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ARCHITECTURE, METHODS AND ALGORITHMS OF WIRELESS NETWORK
SENSORS FOR INTELLIGENT TRANSPORT SYSTEMS OPTIMIZATION

Intelligent transport systems are developing to provide effectiveness and safety of transport management with
the help of information calculations and communications between transport infrastructures and vehicles. This work
studies key technologies for wireless sensor networks with the aim to provide safety and connections in road net-
works. To solve this problem, the work uses the fact that the vehicles move along routes with a known map, which
means vehicle mobility predictability and the location of the road network. With the help of statistical analysis of
vehicle detection time marks, we can obtain estimates of the distances between any pairs of sensors on the roads and
construct a virtual graph that is associated with the topology of the known road map on them. Wireless sensor net-
works are considered to be new components for intelligent transport systems and deployed on road networks to fur-
ther enhance safety and protection of driving. In this article the system of wireless sensor network autonomic pas-
sive localization for intellectual transport systems, adapted and optimized for road networks is developed. The de-
veloped localization system is reliable and realistic, taking into account time synchronization error, vehicle speed
deviation and various vehicular traffic intensity, as well as the lack of sensor detection and the probability of detec-
tion duplication. The APL system shows encouraging results in the localization of a road network completely cov-

ered by vehicular traffic for estimating the distance along with one vehicle speed distribution.
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Introduction

This work studies key technologies for wireless
sensor networks with the aim to provide safety and con-
nections in road networks [1] in such a way:

1) location of the sensor;

2) road inspection of car monitoring;

3) data transmission fir the road traffic protection;

4) reverse data transmission for information ex-
change about the road condition.

With this aim the road networks characteristics are
researched:

1) predictable mobility of vehicles;

2) road network scheme;

3) traffic statistics;

4) vehicle trajectory.

In present times the roads are equipped with elec-
tronic sensors and variable message signs for driving, as
well as GPS-based vehicle with navigation systems and
systems of alarm reporting. With this tendency wireless
sensor networks (WSN) can be deployed in road net-
works for further security enhance of traffic and mobil-
ity. US Department of Transportation and many auto-
mobile companies (for example, General Motors and
Toyota) recognized promising features of vehicles (in-
tellectual vehicles) and have recently begun to imple-
ment BSS technology for ITS infrastructures [1-3].
European of telecommunication standards institute
(ETSI) applies global standards for intellectual vehicles

[4], such as telematics and all kinds of connection be-
tween vehicles (for example, «Vehicle» — «Vehicle»)
and between vehicles and stationary location (for exam-
ple, «Vehicle» — «infrastructure» or «infrastruc-
ture» — «\ehicle»). Wireless sensor networks can be
integrated in ITS for monitoring of road condition for
traffic security providing (for example, highway build-
ing ground or obstructions) and announce such road
condition via «Vehicle» — «\ehicle» or «infrastruc-
tur» — «vehicle communications».

1. Formulation of the problem

For wireless sensor localization in this work auto-
nomic passive localization (APL), intended to the road
networks. It is assumed that the sensors are rarely de-
ployed (hundreds of meters from each other) to save
costs in road networks. This makes existing localization
solutions based on ranking ineffective. To solve this
problem, the work uses the fact that the vehicles move
along routes with a known map, which means vehicle
mobility predictability and the location of the road net-
work. The binary time marks of vehicle detection and
distance estimates are obtained for any pair of sensors
on the roads, which allows constructing a virtual graph
consisting of sensor identifiers (i.e. vertices) and dis-
tance estimates (for example, edges). This virtual graph
(i.e. sensor network topology) then juxtaposed with the
topology of a road map (road network), which deter-
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mines places of sensors in the road networks. Many
solutions were proposed for localization, using:

- accurate range measurements (for example, TOA
[5], TDOA [6] and AOA[7]);

- sensor localization between sensors, Centroid [8],
APIT [9], SeRLoc [10] and Robust Quads [11].

Our decision is to use vehicle on the roads as natu-
ral events for localization. The decision could be trivial,
if all nodes have been equipped with vehicle complex
identification sensors for localization, because distance
measuring between two sensors by multiplying the av-
erage vehicle speed by the time difference of detection
(TDOD) between two sensors, corresponding to the
same vehicle reliably easy. Obviously, vehicle identifi-
cation sensors would be costly in terms of equipment,
energy and computing. The research question is how to
get the location of the sensors using only the results of
binary detection without the possibility of identifying
the vehicle in the sensors.

