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THE CALCULATION OF WOUND TUBULAR MANOMETRIC SPRINGS SENSITIVITY
OF AVERAGE THICKNESS BY THE SHELLS THEORY METHOD

The new approach to solve the calculation problem of the stress-strain state of the sensing element of the ma-
nometric and thermal devices, that is advisable to apply in the design process is considered in this article.

The object of the research is wound manometric spring.

The subject of the research is the stress-strain state of wound manometric springs with different shapes of

cross-sections.

The aim of the study is the creation of mathematical model of the object stress-strain state, which allows, in fu-
ture, to solve the problem of optimization of its design parameters in the automatic calculation algorithm for the

automatic design of springs.

As a result of the research, the model of stress-strain state of wound manometric springs was developed, the
optimization problem of its parameters taking into account constructive and technological restrictions was formu-

lated and the method to solve this problem was proposed.

The area of use is aircraft instruments designed to measure the pressure of liquids and gases.

Keywords: mathematical model, stress-strain state, wound tubular manometric spring, optimization of target

function.

Introduction

Wound tubular springs (fig. 1), used to measure
high pressures are common sensing elements of ma-
nometric devices. Springs designs are the most techno-
logical, simple and reliable in operation. The wide ap-
plication of tubular springs makes important the prob-
lem definition of their optimal design.

Fig. 1. External view and cross-sections of wound
tubular springs, used to measure high pressure

Analysis of the recent researches and publica-
tions. The attempts to create a calculation method of
stress-strain state of wound manometric spring are
made in [1-8; 13; 15].

The difference between this work and works men-
tioned above is that it offers a calculation method of
stress-strain state of wound manometric springs.

The results of the research can be further used to
solve the optimization problem of design parameters of
springs and to maximize the target function.

The target function is the sensitivity of wound ma-
nometric springs at given strength, constructive and
technological restrictions.

In this article we propose the adjusted calculation
method of wound tubular springs. Here, the spring is
regarded as a wound shell. Moreover, in the case when
the shell is not thin, the transverse shear strain takes into
account.

The aim of the study. The aim of the study is the
creating of mathematical model of stress-strain state of
wound manometric springs and the statement of the
problem to choose in the optimum way its design pa-
rameters.

Main material presenting

The methodology presented in this article is based
on the shells theory of average thickness, based on
S.P. Timoshenko's model [11], and the required dis-
placement can be found by the Ritz method in the form
of the parameters sum of productions on the coordinate
functions.

The wound tubular shell of constant cross-section,
formed by rotation and displacement with t step along
Z-axis is considered in this research (fig. 2).

To describe the shape of the shell, which cross-
section is located in the XOY plane, introduced such
local x” x* x’coordinate system, where x’ axis is tangen-
tial to the median line of the shell cross-section, x° axis
is parallel to the Z-axis, and x” axis is directed along the
normal to the midline.
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Moreover, an auxiliary polar r, ¢ coordinate sys-
tem is introduced into spring section, where ¢ angle is
measured from an some initial line located at y angle to
X- axis.

z |

#1

[¥]

v
Fig. 2. Axes and angles relative to which the calculation
of the stress-strain state of the spring is carrying out

We assume that r (o) is given.

We assume that x* coordinate is equal to the dis-
tance of the current cross-section from some initial
cross-section. This distance is proportional to the angle
of rotation of y cross-section:

x’=C-y.

t .
Here C= Pyl where t is wound step.
T

Taking into account above mentioned, we obtain
the following shape parameterization of the median
surface shape of wound shell of arbitrary transverse
section.

Z=x>:

X=r(¢)-cos((|)+%); (1)

. X
Y =r1(¢)-sin(¢p +E) .

In accordance with the theory of shells of arbitrary
shape, the components of the first and second metric
tensors of middle surface, and the expressions for
Christoftel symbols, constructed according to [10] have
the form:

2
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In the formulas derivation (2) and (3), it was as-
sumed that the shell is slightly wounded. So we can
r

neglect ( j value in comparison with 1 value.

C

The r (p) function, determining the shape of the
shell cross-section, can be represented as a segment of
Fourier series.

The technique that applied further for improved cal-
culation of wound tubular springs, is based on the modi-
fied Timoshenko’s model [10], in which the compo-
nents of u; displacement vector are represented in the
form

u,(x)=v, +x (0, +v,); @)
u(x)=o,

where u, is the displacement of an arbitrary point of
the shell in x* (o = 1,2) direction

u_ is the same quantity in x’ direction

v” is the displacement of the middle surface with

x' x’ coordinates
(¢, +96,) is the normal angle of rotation

at x' x’point in x* direction (the normal to the
middle surface of the shell under the loads action passes
into line. This line is nonoorthogonal to the deformed
middle surface.)

o — is normal displacement at x' x* point.

