ob-
servation that temporal differences close to the real time 
difference (i.e., the driving time required by the vehicle 
with the average vehicle speed on the road section) have 
relatively high frequencies by the TDOD operation for 
two series of time series, as shown on fig. 3. On the 
other hand, we observe that the noise estimate with the 
highest frequency occurs randomly and its neighboring 
estimates have relatively low frequencies. This method, 
based on the TDOD aggregation is named the method of 
aggregating and the previous simple TDOD is the 
method without aggregation. We determine the size of 
the aggregation window in proportion to the standard 
deviations v  of the vehicle speed, such as vc   at 

c 0 . 
On the fig. 6 comparison of the method without 

aggregation and aggregation method with the help of 
modeling is shown. The size of the aggregation window 
is equal to 10, So that vehicle deviation speed vehicle 

v  is 10km/h, and window size coefficient is 1. Starting 

from the time difference meaning, equal to 0 in the his-
togram for the method without aggregation we choose a 
representative of adjacent values of the time difference 
in the size of the aggregation window as the average 
meaning and then summarize their frequencies with the 
representative frequency. Then we move the window to 
the right by the unit of time difference and repeat the 
calculation of the representative and frequency. Thus, 
the histogram for the aggregation method is obtained by 
this moving window. 

We found that for the segment of the road between 
the sensors 2s  and 3s  on the fig. 1, f, whose real-time 

difference is 9,36 s at speed of vehicle v =50 km/h, 

method without aggregation makes an incorrect estimate 
(i.е. 26,8 s), but the aggregation method gives the cor-
rect estimate (i.e. 9,3 s). Thus, the aggregation method 
can be used to obtain good estimates of the length of the 
road segments in the virtual topology. 

3.3. Step 3: Pre-filtering algorithm for virtual 
graphics 

Pre-filtering algorithm is conducted for creation of 
the virtual graph, which has bounds estimates between 
virtual edges (for example, distance estimates) in the 
virtual topology derived from operations TDOD, Fig. 
1b. Our pre-filtering algorithm consists of two pre-
filters: 

- relative deviation error; 
- minimal spanning tree. 
As shown in fig. 7, a, there is a partial network of 

roads throughout the scheme, shown in fig. 1, a, con-
taining sensors 1 2 3 4 5 19 20 22s ,s ,s ,s ,s ,s ,s ,s{ } . In the vir-

tual topology v v v )(H V , M . Two arbitrary sensors 

among them have a distance estimate, as shown in fig. 
7, b. Using pre-filtering based on the relative deviation 
error, we remove the edges of the virtual topology that 
correspond to the inaccurate estimates of the trajectory, 
and construct a virtual graph v v v )(G V ,E , fig. 7, с. 

Then we apply the preliminary filtering based on the 
minimal spanning tree to the virtual graph, so a virtual 
graph containing only edge estimates is constructed by 
removing the exact estimates of the path, fig. 7, d. 

a – network with the following sensors: 

1 2 3 4 5 19 20 22s ,s ,s ,s ,s ,s ,s ,s{ }  

Fig. 7. The pre-filtering procedure  
for obtaining a virtual graph (beginning) 

http://www.hups.mil.gov.ua/periodic-app/journal/zhups/2017/5
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b – The virtual topology for the following sensors: 

1 2 3 4 5 19 20 22s ,s ,s ,s ,s ,s ,s ,s{ }  

c – The virtual graph after the preliminary adjustment 
based on the error of the relative deviation 

d – The virtual graph after the preliminary configuration 
based on the minimal spanning tree 

Fig. 7. The pre-filtering procedure  
for obtaining a virtual graph (ending) 

Preliminary filtering based  
on the error of the relative deviation 

Large errors in the path estimates will significantly 
affect our next steps. For example, the smallest entry in 

vM  must be an edge when there is no big error, because 

the path length is always equal to the sum of more than 
one edge length. However, if vM  contains huge errors, 

they can have any meaning in vM . Therefore, it is very 

important to firstly to filter all records with large errors, 
treating them as estimates of the path. 

We determine the relative deviation (  ) as a ratio 

of standard deviation ( ) to the average ( ), i.e. 

/    ; Note that this is known as the coefficient of 

sample variation in statistics and is used to compare the 
variance between populations by different means. In 
order to calculate the average meaning  , as well as a 

standard deviation   of each record as vM , we use 

several evaluation matrices vM  For the measurement 

time with the same duration. First, emissions from mul-
tiple estimation matrices are eliminated vM , in order to 

let   and   to be less affected by these emissions and 

increase their reliability. Estimates are considered to be 
emissions when they are less than or greater than 
percent (for example, 20%). 