With the help of statistical analysis of vehicle de-
tection time marks, we can obtain estimates of the dis-
tances between any pairs of sensors on the roads and
construct a virtual graph that is associated with the to-
pology of the known road map on them. This display
allows one to identify the sensor locations on the roads.

In particular, our localization scheme consists of
three stages:

1) assessment of the distance between two arbi-
trary sensors in the same segment of the road;

2) construction of connectivity sensors on the
roads;

3) Identification of sensors' locations by compar-
ing the constructed connectivity of sensors with the
graphic model for the roadmap.

The purpose of the article is to develop:

« new architecture of autonomous passive localiza-
tion in sparse sensor networks;

* a statistical method for estimating the lengths of
road segments between two arbitrary sensors based on
the time difference of detection (TDOD) concept. The
TDOD operation uses a correlation between the time
stamp of sensors, geographically close to each other;

« the pre-filtering algorithm to selection of only re-
liable estimates of the distance between two arbitrary
sensors in the same segment of the road;

« algorithm for graph matching to coordinate the
identification of the sensor with the position on the road
map of the target area.

2. Basic Definitions

We consider a network model in which the sensors
are placed both at intersection points and at points with-
out road networks intersection. The goal is to locate the
wireless sensors deployed in the road networks, only
with the roadmap and timestamps for detecting binary
TS, taken by the sensors, as shown in fig. 1.
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Fig. 1. Wireless sensor network deployed in the road
network (beginning)
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e — Reduced virtual subgraph consisting
of the virtual intersection graph nodes: G, = (V,,E,)

f — Real graph, corresponding to the roadmap:
Gr = (Vr ! Er)

Fig. 1. Wireless sensor network deployed in the road
network (ending)

2.1. Definitions

Define the following eight terms:

Definition 1 (intersection nodes). Sensors located
at the intersection and having more than two neighbor
sensors (i.e. degree > 3). On the fig. 1, a sensors a and
c are intersection nodes.

Definition 2 (nodes without intersection). Sen-
sors on the road without intersection and having one or
two neighbor sensors. On the fig. 1, a sensors b and d
are nodes without intersection.

Definition 3 (Virtual topology). Let virtual topol-
ogy H, =(V,,M,), where V, ={s,,s,,...,S,} — a set of
sensors in the road network, and M, =[v;] - path
length matrix v; for sensors s; and s;. Virtual sensors

topology in the road network is shown on the fig. 1. b,
fig. 1,a. M, — full simple graph, because the edge be-

tween two arbitrary sensors exists. We define the edge
of virtual topology as virtual edge. On the fig. 1,b a
solid thick line represents a segment of the road be-
tween two sensors, which means that they are adjacent
to the road network. A dashed thin line is an estimate of
the path between two sensors, which means that they are
not adjacent to the road network.

Definition 4 (Virtual graph). Let G, =(V, .E,) -
virtual graph, where V, ={s,,s,,...,s,} — a set of sen-
sors in the road network and E, =[v;] represents a

matrix of the road segment length v, between sensors

s; and s;. Fig. 1, c shows virtual graph of the net, de-

ployed in the road network, fig. 1, a, where black node
represents intersection nod, and grey nod represents a
not without intersection.

Definition 5 (Abbreviated virtual subgraph).

G, =(V,,E,) - abbreviated virtual subgraph, where
V, ={s,,5,,....S,} — A set of sensors at intersections in
the road network, and E, =[v;] - road segment length

matrix v; between intersection nodes s; and s;. Ab-

breviated virtual subgraph G, is obtained by removing

nodes without intersection and their edges from the vir-
tual graph G, through information on the degree of

G, . For example, on the fig. 1e given virtual subgraph,
consisting only of intersection nodes on the fig. 1, ¢ is
shown.

Definition 6 (Real graph). G, =(V,,E,) real
graph, where V, ={s,,s,,...,S,} — set of intersections in
the road network around the target area, and E, =[r;] -
road segment length matrix r; for intersections p; and
p; . The real graph can be obtained with the help of car-

tographic services, such as Google Earth and Yahoo
Maps. A real graph, corresponding to the road network,
intersection points of which have nodes of the intersec-
tion sensors are shown on the fig. 1, d. It is isomorphic

to the reduced virtual graph of the graph Gv , shown on
the fig. 1, e [12].

Definition 7 (The shortest path matrix). Way M —
the shortest path matrix for G=(V,E), such that

M, =[m;] - shortest-length matrix between two arbi-

trary nodes i and j in G. M is calculated of E algo-

rithm All-Pairs Shortest Paths, such as the Floyd-
Warsell algorithm [13]. We define M, as a shortest path

matrix for a real graph G, = (V,,E,) and define M, as
a shortest path matrix for a virtual graph G, = (V,,E,) .