The stress-strain state of arbitrary shape shells of
average thickness describes the condition of equality to
zero of variation of the following functional:

I= % j APY Y +2BPY @+ CPOY Y )dQ+
Q

+D%y,y, —pw)dQ— 6)
_j[N“Ua +M*(y, —o, —Blv, )+ Qu)]dg )

g

Here the first integral is taken along the middle
surface of the shell, and the second one is taken along
its edges.

N* M” and Q values are the specified membrane
stresses, moments and shear stresses that distributed
along the shell edges.

The tensors of the elastic coefficients are calcu-
lated as follows:

A% —op B [—V

a®Pp® +l(a‘”a‘36 +a®af) |; (6)
I+v|1-v 2
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aPb* —2Ha"a® )] ;

2

Caﬁyﬁ — h AaB/b (8)
3

D% = h—a )
1+v

Where h is the half thickness of the shell; E is the
modulus of elasticity of material; v is the Poisson's
ratio; H is the average curvature of the middle surface;
a®?, b" are matrix coefficients, which are expressed in
terms of the coefficients of the first and second quad-

ratic forms, respectively, according to formulas
(G,,B,"{,S = 1’2):
a”:ﬁ’ azzzh’au:azlz_ai;
D D D
D =det(a,;) =a,,a,, _alzz .
bll :% b22 :h b12 :b21 :_bi
D, ’ D,’ D’

where D, =b,b,, —b;, (10)

As the H is the average curvature of the middle
surface, then:
2H=b,a'" +2b,a” —b,,a”

an

In the functional (5) Y, and @, values are

equal:
dv
Yaﬁ:UaHB_buﬁm_dX —Ihev, —bo;  (12)
D, = Uy _(w“-'—biuk)\\ﬁ = -Thew, +
de dy o’w db”
+—2-I" 0 =—2+-T" vy ——— - (13
a Lo T eV T g e (19
dv, .,
—d—xgb 17569,

In formulas given above symbol || is symbol of
covariant differentiation in the middle surface metric

oo . Oom

0, =~ by, ~ b, =~ — by, ;
0w . om

92 = —7—13201 —bgU2 = —y—bgl)p

The average pressure value applied to the spring is

equal:
P =P u(+h)+P u(-h), (14)
where
W(z) = detp, (z) ;
=38’ —x’b.

In case the relative thickness of the shell is small
and the deformations of transverse shear can be ne-
glected:

wo =38 and B =0.

Further, we assume that the shell is sufficiently
long and that the influence of the ends on the stressed
state can also be neglected.

In this case, all the unknown functions depend
only on one x’ coordinate.

We represent the required displacements in the

form:
V=X Cv; 0=)Co;
ied ied
=>Cu; y, =2 Cy; (15)
ied ied,

= Zci\l’iz

ieds

The ranges of the i parameter change are:

where (k=1,2, ....5).

In (15) C; coefficients are the required Ritz coeffi-
cients. The functions standing for them in the form of
multipliers are given coordinate functions that depend
onx’.

Substituting the formulas for displacements in the
functional (5) and equating the derivatives of it with
respect to Ritz parameters to the zero, we obtain a sys-
tem of linear algebraic equations:

a_y- Lo a‘%].yb ;
oc, )

J. A“ﬁ/ﬁ aY
al aci

Y, oD
+| gopre Z B | abre Z 0B | q)ya +
aci aC,

+ D%y

ov
j N —=+
oC,
g 1
where i 6(31,32333334935) (’Y36:192)
Taking into account that i parameter takes values
in five regions corresponding to the variation of ij, iy,
v, y, functions we see that the matrix of the system has

a block structure, and the right-hand side of the system
is a vector consisting of five sub-vectors (fig. 3).

Ny _p 6“’}@- (16)

' oC, oC

i

0
M* — -0, -b’v, )+ dg ,
aC, (v, —o, o) Q }g

dyg | dyp [ dy3 | dyg | dys Jmy
dy; | dpz | dyy | dps jm,

d3; | d34 | d3s my

dyy | dys my

dss |m;

Fig. 3. Redistribution of sub-vectors (coefficients)
in stress-strain state matrix

The expressions for the derivatives of functions in-
coming in to the functional are:
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As well as for functions:

Y Zc s +Zc o +Zc v (20)

Zcm +ZCK¢M
+HZCK¢M PISTHED WL R
| 4 J (22)

v, =D Cylts 2 Covss .
3, EX

Taking into account relations (17-22), we obtain
the coefficients of the matrix blocks:
d, = _[{ (Amﬁvafli Baﬁqu)laﬁ) et
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Q
In d, =d, blocks (where s,/ =1, 2,..., 5) the i
and k indices belong to 3 areas, and 3, respectively

(ied,, ked)).