To calculate the relative deviations of the estimates, 
we divide the vehicle detection time stamps into time 
windows (for example, every half an hour) and perform 
the TDOD operation for the time marks of two arbitrary 
sensors in the same time window.  Then we calculate the 
relative deviations of the estimates of the virtual nodes 
for each pair of sensors. If the relative deviation is greater 
than a certain threshold value   (for example, 10%), the 
corresponding entry is considered as an estimate of the 
path, and it is replaced by  , which indicated on the fact, 
that this record is a road evaluation. In the pre-filtering 
threshold   is set in relation to the known deviation of 
the vehicle speed to the vehicle speed limit in the road 
network. This threshold allows preliminary filtration tak-
ing into account the actual deviation of the vehicle speed. 

Prefiltration based on the minimum spanning tree 
Let’s suppose, that there is a virtual topology n  of 

the sensors v v v )(H V , M , where vV  – set of vertices, 

vM  – adjacency matrix n n  of the virtual topology. 

Prefiltration based on the minimum spanning tree con-
sists of three steps: 

- The first step identifies the first n 1  edges of a 
virtual graph 

- the second step identifies the remaining candi-
dates to the edge of the virtual graph. 

- the third step filters the path estimates between 
the candidate edges of the virtual graph. 

Step 1: Choose n 1  edges from vM , which cre-

ate minimal spanning tree  for a virtual topology using 
the minimal pairing algorithm, such as Prima algorithm 
[14]. It is possible to prove, that n 1  edges, which 
form MST, are boundary estimates as follows: let 

vM (i, j)  – to be a matrix record vM , where i  – line 

index, and j  – column index. 

• Case 1: the smallest record must be an edge, be-
cause the path length is the sum of more than one edge 
length. 

• Case 2: let’s suppose, that we have found m
edges, where1 m n –1  . Let N  – be a set of corre-
sponding nods m  of edges. Then we select the smallest 
record vM (i, j) , which satisfies i N  and j N . 

vM (i, j)  should be an edge for the following reason: 

vM (i, j)  is not a rib, than another nod should exist k , 

for which v v vM (i, j) M (i,k) M (k, j)  . 

1) if k N , then v vM (i, k) M (i, j) , which con-

tradicts our assumption that  vM (i, j)  – is the smallest 

record.  
2) if k N , then v vM (k, j) M (i, j) , which also 

contradicts our assumption that vM (i, j)  is the smallest. 
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Step 2. We find all other boundary candidates of 
the virtual graph v v v )(G V , E  from the virtual topol-

ogy v v v )(H V , M , as shown in Fig. 1c. First, the set of 

edges vE  initialized to have n 1  ribs, obtained in the 

previous step. Then, with vE , shortest path matrix vM '

is computed for the shortest path between an arbitrary 
pair of nodes. We use the fact that v vM ' (i, j) M (i, j) . 

For an arbitrary pair of nodes i  and j  vM ' (i, j)  – is the 

shortest way, created only n 1  edges, and vM (i, j)  – 

those, which is created of more edges quantity; i.e. 

vM (i, j)  may be shorter vM ' (i, j) . We update the set of 

edges vE  for vM ' , adding this new rib to vE , and then 

recalculate the matrix vM ' , using vE . We continue the 

process before vM '  and vM  will not be exactly the 

same. Thusм, we can find edges-candidates for other 
edges vE  from vM . 

a – Virtual graph after 
the step 2 

b – Virtual graph after node 
filtration 1,5e

Fig. 8. Route filtering procedure 
 

Step 3. We filter the path estimates between the 
candidate edges of the virtual graph that are not filtered 
out from the pre-filtering based on the relative deviation 
error and the pre-filtering in step 1 and step 2. 

Fig. 8 shows the procedure of filtering the estimates 
of the path from the virtual graph after step 2. On this fig. 
edges 1,5e  and 2,3e  are estimates of the path in the sensor 

network, as shown in fig. 7, a. The idea of filtering these 
path estimates is to check whether there exist a path con-
sisting of shorter edges than the path estimate or not. If 
there is such a path, the path estimate can be removed 
from the virtual graph.  Otherwise, it remains in the vir-
tual graph. For example, for the edge 1,5e  on the fig. 8, a 

the route, consisting of two edges 1,19e  and 19,5e , which 

length is shorter than 1,5e  exists. In such a way, the edge 

1,5e  can be removed from the virtual graph. This check 

can be performed using the shortest path algorithm (for 
example, the Floyd-Varshall algorithm) after removing 
the edge 1,5e  from the virtual graph. 