Definition 8 (APL Server). Computer, which per-
forms the localization algorithm with binary vehicle
detection timestamps collected from the sensor network.

2.2. Assumptions

APL localization construction is based on the fol-
lowing assumptions:

« The sensors have simple sensitive devices for de-
tecting binary vehicles without any expensive devices or
GPS devices [14]. Each detection represents a set
(si,t;) , consisting of the sensor identifier s; and time-

stamps t; .
 Ad-hocor network with tolerant delay for wire-

less sensors for delivery of timestamps vehicle detection
to the APL server exists.

127



36ipnux nayrxosux npayb Xapkiscoko2o nayionanwioz2o yuieepcumemy Iosimpsnux Cun, 2017, 5(54)

ISSN 2073-7378

« The sensors are synchronized in time in ms. This
can be easily achieved [15-16].

» APL server has information about the road map
for the target zone under surveillance and can build a
real graph consisting of intersections in the road net-
work.

* Vehicle passes through all segments of the road
in target road networks. Vehicle average speed is close
(not identical) to the speed limit, assigned to the roads.
It is assumed that the standard deviation of the vehicle
speed is a reasonable value based on real traffic statis-
tics [17].

3. APL System projecting

3.1. System architecture

We use an asymmetric architecture for localization,
fig. 2 to simplify the functionality of the sensors for
localization. As simple devices, the sensors only moni-
tor the traffic and record the time of detection of the
vehicle in their local stores. The APL server processes
complex calculations for localization. The localization
procedure consists of the following steps, fig. 2:

APL Server
(5,7)

Traffic Analysis

(1) | Sensor Node s,
Vehicle (s,.T
Detection -—

Timestamps
Lo mestamps ]

Prefiltering Repository

Node Location
Notification

i ®

Vehicle
Detection

Graph Matching

Louat:on
Identification (s.)

Fig. 2. APL system architecture

Step 1: After measuring the traffic, the sensor s,
sends to the server APL. Its timestamps of detection of
the vehicle together with its identifier of the sensor, i.e.
(s;,T;), where s, — sensor identifier, and T, — time-
stamps.

Step 2: The traffic analysis module estimates the
length of the road segment between two arbitrary sen-
sors with time stamp information and builds a virtual

topology H, =(V,,M,), where V, - set of vertex sen-
sor identifiers, and M, — matrix, containing an estimate

of the distance of each sensors pair.

Step 3: The pre-filtering module converts the vir-
tual topology H, into a virtual graph G, =(V,.E,),
where V, - set of vertices of sensor identifiers, and E, —
adjacency matrix of the expected length of the road

segment.
Step 4: The graph comparison module is con-

structed on the given virtual subgraph G, =(V,,E,)

from the virtual graph G,, where V, — a set of only

nodes of intersection among V, , a E, — a set of edges

whose endpoints belong to V, . év is isomorphic to the

real graph G, =(V,,E,). Then the graph mapping
module calculates the permutation matrix P, making
the reduced virtual subgraph G, = (V,,E,) isomorphic
to the real graph G, =(V,,E,).

Step 5: The location identification module deter-
mines the location of each sensor on the roadmap using
the permutation matrix P as to the given virtual sub-

graph Gv, and to the real graph G, . Through this dis-
play, the nodes location information (s,1) is constructed
in such a way, that s is the vector of the sensor identi-
fie, and | - corresponding to the plocation vector, i.e.
. =(x;,y,), where s, — sensor identifier X, — coordi-
nate x, y, —coordinate y in the roadmap.

Step 6: With (s,I) APL server sends each sensor
s, to its location with a message (s;,1,) .

Let’s start from the step 2, i.e. step 1 is clear/

3.2. Step 2: Traffic analysis for estimating the
length of the road segment

The closer the two sensors are located, the more
the vehicle detection time marks are correlated. There-
fore, we can estimate the length of the road segment by
the time of travel between two neighboring sensors us-
ing the correlation of the time stamp sets of these two
sensors, as well as the average speed of the vehicle on
the road segment.

Time difference on detecting (TDOD) for time-
stamps T, and T, from two sensors s; and s; is defined

as follows:

di =1t —tye |, 1)
where t, €T, for h :1,,,.,|Ti | - h- sensor timestamp
s; and t, for k=1,,.,|T,| - k- sensor timestamp s;.
Let’s determine TDOD:

diy =g(dy, )
where g - the quantization functlon for displaying the
actual value d}, to a discrete value. Number m quanti-
zation levels (i.e. g, for k=1,...,

ing into account the expected time of the wvehicle
movement on the longest segment of the road of the
corresponding road network (1s, 0,1sor 1 ms).