Let's write the elements of the subvectors of the
right-hand side matrix for case of the pressure action
and the N axial force applied at the edges of the shell:

m, =INUidg; m,=0; m, :ijidQ ;

g Q

m, =my;=0. (24)

In mj vectors i index belongs to the 3, (i€ 3, area).

The number of rows in the block-rows consist re-
spectively on 1-5 is ny, ny, ..., ns.

After solving the system of linear algebraic equa-
tions with the Ritz parameters, by formulas (15) it is
possible to calculate the displacement.

The strain and stress are determined by the expres-
sions given in (13):

E 1
of ay PS ad Py o .
c — + + . e N

2e,, =W (YV[j + ZCDVB )+ HE XY, +zd,,);

2e,=vy,, €,;,=0 (25)
Here the metric tensor of the shell is equal:
g = (o
(W) =80+ b

In the case of a thin shell g*¥ = o"

149



36ipHuk Hayxosux npayb Xapxiecokoeo HayioHanbHozo yHigepcumemy Ilogimpanux Cun, 2018, 1(55)

ISSN 2073-7378

To formulate the optimization problem, we require
that o; stress intensity at any point of the cross-section
do not exceed [c] allowable stresses:

o, <[o]. (26)

The stress intensity is determined by the formula:

o =i = 465,

_ ik ik
where n, =g, 06" ; m, =g,0

nm 1k

gmgka G
- a1
ik ik
o —g"—m, .
g 3™
In case of medium thickness shell, that corre-

sponds to S.P. Timoshenko's model, we have nonzero
components.

Sik —

011’012’013 ,(522,633
As the target function we take the sensitivity of
wound manometric spring, determined by the ratio of
the rotation angle of the cross-section per unit 6 length
to the P internal pressure:

Q
Ty = F . (27)
We consider the rotation tensor:
1
Wy = E(Ua/s -Uy,)- (28)

Here U; is the displacement vector in the metric of
the shell body; the slash / denotes covariant differentia-
tion in this metric.

The components of the rotation vector relative to
the x' x” axes:

It is known that
Upp = Mgl (29)
where =5 —-x’b]  a=1,2;
u,,=u,,+byu, =-0,. (30)

Here U, is the displacement vector in the metric of
the middle surface of the shell:

u,=0.

Taking into account the kinematic model (4), from
formulas (28-30), we can find the angle of rotation at
the point of the shell body relative tox’:

1, _ y— 1,
0=o, :E(Hﬂlv,z Uy, -bju,) :E(Muv,z +0,)).

The rotation angle of tube section defined as the
average value:

1 h L 5
=2—Uedxd1,

where L is the length of the perimeter of the median line
and dl is the element of the length of the section line
which is defined as:

dl=fa, dx'.

We perform the averaging over the thickness:
6(0) ——j (LT, , +6,)dx* =

1 h
:EJ.(HI (91+\V1)+61)dxz =
~h

1 . |
:E{zh[(& (6, +vy,)+6, )} :5(91 +y, +0,) =

1
= el +E\V1 .
Thus, the rotation angle per unit length of the tube
is:

-
0=—106()dl.
ZLJ,: 0

We assume that the required optimization parame-
ters are the thickness of the tube and the characteristic
geometric dimensions that define the cross-sectional
shape.

Thus, the optimization problem consists in finding
such a set of parameters at which the target function
(27) takes the largest value, and the conditions (26) are
satisfied, and the constructive and technological restric-
tions on form and size of the cross-section of the tube.

The solution of the problem as a problem of
nonlinear mathematical programming we will find using
a hybrid adaptive method [12], high efficiency of which
is confirmed by comparison with many known methods

Conclusions

1. In this article, mathematical model of the stress-
strain state of wound tubular manometric springs is
created. This model makes it possible to calculate the
stress-strain state as accurately as possible at any point
of research object, and therefore, at solving the problem
of optimization the parameters of the object, do not go
beyond the limits of the main constraint

c; < [G] )
where o; is stress intensity in i point;

[c] —is working stress.

2. The form in which the required displacements,
deformations and stresses are presented allows us to use
a hybrid adaptive method to solve the problem of opti-
mization of spring parameters, the high efficiency of
which is confirmed by comparison with other methods.
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PO3PAXYHOK UYTJIUBOCTI KPYYEHUX TPYBYACTUX MAHOMETPUYHUX ITPYKUH
CEPEJIHBOI TOBIIIUHA METOJA0OM TEOPIi OBOJIOHOK

0O.C. UyOykin

V oaniii pobomi euxnadeno nHosuil nioxio 00 UpienHs 3a0ayi PO3PAXYHKY HANPYICEHO-0ePOPMOBAHO20 CINAHY YYMAUBO-
20 eNeMeHmMa MAHOMEMPUUHUX | MENI08UX NPUIAi6, AKULL NPONOHYEMBCS 3ACMOCO8Y8ANU 8 NPOYECT U020 NPOEKMYBAHHSL.

