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Анотація. В статті пропонується метод імовірнісного розрахунку сталевих 
ґратчастих опор зв’язку під дією статичної і поздовжньої пульсаційної складової 
швидкості вітру. При цьому враховується просторово-часова мінливість швидкості 
вітру і просторовий розподіл аеродинамічного коефіцієнту опор. 

Аннотация. В статье предлагается метод вероятностного расчёта стальных 
решётчатых опор связи под действием статической и продольной пульсационной 
составляющей скорости ветра. При этом учитывается пространственно-временная 
изменчивость скорости ветра и пространственное распределение аэродинамичес-
кого коэффициента опор. 

Abstract. This paper proposes a consistent method for the analysis of lattice towers 
reliability under stochastic along-wind aerodynamic actions. Stochastic actions are 
related to spatial-temporal changeability of wind velocity and spatial dependence of 
aerodynamic coefficient.  

Key works: wind turbulence, reliability, lattice towers, guyed masts. 

 

Nomenclature 
bh [m] width of tower face 
Caer [-] aerodynamic coefficient 
du [-] Solari’s constant (6.868) 
q [N/m] wind load on tower 
kr [-] terrain factor 
n [Hz] frequency 
z0 [m] roughness length 
Tef [yr] lifetime of the tower 
U [m/s] stochastic processes of the mean wind velocity 
u' [m/s] random processes of longitudinal nil mean turbulent fluctuations 
w [Pa] wind pressure 
βu [-] turbulence intensity factor 
φ [rad.] angle of wind attack 
φh [-] function of wind velocity profile 
Γ [-] Gamma-function 
N+ [-] outlier number of random process 

Subscripts and Superscripts 
m mean wind 
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u turbulent wind 
~ random variable or stochastic process 
^ standard deviation 
− mathematical expectation 

Itroduction. Along-wind vibrations of structures present one of the most well-
known subjects in the field of wind engineering. This is due, on the one hand, to 
the relative simplicity of the excitation mechanism the longitudinal turbulence, 
and, on the other hand, to the gust factor technique (Davenport 1961, 1964; 
Barshtein 1957, 1959, 1974), a method as simple as it is reliable. 

Despite this fact, probabilistic character of wind turbulence is very often place 
emphasis only and probabilistic character of the mean wind is not considered. In 
building codes this approach seems justified. But in probabilistic design this 
approach leads to underestimations of construction reliability. 

Steel lattice towers belong to a class of slender vertical structures. The accuracy 
of reliability estimation of these structures first of all depends on adequate 
description of stochastic model of wind load (mean wind and atmospheric 
turbulence). Besides, the method of reliability estimation should consider spatial 
variability of wind velocity and should be correct and simple. 

Faced with the growing of the problem and the evident lack of engineering 
design criteria, this paper formulates a mathematical model of the reliability 
estimation of slender vertical structures (e.g. lattice towers and guyed masts) 
subjected to gust-excited along-wind vibrations. 

1. Stochastic Along-wind Process. The stochastic process of instantaneous 
wind velocity ( , , )U z t τ  is given by the sum of a macro-meteorological com-
ponent defined as the stochastic process of mean wind velocity ( , )U z tm  on 
average time interval, and micro-meteorological component ( , )u z τ  defined as 
stochastic process of atmospheric longitudinal turbulence. 

Process of mean wind velocity is product of stochastic stationary processes 
( ),10U tm  and function ( )zhϕ  of wind vertical profile. The function ( )zhϕ  can 

be described by logarithmic law: 

( ) ln[ / ]0z k z zrhϕ = .      (1.1) 

The experimental distributions of mean wind velocity at 10m height are well 
corresponded to the Weibull’s law. Its density distribution is written as: 

1
( ) / exp[ / ]U Uf U U Um U U U

β β
β α α

−
= − .   (1.2) 
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Mathematic expectation ,10mU , standard deviation ,10
ˆ

mU  and coefficient of 

variation ,10mV  of process ,10( )mU t  is given by: 