After TDOD operation for two timestamps with
the highest frequency (i.e. d") it is considered as the

driving time of the vehicle for the carriageway between
these two sensors s; and s; in the following way:

m) is determined tak-

d’ « arg maxf(q,), ©)
G
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where f - quantization level frequency gq, at

k=1,..,m, i.e. in (3) meaning d’ is set for the quanti-
zation level g, with maximal frequency. The driving

time on the road section can be converted to the seg-
ment length of the road using formula | = vt, where | -
segment length of the road, v — average vehicle speed,
t — average time of the vehicle on the road segment.
For example, on the fig. 3, a the sequence of vehi-
cle detection at the intersection nodes is shown s, s,

and s, on the fig. 1, f, where s, - a common neighbor
s, and s,. Fig. 3, b and 3, ¢ show TDOD operation for
nods s, and s,, which is a Cartesian product for time
stamps of two sets.
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Fig. 3. Time difference at (TDOD) detection

On the fig. 4 histogram [18], obtained by the op-
eration TDOD for two timestamps is shown. Time dif-
ference value (7,3 s) with the highest frequency indi-
cates the estimated time of travel between the two
nodes.
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Fig. 4. Estimated travel time through the operation
TDOD
We conducted an external test to check whether
our TDOD operation can give good estimates for the
length of the road segments in terms of vehicle travel
time. The results of external testing show that our
TDOD can give reasonable indicators of the length of
the road segment. On the fig. 5 the test roads consist of
four intersections A, B, C and D. The speed limit on
these sections of the road is 64 km/h (or 40 miles/h).

800 [m]

I 900 [m] |

Fig. 5. Road network for outdoor testing

We conducted a manual detection of the vehicle
for more accurate observation. Due to the possibility of
the sensor and the physical size of the vehicle, it is diffi-
cult to obtain an accurate detection of the vehicle at in-
tersections, so the development of an algorithm for de-
tecting a vehicle based on its movements remains the
prospect of work.

Table 1
Results of external testing

Segment of Distance Expec@ed Measu_red

the road travel time | travel time
A and B| 800 m 455 43s

C and D | 800 m 45s 43s

B and C| 900 m 51s 54 s

D and A| 900 m 51s 56s
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Tabl. 1 shows the expected and measured travel
time for these four road segments through the TDOD. It
can be seen that the estimated travel time is close to the
expected travel time. Although manual measurement
can lead to some human errors, this experimental result
shows substantial evidence that TDOD can provide us
with estimates that are enough accurate to perform lo-
calization and obtaining edges in the virtual topology,
fig. 1, b.

Non-aggregation Method
timated Movement Time

=3

-— ]

Frequency
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il H‘! b ‘H L

ok L D
5 3

0 5 10 15 20 2
Time Difference [sec]
Aggregation Method

Estimated Movement Time

Frequency

0 5 10 15 D 25 30
Time Difference [sec]
Fig. 6. Comparison between the method
without aggregation and the aggregation method

Strengthening the evaluation of the road seg-
ment length

We found that an estimate close to the length of the
road segment cannot always be obtained by the maxi-
mum frequency previously described by the TDOD op-
eration. The reason is in noise estimates with higher
frequencies. To solve this problem, we introduce the
aggregation method when the average of several adja-
cent time differences becomes a new value of TDOD,
and the sum of frequencies from them corresponds to
the corresponding frequency. This is based on the ob-
servation that temporal differences close to the real time
difference (i.e., the driving time required by the vehicle
with the average vehicle speed on the road section) have
relatively high frequencies by the TDOD operation for
two series of time series, as shown on fig. 3. On the
other hand, we observe that the noise estimate with the
highest frequency occurs randomly and its neighboring
estimates have relatively low frequencies. This method,
based on the TDOD aggregation is named the method of
aggregating and the previous simple TDOD is the
method without aggregation. We determine the size of
the aggregation window in proportion to the standard
deviationsc, of the vehicle speed, such as c.oc, at

c>0.

On the fig. 6 comparison of the method without
aggregation and aggregation method with the help of
modeling is shown. The size of the aggregation window
is equal to 10, So that vehicle deviation speed vehicle

o, is 10km/h, and window size coefficient is 1. Starting

from the time difference meaning, equal to 0 in the his-
togram for the method without aggregation we choose a
representative of adjacent values of the time difference
in the size of the aggregation window as the average
meaning and then summarize their frequencies with the
representative frequency. Then we move the window to
the right by the unit of time difference and repeat the
calculation of the representative and frequency. Thus,
the histogram for the aggregation method is obtained by
this moving window.