O0b'ekmom 00CniOHCeHHs € BUMA MAHOMEMPUYUHA NPYHCUHA.

TIpeomemom docniddicents € Hanpysceno-0epopmosanuil Cman yiei npys’curu 3 pisHumu gopmamu nepepizia.
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Memoio docniddicents € CmEOPeHHs MAMEMAmMu4Hol MOOeNi HanPy#CeH0-0ehoOpMOBano20 cmany 00'ekma, wo 0036075€, 6
no0anbLULOMY, SUPTWUMU 3A80AHHS ONMUMIZAYLT 11020 KOHCMPYKMUGHUX NAPAMEMPIE 6 ANOPUMMI A6MOMAMUYHO20 PO3PAXYHKY
npu a8MOMAMUYHOMY NPOEKMYBAHHI NPYHCUH.

B pesynvmami oocnioscenns 6yna cmeopena mooenv HANPyHCeHO-0ePOpMOBAH020 CMAHY KPYYEHUX MAHOMEMPUYHUX
JHCeHb MA 3aNPONOHOBAHO MEMOO PO38'A3aHHA Yici 3a0ayi.

Obnacmu suxopucmanms — agiayiiini npuIaoU, NPUHA4eHi OJis GUMIPIOBANHS MUCKY PIOUH T 2a3is.

Knruosi cnosa: mamemamuuna mooennb, HANPys’HCEHO-0ePOPMOSAHUL CMAH, CKPYYEHA mpyouacma MaHOMempuyHa npy-
JHCUHA, onmumizayis Yinboeoi GyHKyYIL.

PACYET HYCTBUTEJILBHOCTH BUTBIX TPYBYATBIX MAHOMETPUYECKHUX IPYXXKUH
CPEJHEHU TOJIIMUHBI METOJ0OM TEOPHUH OBOJIOYEK

A.C. UyOyxun

B oannoii pabome usnooicen Hosvlll NOOX00 K peuleHuto 3a0adu paciema HAnpANCeHHO-0ehOpMUPOBAHHO20 COCTOAHUS
YYECMBUMENLHO20 DNIEMEHINA MAHOMEMPUYECKUX U Menioeblix npubopos, KOMopwlll npednazaemcs NPUMeHsams 6 npoyecce €20
NPOEKMUPOBAHUS.

Obvexkmom uccnedosanus A6IAEMCs UM MAHOMEMPUIECKAs NPYICUHA.

IIpeomemom uccnedosanus A6IAEMC HANPANCEHHO-0ePOPMUPOBAHHOE COCMOAHUE DMOU NPYHCUHBL C PASTUYHBIMU DOP-
Mamu ceyenui.

Lenvio uccnedosanus a61s1emcs co30anue Mamemamuieckoll MoOenu HanpA#CeHHO-0eDopMUPO8aAHHO20 COCMOAHUSL 00b-
eKma, no3eoasAoufell, 6 OalbHeuuweM, peuums 3a0a4y ONMUMU3AYUY €20 KOHCIMPYKMUGHbIX NAPAMempos 8 aneopumme aemo-
MAMU4ecKo2o paciema npu agmomMamuiecKom NPOeKMuPOSAHUL NPYHCUH.

B pesyrbmame uccnedosanus 6vina cozoana mooenb HANPSHCeHHO-0eDOPMUPOBAHHO2O COCMOSHUA GUMBIX MAHOMEMPU-
YeCcKUX NPYICUH, GbINOIHEHA NOCMAHOBKA 3A0a4u ONMUMUZAYUU ee NAPAMEMPO8 C YUemoM KOHCMPYKMUBHBIX U MEXHONI02uYe-
CKUX 02PAHUYeHUIl U NPeON0NHCEH MEMOO Peuenus dMoll 3a0ayu.

Obaacmb UCnONL306aHUA — ABUAYUOHHBIE NPUOOPDL, NPEOHAZHAUEHHbLE OIS USMEPEHUs. OABNeHUs. HCUOKOCMel U 2a308.

Knrouesvie cnosa: mamemamuyeckas mMooenb, HANPA*CEHHO-0eGHoOpMUPOBAHHOe COCMOAHIE, CKPYYeHHAs mpybuamas ma-
HOMEMpU4eCcKas NPYICUHA, ONMUMUZAYUS YeNe80U QYHKYUU.
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