For the rib 2,3e  on the fig. 8b it is possible to con-

duct the same procedure.  
Note that the candidate edge can be a real edge in 

the sensor network. In this case, there is ambiguity, 
whether this edge is a real edge or an estimate of the 

path. In such a way, in order accurately  to conduct 
graph mapping, it is necessary to delete these   ambigu-
ous edges, which have alternative paths consisting of 
other, shorter edges of the real graph, the corresponding 
road network (for example, in fig. 7, a). 

3.4. Step 4: Match schedules 
Construction of reduced virtual subgraph 
Let v v v )(G V , E  – a virtual graph. For the iso-

morphic matching of graphs, two graphs must be iso-
morphic. Since the virtual graph vG , returned from the 

pre-filtering module has  more vertices and edges than 
the real graph rG , we cannot directly perform an iso-

morphic comparison of graphs. From the observation 
that each crossing node has at least three adjacent sen-

sors, the reduced virtual subgraph v v vG V E )( ,    is 

made from a virtual graph vG : 

Let N  – set of disjoint nodes vG . Let 
vGd (u)  – 

level u  in the graph vG . Let uve  – edge, whose ends 

are u  and v  for vu, v E . Let l(e)  – be an edge length 

ve E . For all u N  the following is conducted: 

• If 
vGd (u) 1 , then we delete u  from vG  and de-

lete a rib, one of end of which u  of vG . 

• If 
vGd (u) 1 , than we delete u  of vG , merge 

two edges uxe  and uye , one end of which u , in one 

edge xye . Edge length xye  is set equal to ux uyl ) l )(e e(  . 

a – Virtual graph with four 
intersection nodes  

b,d,{ k,m}  

b – Reduced virtual  
subgraph after removing 

nodes without  
intersection 

Fig. 9. Construction of a reduced virtual subgraph 
 

For example, a construction of the given virtual 
subgraph from a virtual graph, where a set of intersec-
tion nods is b,d,{ k, m}  and a set of disjoint nodes: 

a,c,e, f ,g,h, i, j{ , l, n}  are shown on the fig. 9. After re-

moving nodes without crossing and handling the corre-
sponding edges, the final reduced virtual subgraph con-
sists of four intersection nodes b,d, k,m , as shown on 

the fig. 9, b. 
Finally, we can conduct graph mapping of the sen-

sors net with road network, since the reduced virtual 
graph is isomorphic to the real graph, i.e. Two graphs 
have the same structure for a one-to-one mapping. 

Harmonization of weighted graphs 
Since the reduced virtual subgraph vE  and true 

graph rE  are isomorphic, our comparison of graphs can 
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be defined as a matrix search n n  permutations P , in 
order to satisfy the following: P  – matrix of string per-

mutations, and TP  – matrix of column permutations: 
T 2

r v 2(P) || E PE P ||    ; (4) 

P
arg maxP (P) 


; (5) 

T
v vE PE P .
  (6) 

Let P  be optimal matrix of permutations n n  (5) 
in terms of the minimum estimate error. Result vE  (6) 

is a matrix, isomorphic rE , where the indices in both 

matrices indicate the node identifiers, i.e. identifier of 
the sensor in vE  corresponds to the intersection identi-

fier in rE  for i 1,..., n . To get an exact solution P , 

allowing a global minimum (P) , it is necessary to 

check all possible cases. Since this is a purely combina-
torial problem, the combination-based algorithm has a 
time complexity O(n!)  for n  nodes. Therefore, in real-

ity this is an impracticable approach. We need to use 
approximate approaches to obtain a matrix of permuta-
tions with variable accuracy. For our goal of comparing 
graphs we apply an approach with its own decomposi-
tion, which has a polynomial time complexity. 

We investigated the effect of the real average vehicle 
speed, different from the speed limit on the roads. The con-
clusion is that as long as all segments of the road have the 
same constant scaling factor for their average speeds, our 
localization algorithm works well, regardless of the distri-
bution of the average vehicle velocity during the traffic 
measurement. In the other words, our algorithm works, 
although actual speeds are unknown. In case, when each 
segment of the road has a different scaling factor in accor-
dance with the unbalanced congestion conditions, our algo-
rithm does not work very well. In order to solve this prob-
lem, we propose to carry out measurements under condi-
tions of easy traffic, for example, at night. Without conges-
tion, we expect that all road segments have the same con-
stant scale factor for their average speeds. 

3.5. Step 5: Node location identification  
Localization of intersection nodes 
We perform the identification of the location of 

each intersection node with the permutation matrix P , 
returned from the graph matching module. Let )(s  – be 

permutation function, corresponding to the permutation 
matrix P , such, that p s)(  , where s  – sensor identi-

fier, and p  – intersection identifier, corresponding to s . 