We found that for the segment of the road between
the sensors s, and s, on the fig. 1, f, whose real-time

difference is 9,36 s at speed of vehicle p,=50 km/h,

method without aggregation makes an incorrect estimate
(i.e. 26,8 s), but the aggregation method gives the cor-
rect estimate (i.e. 9,3 s). Thus, the aggregation method
can be used to obtain good estimates of the length of the
road segments in the virtual topology.

3.3. Step 3: Pre-filtering algorithm for virtual
graphics

Pre-filtering algorithm is conducted for creation of
the virtual graph, which has bounds estimates between
virtual edges (for example, distance estimates) in the
virtual topology derived from operations TDOD, Fig.
1b. Our pre-filtering algorithm consists of two pre-
filters:

- relative deviation error;

- minimal spanning tree.

As shown in fig. 7, a, there is a partial network of
roads throughout the scheme, shown in fig. 1, a, con-
taining sensors {s,,S,,S;,5,,5,5,9:5:5,}- In the vir-
tual topology H, =(V,.,M,). Two arbitrary sensors

among them have a distance estimate, as shown in fig.
7, b. Using pre-filtering based on the relative deviation
error, we remove the edges of the virtual topology that
correspond to the inaccurate estimates of the trajectory,
and construct a virtual graph G, =(V,,E,), fig. 7, c.
Then we apply the preliminary filtering based on the
minimal spanning tree to the virtual graph, so a virtual
graph containing only edge estimates is constructed by
removing the exact estimates of the path, fig. 7, d.

A o

Sz é Y S3 i
a — network with the following sensors:
{31,82,83,54,55,519,820,822}
Fig. 7. The pre-filtering procedure
for obtaining a virtual graph (beginning)
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b — The virtual topology for the following sensors:
{31'82’53’54'SS’SIQ’SZO’SZZ}

¢ — The virtual graph after the preliminary adjustment
based on the error of the relative deviation

d — The virtual graph after the preliminary configuration
based on the minimal spanning tree

Fig. 7. The pre-filtering procedure
for obtaining a virtual graph (ending)

Preliminary filtering based
on the error of the relative deviation
Large errors in the path estimates will significantly
affect our next steps. For example, the smallest entry in
M, must be an edge when there is no big error, because
the path length is always equal to the sum of more than
one edge length. However, if M, contains huge errors,
they can have any meaning in M,, . Therefore, it is very

important to firstly to filter all records with large errors,
treating them as estimates of the path.
We determine the relative deviation (¢ ) as a ratio

of standard deviation (o) to the average (p), i.e.
¢ =o/p; Note that this is known as the coefficient of

sample variation in statistics and is used to compare the
variance between populations by different means. In
order to calculate the average meaning p, as well as a

standard deviation o of each record as M, , we use
several evaluation matrices M, For the measurement

time with the same duration. First, emissions from mul-
tiple estimation matrices are eliminated M , in order to

let u and o to be less affected by these emissions and

increase their reliability. Estimates are considered to be
emissions when they are less than or greater than &
percent (for example, 20%).

To calculate the relative deviations of the estimates,
we divide the vehicle detection time stamps into time
windows (for example, every half an hour) and perform
the TDOD operation for the time marks of two arbitrary
sensors in the same time window. Then we calculate the
relative deviations of the estimates of the virtual nodes
for each pair of sensors. If the relative deviation is greater
than a certain threshold value ¢ (for example, 10%), the
corresponding entry is considered as an estimate of the
path, and it is replaced by oo, which indicated on the fact,
that this record is a road evaluation. In the pre-filtering
threshold ¢ is set in relation to the known deviation of
the vehicle speed to the vehicle speed limit in the road
network. This threshold allows preliminary filtration tak-
ing into account the actual deviation of the vehicle speed.

Prefiltration based on the minimum spanning tree

Let’s suppose, that there is a virtual topology n of
the sensors H, = (V,,M,), where V, — set of vertices,

M, - adjacency matrix nxn of the virtual topology.

Prefiltration based on the minimum spanning tree con-
sists of three steps:

- The first step identifies the first n—1 edges of a
virtual graph

- the second step identifies the remaining candi-
dates to the edge of the virtual graph.

- the third step filters the path estimates between
the candidate edges of the virtual graph.

Step 1: Choose n—1 edges from M, , which cre-
ate minimal spanning tree for a virtual topology using
the minimal pairing algorithm, such as Prima algorithm
[14]. It is possible to prove, that n—1 edges, which
form MST, are boundary estimates as follows: let
M, (i, j) — to be a matrix record M, , where i — line

index, and j — column index.