1/ 1(1 ),10
UU Um U
β

α β−= Γ + ;     (1.3) 

2/ 1 2 1ˆ [ (1 2 ) (1 )],10
UU U Um U
β

α β β− −= Γ + − Γ + ;  (1.4) 

1 1 2(1 2 ) / (1 ) 1Vm U Uβ β− −= Γ + Γ + − .    (1.5) 

Power spectrum , ( )msω ω , effective frequency ,e mω  and narrow-band factor 

,mωβ  are frequency characteristics of process ,10( )mU t . For practical use 
equations for resulted in table 1 are recommended. 

 

Table 1 
Frequency characteristics of stochastic process of mean wind velocity 

at 10m height 

, ( )msω ω  ,e mω  ,mωβ  

2 22 /[ ( )]α π α ω+  2α  3  (1,732) 
3 2 2 24 /[ ( ) ]α π α ω+  α  2 2 1−  (1,826) 
5 2 2 316 /[3 ( ) ]α π α ω+  / 3α  3.0 

As is known, stochastic process of mean wind velocity at 10m height generates 
stochastic process of the mean wind pressure 2( ) ( ) / 2,10 ,10w t U tm mρ= . 

Distribution density of this process will submit also to Weibull’s law (1.2) with 
parameters ,w wα β : 

/ 2, /1, 6 ww wU U
ββ β α α= = .    (1.6). 

The effective frequency of stochastic process of mean wind pressure can be 
described by means effective frequency ,e mω  as follows: 

, ,e w e m mVω ω= .     (1.7) 

Thus it is possible to pass from consideration of probabilistic model of the mean 
wind velocity to probabilistic model of mean wind-excited pressure on lattice 
tower surfaces. 
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The turbulent component ( , )u z τ  along axis z is a nil mean Gaussian random 
stationary process described in the domain of the frequency n, by its cross-
power spectrum: 

( , ', ) ( , ) ( ', ) ( , ', )u u uS z z n S z n S z n z z n= coh .   (1.8) 

Here ( )uS i  is the power spectrum of ( )u i  and ( )coh i  is ( )u i  coherence 
function along z. The closed form solution derived in this paper is based on the 
model developed by G. Solari [1]: 

2 5/3
( , ) ( ) / ( , )

[1 1.5 ( ) / ( , )]
u u u m

u u u m

nS z n d L z n U z t
d L z n U z tσ

=
+

;   (1.9) 

2 '
( , ', ) exp

( , ) ( ', )
uz

m m

nC z z
z z n

U z t U z t
⎡ ⎤−

= −⎢ ⎥
+⎢ ⎥⎣ ⎦

coh ;   (1.10) 

0

( ) 300 ( / 2 ;
;

00)
0.67 0.05ln( )

u uL z z
z

νλ
ν

=

= +
     (1.11) 

' ,10( )u u mU tσ ε= ;      (1.12) 

0/ ln( / )u k z zεε = ,      (1.13) 

where uσ  is standard deviation of turbulence, assumed as independent of z; uL  

is integral length scale in a wind direction; uzC  is exponential decay coefficient. 
Detailed discussion on the properties of Eqs. (1.9) – (1.11) and an introduction 
to advanced turbulence modelling are reported in [1, 2]. 

Let’s notice, that turbulence characteristics uσ , ( )uS i , ( )coh i , uL  and uε  
should be examined as random variables. The probabilistic nature of these 
variables is caused by stochastic properties of three dimensionless factors: uzC , 

uλ , kε . This statement confirms, both our researches, and researches of the 
Italian scientists [1]. Statistical characteristics of mentioned above factors follo-
wing: 10Cuz = , ˆ 2Cuz = ; 1uλ = , ˆ 0, 25uλ = ; 0, 4 'k uβε = , ˆ 0,05 'k uβε = : 