: s {1,..., n} p {1,..., n},    (7) 

With the help of permutation function (7) we can 
identify the intersection identifier ( p ) on the roadmap 

for each intersection node ( s ). 
Localization of disjoint nodes 
We found the positions of the intersection nodes. 

Now we localize the positions of nodes without inter-
section of degree 2 or 1. For nodes without intersection 

of degree 2, using vE  of virtual graph vG , starting 

from the intersection node u , and then create a route u
to another intersection node v , i.e. 

1 2 mu a a a v    . All ia  for i 1,..., m
are nodes without intersection, whose degrees are equal 
to 2. Since the nodes u  and v  are already localized, and 

all these ia  should be placed on the edge of the u  to v

on the given virtual subgraph vG , as shown on the fig. 

2.1e, it is possible to find statements ia  according to the 

length information in vE  of virtual graph vG , as shown 

on the fig. 1c. We repeat this procedure, until we locate 
all the nodes without intersection in the virtual graph. 

a – Virtual node localization graph 

b – Localizing nodes without intersection in a real graph 

Fig. 10. Localization of nodes without intersection 

For example, on the fig. 10 localization of nodes 
without intersection of degree is shown 2. Two nodes 
without intersection 37s  and 38s  are located between 

intersection nodes 15s  and 17s , fig. 10, а. We can iden-

tify the locations of the intersection nodes 15s  and 17s

through the localization of intersection nodes. Nodes 

15s  and 17s  are correspondently located on the intersec-

tions 4p  and 2p . In such a way, this localization of in-

tersection nodes allows us to know that two nodes with-
out intersection 37s  and 38s  consistently placed between 

intersections 4p  and 2p , fig. 10, b. 

For intersection nodes let w  – node of degree 1. 

I.e. w  is adjacent to the intersection node vu, v E , 

then it is known which intersection w  is adjacent to the 
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road network. For example, since nodes without an in-
tersection 41s  and 42s  are adjacent to the intersection 

node 18s , then they are adjacent to the intersection 1p . 

Conclusions 

The developed localization system is reliable and re-
alistic, taking into account time synchronization error, ve-
hicle speed deviation and various vehicular traffic intensity, 
as well as the lack of sensor detection and the probability 
of detection duplication. The APL system shows encourag-
ing results in the localization of a road network completely 
covered by vehicular traffic for estimating the distance 
along with one vehicle speed distribution. 
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АРХІТЕКТУРА, МЕТОДИ ТА АЛГОРИТМИ ОПТИМІЗАЦІЇ БЕЗДРОТОВОЇ МЕРЕЖІ ДАТЧИКІВ  
ДЛЯ ІНТЕЛЕКТУАЛЬНИХ ТРАНСПОРТНИХ СИСТЕМ 

Нух Таха Насіф 

Розробляються інтелектуальні транспортні системи, що забезпечують ефективність та безпеку управління 
транспортом за допомогою інформаційних розрахунків та зв'язку між транспортними інфраструктурами та транс-
портними засобами. Бездротові сенсорні мережі вважаються новими компонентами для інтелектуальних транспорт-
них систем і розгортаються в дорожніх мережах для подальшого підвищення безпеки та захисту водіння. У цій стат-
ті розроблена система автономної пасивної локалізації бездротової сенсорної мережі для інтелектуальних транспорт-
них систем, адаптована та оптимізована для дорожніх мереж. 

Ключові слова: інтелектуальні транспортні системи, бездротові сенсорні мережі, бездротові датчики, моніто-
ринг шляху. 

АРХИТЕКТУРА, МЕТОДЫ И АЛГОРИТМЫ ОПТИМИЗАЦИИ БЕСПРОВОДНОЙ СЕТИ ДАТЧИКОВ 
 ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ ТРАНСПОРТНЫХ СИСТЕМ 

Нух Таха Насиф 

Интеллектуальные транспортные системы развиваются для обеспечения эффективности и безопасности управ-
ления транспортом с помощью информационных расчетов и коммуникаций между транспортными инфраструктурами 
и транспортными средствами. Беспроводные сенсорные сети считаются новыми компонентами для интеллектуаль-
ных транспортных систем и развертываются в дорожных сетях для дальнейшего повышения безопасности и защиты 
вождения. В этой статье разработана система автономной пассивной локализации беспроводной сенсорной сети для 
интеллектуальных транспортных систем, адаптированных и оптимизированных для дорожных сетей. 

Ключевые слова: интеллектуальные транспортные системы, беспроводные сенсорные сети, беспроводные дат-
чики, мониторинг дороги. 
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