« Case 1: the smallest record must be an edge, be-
cause the path length is the sum of more than one edge
length.

» Case 2: let’s suppose, that we have found m
edges, wherel<m<n-1. Let N - be a set of corre-
sponding nods m of edges. Then we select the smallest
record M, (i,j), which satisfies i¢ N and jeN.
M, (i, j) should be an edge for the following reason:
M, (i, j) is not a rib, than another nod should existk,
for which M, (i,J) =M, (i,k) + M, (K, ).

1) if ke N, then M, (i,k) < M,(i, J), which con-
tradicts our assumption that M, (i,j) — is the smallest
record.

2) if ke N, then M, (K, ])<M,(,]), which also
contradicts our assumption that M, (i, j) is the smallest.

131



36ipnux nayrxosux npayb Xapkiscoko2o nayionanwioz2o yuieepcumemy Iosimpsnux Cun, 2017, 5(54)

ISSN 2073-7378

Step 2. We find all other boundary candidates of
the virtual graph G, =(V,,E,) from the virtual topol-

ogy H, =(V,,M,), as shown in Fig. 1c. First, the set of
edges E, initialized to have n—1 ribs, obtained in the
previous step. Then, with E, , shortest path matrix M,
is computed for the shortest path between an arbitrary
pair of nodes. We use the fact that M, (i, j) > M, (i, ]) .
For an arbitrary pair of nodes i and j M',(i,j) —is the
shortest way, created only n—-1 edges, and M, (i,j) -
those, which is created of more edges quantity; i.e.
M, (i, j) may be shorter M" (i, j) . We update the set of
edges E, for M',, adding this new rib to E,, and then
recalculate the matrix M',, using E,. We continue the
process before M', and M, will not be exactly the

same. Thusm, we can find edges-candidates for other
edges E, from M, .

a— Virtual graph after b — Virtual graph after node
the step 2 filtration e,

Fig. 8. Route filtering procedure

Step 3. We filter the path estimates between the
candidate edges of the virtual graph that are not filtered
out from the pre-filtering based on the relative deviation
error and the pre-filtering in step 1 and step 2.

Fig. 8 shows the procedure of filtering the estimates
of the path from the virtual graph after step 2. On this fig.
edges e, ; and e,, are estimates of the path in the sensor

network, as shown in fig. 7, a. The idea of filtering these
path estimates is to check whether there exist a path con-
sisting of shorter edges than the path estimate or not. If
there is such a path, the path estimate can be removed
from the virtual graph. Otherwise, it remains in the vir-
tual graph. For example, for the edge e, on the fig. 8, a

the route, consisting of two edges e,,, and e, which
length is shorter than e, ; exists. In such a way, the edge
e,s can be removed from the virtual graph. This check

can be performed using the shortest path algorithm (for
example, the Floyd-Varshall algorithm) after removing
the edge e, ; from the virtual graph.

For the rib e, , on the fig. 8b it is possible to con-

duct the same procedure.

Note that the candidate edge can be a real edge in
the sensor network. In this case, there is ambiguity,
whether this edge is a real edge or an estimate of the

path. In such a way, in order accurately to conduct
graph mapping, it is necessary to delete these ambigu-
ous edges, which have alternative paths consisting of
other, shorter edges of the real graph, the corresponding
road network (for example, in fig. 7, a).

3.4. Step 4: Match schedules

Construction of reduced virtual subgraph

Let G, =(V,,E,) — a virtual graph. For the iso-
morphic matching of graphs, two graphs must be iso-
morphic. Since the virtual graph G, , returned from the

pre-filtering module has more vertices and edges than
the real graph G,, we cannot directly perform an iso-

morphic comparison of graphs. From the observation
that each crossing node has at least three adjacent sen-

sors, the reduced virtual subgraph G, =(V,,E,) is
made from a virtual graph G, :
Let N — set of disjoint nodes G, . Let dg (u) -

level u in the graph G, . Let e,, — edge, whose ends
are u and v for u,veE,. Let I(e) —be an edge length
ecE,.Forall ueN the following is conducted:

*If dg (u)=1, then we delete u from G, and de-

lete a rib, one of end of which u of G, .
* If dg (u)=1, than we delete u of G,, merge

two edges e, and e, , one end of which u, in one

uy !
edge e,, . Edge length e, is setequal to I(e,, ) +I(e,,)

a b ¢ d e b d
fO g
[
O—hi—o—rl—o
j k I m n k m

b — Reduced virtual
subgraph after removing
nodes without
intersection
Fig. 9. Construction of a reduced virtual subgraph

For example, a construction of the given virtual
subgraph from a virtual graph, where a set of intersec-
tion nods is {b,d,k,m} and a set of disjoint nodes:

a — Virtual graph with four
intersection nodes
{b,d,k,m}

{a,c,e,f,g,h,i, j,I,n} are shown on the fig. 9. After re-
moving nodes without crossing and handling the corre-
sponding edges, the final reduced virtual subgraph con-
sists of four intersection nodes b,d,k,m, as shown on
the fig. 9, b.