6 1,1 [ln( ) 1,75]' 0arctg zuβ = − + .    (1.14) 
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2. Along-wind Excited Response. Let’s consider steel lattice tower, which 
schematised as slender cantilever vertical beam coaxial with z, of total height 
H . Tower breaks on N  sites with current number 1, 2, , , , ,j k m N= … … …  and 
it has a linear elastic behaviour with viscous damping. The along-wind displa-
cement of tower point at height jz  is expressed by [3, 4]: 

( , , ) ( , ) ( , )j m j u jy z t y z t y zτ τ= + ,    (2.1) 

where my  is the mean displacement caused by processes ( , )m jU z t  and uy  is  

nil mean fluctuating displacement caused by processes ( , )ju z τ . 

For carrying out of calculations it is suitable to use equivalent static wind load 
which would cause the same displacement of lattice tower as from a gusty wind 
in a wind direction (Davenport, 1964): 

2
,10

( , ) ( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( ) ( ),
m u m G

m G h aer h

q z t q z t q z q z t z

w t z z C z b z

ψ

ψ ϕ

= + = =

=
Σ

   (2.2) 

where ( )G zψ  is the gust factor along z, assumed as random variables; ( )hb z  is 
the size of tower orthogonal to the wind direction. 

Solving the equation (2.2) by taking several vibrations modes into account in 
general calls for numerical analysis. The problem may be solved in closed form 
assuming that response depends only on the first mode. In this case the 
fluctuating wind load can be expressed by (formula 2( ) ( / )z z H=α  is used for 
indicated mode shape): 

,10( ) ( ) ( )u mq z w z m zη= ;     (2.3) 

2 2( ) ( ) / / ( )z z M z MHη ηη α= =∆ ∆ ;   (2.4) 

2

0

( ) ( )
H

M m z z dzα= ∫ ;      (2.5) 

4 2 2
2

4 2 2 2 2
1 10

8 ( )
[1 ( / ) ] ( / )

rk k J n dn
H n n n n

ε
η γ

∞

=
− +∫∆ ;   (2.6) 
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2 2 2( ) ( ) ( ) ( ) ( ) ln ln
0 0 0 0

( , ) ( , ) ( ) .' ' '

H H z zk mJ n b z b z C z C z z zm aer aer m mh k h k k z z

S z n S z n dz dzm mu u uk k

= ×∫ ∫

× ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

iΛ

 

Let’s consider relation of the power spectrum ( )uS i  at heights z  and H . 

Taking into account that 1,5 ( ) / ( , ) 1' 'd L z n U z tmu u  it’s possible to write 

1/3
'

0'

( , ) 1 ln
( , )

u
S

u

S z n zk
zS H n zν

⎛ ⎞⎛ ⎞
≈ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.    (2.7) 

The constant Sk  is defined by formula 

1/3
0[ ln( / )]Sk H H zν= .     (2.8) 

For further analysis tower has form of isosceles trapeze. Width of bottom is bb , 
width of top is tb . Subsequently width at any height of tower will be expressed 
by the equation 

( ) [ (1 ) ]h b bb z H zβ α= − − ,     (2.9) 

where /b t bb b=α , /b bb H=β  are non-dimensional constants of geometrical 
form of the tower. 

Substituting equations (1.9), (2.6) and (2.8) into equation (2.5) provides 
salutation (Pichugin-Makhinko, 2008): 

S S S SG Jη ξ ν= ⋅ ⋅ ⋅∆ ;     (2.10) 

22S r S bG k k kε β= ;     (2.11) 

2
'

5
0 2 2 2 2 2 2 3

'

2

[( ) ][1 1,5 / ]

u
S

S S u

d d

d

ε ε
ξ

ε ε γ ε ε ε

∞

=

− + +
∫ ; (2.12) 

approximating formula: 

( )0,67 ln 0,105 3,01S Sξ ε= ⋅ + + ;   (2.13) 
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2
0 0

4 42 2
3 3 3 3

0 0

1 [ (1 )][ (1 )]