Finally, we can conduct graph mapping of the sen-
sors net with road network, since the reduced virtual
graph is isomorphic to the real graph, i.e. Two graphs
have the same structure for a one-to-one mapping.

Harmonization of weighted graphs

Since the reduced virtual subgraph E, and true

graph E, are isomorphic, our comparison of graphs can
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be defined as a matrix search nxn permutations P, in
order to satisfy the following: P — matrix of string per-

mutations, and P" — matrix of column permutations:

®(P) || E, -PE,P"|I3; (4)
P« arg mgxcb(f’) : (5)
E, < PE,P". (6)

Let P be optimal matrix of permutations nxn (5)
in terms of the minimum estimate error. Result E, (6)

is a matrix, isomorphic E,, where the indices in both

matrices indicate the node identifiers, i.e. identifier of
the sensor in E, corresponds to the intersection identi-

fier in E, for i=1..,n. To get an exact solution P,
allowing a global minimum ®(P), it is necessary to

check all possible cases. Since this is a purely combina-
torial problem, the combination-based algorithm has a
time complexity O(n!) for n nodes. Therefore, in real-

ity this is an impracticable approach. We need to use
approximate approaches to obtain a matrix of permuta-
tions with variable accuracy. For our goal of comparing
graphs we apply an approach with its own decomposi-
tion, which has a polynomial time complexity.

We investigated the effect of the real average vehicle
speed, different from the speed limit on the roads. The con-
clusion is that as long as all segments of the road have the
same constant scaling factor for their average speeds, our
localization algorithm works well, regardless of the distri-
bution of the average vehicle velocity during the traffic
measurement. In the other words, our algorithm works,
although actual speeds are unknown. In case, when each
segment of the road has a different scaling factor in accor-
dance with the unbalanced congestion conditions, our algo-
rithm does not work very well. In order to solve this prob-
lem, we propose to carry out measurements under condi-
tions of easy traffic, for example, at night. Without conges-
tion, we expect that all road segments have the same con-
stant scale factor for their average speeds.

3.5. Step 5: Node location identification

Localization of intersection nodes

We perform the identification of the location of
each intersection node with the permutation matrix P,
returned from the graph matching module. Let o(s) — be
permutation function, corresponding to the permutation
matrix P, such, that p =o(s), where s — sensor identi-
fier, and p - intersection identifier, corresponding to s .

c:sefl,..n}->pefl..,n} @)

With the help of permutation function (7) we can
identify the intersection identifier (p) on the roadmap
for each intersection node (s ).

Localization of disjoint nodes

We found the positions of the intersection nodes.

Now we localize the positions of nodes without inter-
section of degree 2 or 1. For nodes without intersection

of degree 2, using E, of virtual graph G,, starting
from the intersection node u, and then create a route u
to another intersection node v, i.e.
u—a —a,—>...>a,—>Vv. Al a for i=1.,m

are nodes without intersection, whose degrees are equal
to 2. Since the nodes u and v are already localized, and

all these a; should be placed on the edge of the u to v
on the given virtual subgraph GV, as shown on the fig.
2.1e, it is possible to find statements a, according to the
length information in E, of virtual graph G, , as shown

on the fig. 1c. We repeat this procedure, until we locate
all the nodes without intersection in the virtual graph.

.lntersection Node ONon-Intersection Node
a — Virtual node localization graph

G

Bford Ao
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L épw \ 2, Ps

P Vil 'E 8!’5

® Intersection
b — Localizing nodes without intersection in a real graph
Fig. 10. Localization of nodes without intersection
For example, on the fig. 10 localization of nodes
without intersection of degree is shown 2. Two nodes
without intersection s,, and s,, are located between

intersection nodes s, and s, fig. 10, a. We can iden-
tify the locations of the intersection nodes s, and s,

through the localization of intersection nodes. Nodes
S;; and s, are correspondently located on the intersec-

tions p, and p,. In such a way, this localization of in-

tersection nodes allows us to know that two nodes with-
out intersection s,, and s,, consistently placed between

intersections p, and p,, fig. 10, b.
For intersection nodes let w — node of degree 1.
l.e. w is adjacent to the intersection node u,veE,,

then it is known which intersection w is adjacent to the
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road network. For example, since nodes without an in-
tersection s,, and s,, are adjacent to the intersection

node s,;, then they are adjacent to the intersection p, .