( ) ( ) ln ln ,

H H

S k b m b

k m
aer k aer m m k mk

J H z H z
H

z zC z C z z z dz dz
z z

ν ν

α α

− −

= − − − − ×

⎛ ⎞ ⎛ ⎞
× ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫
 

where 
( , )

( )1 '

U H tm
S n L Hu
ε =  is the non-dimensional period of lattice tower fluctu-

ation; 1S ≤ν  is factor of spatial correlation. For steel lattice tower its value de-
pends on terrain category, tower height and non-dimensional period. It is given 
by: 

4 42 2
1 23 3 3 3

' ' 1 2 2 11 2
0 00 0

2 2 2 2
1 12 0

4 42 2
1 23 3 3 3

' 2 11 2
0 00 0

2 2 2 2
1 10

( , ) ln ln ( , , )

[1 ( / ) ] ( / )
.

( , ) ln ln

[1 ( / ) ] ( / )

H H

u u

S H H

u

z zS H n z z z z n dz dz
z z

dn
n n n n

z zS H n z z dz dz
z z

dn
n n n n

− −

∞

− −

∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− +
=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− +

∫ ∫
∫

∫ ∫
∫

Λ
ν ν

ν ν

γ
ν

γ

 

On basis of formula (2.10) for gust factor it is possible to offer the equation, 
which is integrally in closed form and simple to apply: 

2 2

2 4
0

( ) ( )( ) 1
( ) ( ) ( ) ( )

S S S S
D H

h aer h

G J H z z m zz
b z C z z z m z dz

⋅ ⋅ ⋅
= +

∫
ξ νψ

ϕ
.  (2.14) 

Probabilistic properties of the gust factor are formed under the influence of 
stochastic nature of three non-dimensional factors: dynamic coefficient Sξ , 

factor of spatial correlation Sν  and factor SG . In the meantime, probabilistic 
properties of these coefficients are defined by probabilistic properties of factors 

uzC , uλ , kε  (see section 1). Considering this fact, let’s designate through SΜ  

product of three random variables S S SG ⋅ ⋅ξ ν , and designate through ( )zΠ  
determinative variable 
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2 2

2 4
0

( )( )
( ) ( ) ( ) ( )

S
H

h aer h

H J z m zz
b z C z z z m zϕ

⋅ ⋅
=

⋅ ⋅ ⋅ ∫
Π .   (2.15) 

Having entered the specified designations, the gust factor will be expressed as: 

( ) 1D Szψ = +Μ Π .      (2.16) 

The Eq. (2.16) shows, that statistical properties of the gust factor will be defined 
by statistical properties of variable SΜ . The distribution law of variable SΜ  
was searched by means of Monte-Carlo simulations. By modelling it was 
considered, that distribution law of factors uzC , uλ , kε  in the situation of an 
information lack can be accepted asymptotic normal. The study was carried out 
by generating 107 realisations, associated with different loading conditions. As a 
result of modelling it is found out, distribution law of random variable SΜ  a 
small differs from double Gumbel’s distribution with parameters (see Fig. 1): 

0, 0,
ˆ ˆ0, 45 ; 1,282 /Sγ λ= − =Μ ΜΜ Μ Μ ,   (2.17) 

where SΜ , ˆ
SΜ  are mathematic expectation and standard deviation of variable 

SΜ . 

 
Fig. 1. Distribution density of variable SΜ : 

(a) H = 50m, n1 = 0.5Hz; (b) H = 150m, n1 = 1.0Hz 

This conclusion does not depend on height and type of lattice tower, terrain 
category, mean wind pressure and turbulence intensity. 

As a consequence, under Eq. (2.2) probabilistic properties of sum wind pressure 
( , )w z tΣ  on lattice tower will be defined by product of stochastic process of 

mean wind pressure ,10 ( )mw t  distributed under Weibull’s law and random vari-
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able of gust factor ( )G zψ , distributed under Gumbel’s law. The density distri-
bution of sum wind pressure ( , )w z tΣ  is expressed as (Pichugin-Makhinko, 
2007): 

2

11
0, 0,

2 1
0, 0,0

/ ( )exp
[ ln( ln ) / ]

( )
[ ln( ln ) / ]( )

w w

ww

w w

h

ww

w h

w z
Zwf w dZ

Zz

β β

ββ

β β

ϕ
α γ λβ
γ λα ϕ

Σ
−

Μ ΜΣ
Σ Σ −

Μ Μ

⎡ ⎤−
⎢ ⎥

− −⎢ ⎥⎣ ⎦=
− −∫ . 

This formula is inconvenient and difficult for practical use. Hence possibility of 
approximation of the formula by Weibull’s distribution (1.2) has been proved 
with parameters: 

2
,10

, 1

( ) ( )
( )

(1 )

w

wm D h
w ref w h

w

w z z
z

β
βψ ϕ

α α ψ
β −

⎛ ⎞
= =⎜ ⎟⎜ ⎟Γ +⎝ ⎠

.   (2.18) 

Here 2( ) ( ) ( )h D hz z z=ψ ψ ϕ  is coefficient named in “factor of dynamic 
intensifying”. 

Equation (2.18) together with the formula (1.2) allows carrying out probabilistic 
dynamic designs of lattice towers in the quasi-static formulation. 

3. Random Wind Directions on Tower. The wind flow on a tower is charac-
terized not only by random change of wind velocity, but also by random change 
of wind direction. It leads to induce in tower elements of stretching stochastic 
stress and compression stochastic stress. For that reason it is necessary to know 
distribution law of these stresses at reliability estimation, both individual 
elements and towers. Thus probabilistic model for stochastic wind directions is 
examined. At the heart of model there is a hypothesis about equal probability of 
different wind directions. Hypothesis is fair because orientation of communica-
tion towers is not on wind rose and according to accepted directional diagram 
and terrain topography. 

Aspects of this model are examined on an example of square and triangular 
lattice tower, schematically shown on Fig. 2. The unit load moves on circle 
from a chord with number 1 clockwise. Numbers of settlement situations are 
thus fixed. As a result there is a sequence from eight and six members 
accordingly. It’s possible to present number of settlement situation as discrete 
random variable adopting values from 1 to 8 for square tower and from 1 to 6 − 
for triangular tower with probabilities p1-8 = 0.125, p1-6 = 0.167 accordingly. If 
these cases are plotted in Cartesian co-ordinates for one of tower elements 
(chord, girder, diagonal strut) as it is shown on Fig. 3 it will be obvious, that it 
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is possible to unite cases 1,3; 4,8; 5,7 for square tower and to unite cases 1,3; 
4,6 for triangular tower. This fact allows to replace discrete random variable 
with a sinusoid curve: 

max( , ) ( , ) sin( )dN z t N z tϕ = α −ϕ ,    (3.1) 

where maxN  is maximum stretching stochastic stress in elements; dα  is 
constant depending on tower plan form, type (chord, girder, diagonal strut) and 
position of tower element. In Table 2 values of constant dα  for chords, girders 
and diagonal struts of square and triangular towers are resulted. 

Let’s notice, that values of constant dα  depend also on choice of altitude refe-
rence. In this paper altitude reference is shown on Fig. 2. 

 

Fig. 2. Wind directions for square tower 

Table 2 
Values of constant dα  

Type of tower elements Form plane Marks of chord 
and faces chord girders diagonal strut 

I A 3π/4 π 2π 
II B 5π/4 3π/2 5π 
III C 7π/4 2π π Square 

IV D 9π/4 5π/2 3π 
I A 5π/6 0 0 
II B 9π/6 2π/3 2π/3 Triangular 
III C 13π/6 4π/3 4π/3 
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Fig. 3. Wind directions for triangular tower 

 

Fig. 4. Stress in chord from attack angle: 
(a) for square tower; (b) for triangular tower 

To analyse the structural behaviour with respect to reliability, response must be 
expressed in terms of stresses. The stochastic process of wind-excited vibrations 
of tower ( , )q z tΣ  produces fluctuating stresses ( , , )S z tϕ ϕ  which determine 
failure of individual elements of the tower: 

( , , ) ( , ) ( , )aerS z t N z t C zϕ
ϕ ϕϕ ϕ= ,    (3.2) 

where ( )aerCϕ i  is the functional dependence of aerodynamic coefficient on a 
wind direction. 