Conclusions

The developed localization system is reliable and re-
alistic, taking into account time synchronization error, ve-
hicle speed deviation and various vehicular traffic intensity,
as well as the lack of sensor detection and the probability
of detection duplication. The APL system shows encourag-
ing results in the localization of a road network completely
covered by vehicular traffic for estimating the distance
along with one vehicle speed distribution.
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Haoitiwna oo peoxoneeii 11.09.2017

Penenzent: n1-p TexH. Hayk mpod. [B. Illocrak,
HauionanbHuii aepokocMiunmii yHiBepcureT "XAI", Xapkis.

APXITEKTYPA, METOOM TA ANTFTOPUTMU ONTUMI3AL|IT BE3OPOTOBOT MEPEXI JATHYUKIB
AnA IHTENEKTYAIIbHUX TPAHCMOPTHUX CUCTEM

Hyx Taxa Hacid

Pospobrsitomvesi inmenexkmyanohi mpancnopmui cucmemu, wjo 3abesneyyioms epexmusHicms ma 6e3nexy YnpaeiiHHs
MPAHCNOPMOM 3a OONOMO20I0 IHOPMAYIIHUX PO3PAXYHKIE MA 36'A3KY MIJC MPAHCROPMHUMU [HHPACMPYKMYPAMU MA MPAHC-
nopmuumu 3acobamu. bezopomogi cencopHi mepedici 66axiCaiomMbCsi HOGUMU KOMNOHEHMAMU OIS IHMELeKMYAIbHUX MPAHCNOPM-
HUX cucmem i po320pmaiomvbCsi @ O0OPOICHIX Mepexcax 0Jisi HOOAIbUI020 NIO8UeHHs be3neKu ma 3axucmy 600inHs. Y yiti cmam-
mi po3pobiena cucmema asmMoOHOMHOL NACUSHOT ToKanizayii 6e30pomoeoi CeHCOPHOL Mepedci 05t IHMEeNeKMYAIbHUX MPAHCHOp-
HUX cucmem, a0anmosana ma OnMmuMiz308ana Osi OOPON’CHIX Mepeic.

Knirouogi cnosa: inmenexmyanvhi mpancnopmui cucmemu, 6e30pomosi ceHcopHi mepedici, 6e30pomosi 0am4uxi, MOHImo-
DUHE WTSXY.

APXUTEKTYPA, METO[bl U ANTOPUTMbI ONTUMU3ALIMM BECMPOBOAHOW CETU OATYMKOB
ONA UHTENNEKTYAINbHbIX TPAHCIMTOPTHbLIX CUCTEM

Hyx Taxa Hacud

Humennexmyanvivie mpancnopmuule CUcmembl pazeusaiomcst Ons obecneuenus phexmusnocmu u 6€30nacHOCMU YRpas-
JIeHUsL MPAHCROPMOM C NOMOUWHIO UHGOPMAYUOHHBIX PACHENOE U KOMMYHUKAYUIL MEHCOY MPAHCIOPIMHBIMU UHBPACMPYKMypamu
u mpancnopmuwvimu cpedcmeamu. becnposoonvle cencopmuvie cemu cuumaromes: HOGbIMU KOMAOHEHMAMU OIS UHIMELIEKNY Aib-
HbIX MPAHCROPMHbBIX CUCTEM U PA3BEPMBIEAIOMCS 8 DOPONICHBIX Cemsix Ol OANbHeNuIe20 NOGbIUEHUs OE30NACHOCIIU U 3AUjUMbl
60oicOerus. B amoil cmamve paspabomana cucmema a8MOHOMHOU NACCUBHOU TOKATU3AYUU OECNPOBOOHOU CEHCOPHOU cemu 05
UHMENNEKMYAIbHbIX MPAHCROPMHBIX CUCIEM, A0ANMUPOSAHHBIX U ONIMUMUIUPOBAHHBIX OJIsL OOPONCHBIX Cemell.

Knrouesnle cnosa: unmennexmyaivhvle mpancnopmuule cucmemvl, O6eCnpo8oOHble CeHCOPHbLe cemu, Oecnpo8oOHbie Oam-
YUKU, MOHUMOPUHZ OOPO2U.
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