Thus for reliability estimation of lattice tower elements it’s necessary to know 
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distribution law of stochastic process ( , )N z tϕ  and random variable ( )aerCϕ i . 

Due to structural linearity, of the process max ( , )N z t  will have Weibull’s law 
distribution (see section 2). Mathematic expectation and standard deviation of 
process max ( , )N z t  can be expressed as: 

max max

max max

( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) (

;

),
h

h

N z z w z b z

N z z w z b z

α

α

=

=
Σ

Σ

    (3.3) 

where max ( )zα  is influence factor of wind load for individual elements of the 
tower; ( )w zΣ  and ˆ ( )w zΣ  are mathematic expectation and standard deviation of 
process ( , )w z tΣ . 

Random variable ϕ  is described by uniform distribution, therefore distribution 

density of random variables sin( )dAϕ α ϕ= −  is given by: 

2( ) 1 1Af A Aϕ ϕ ϕπ= ⋅ − .     (3.4) 

It makes possible to express above distribution density of stochastic process 
( , , )S z tϕ ϕ  as product of three random quantities: 

max( , , ) ( ) ( , ) ( )aerS z t A N z t Cϕ
ϕ ϕϕ ϕ ϕ= .    (3.5) 

For further decision of a problem it is necessary to investigate dependence 
( )aerCϕ i  in details. 

4. Aerodynamic Coefficient. Aerodynamic coefficient characterizes aerodyna-
mic properties of the lattice towers. It depends from the sizes, lengthening and 
relative positioning of plane lattice towers; from forms cross-section of 
individual elements towers and from sizes of these elements; from area of the 
gusset plate, from elements quantity in one node; from wind direction and 
solidity ratio. Load code narrows these frame-works and does dependence of 
aerodynamic coefficient from four factors: from quantity of sides of lattice 
tower, from the tower form in the plan, from wind direction and solidity ratio. 
Three first factors are considered in details by building codes. The fourth factor 
in building codes is reduced to consideration two or three most wind directions 
on a spatial lattice structures. In framework of method of safety partial factors 
such approach is quite justified, but in probabilistic design of towers it is not 
enough. In probabilistic design we should operate with functional dependence 
of aerodynamic coefficient on a wind direction and solidity ratio. Therefore in 
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this section on the basis of numerous experiments [5] influence of the 
mentioned above two parameters on aerodynamic coefficient is studied. Results 
of this studying for triangular and square towers are illustrated by group of 
figures 5-7 and allow present following remarks. 

  

Fig. 5. Relation 0/C Caer aer
ϕ   

for square towers 
(a) circular members; (b) flat-sided 

members 

Fig. 6. Relation 0/C Caer aer
ϕ  for triangular 

towers 
(a) circular members; (b) flat-sided 

members 

Dependence ( )aerC ϕ  has periodic character with period / 3T = π  and 
2 / 3T = π  for triangular lattice towers and / 2T = π  for square towers. Thus 

for dependence ( )aerC ϕ  it is possible to offer trigonometrically approximating 
formula: 

0
0 1 2/ cos( )aer aerC C A A Aϕ ϕ= + ,    (4.1) 

where A0, A1, A2 − constants which depend on the form of cross-section elements 
of lattice tower and solidity ratio of flat side. 
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Fig. 7. Relation 0/C Caer aer
ϕ  for triangular 

tower with circular-section members 
Fig. 8. Spatial section of lattice tower 

The sense of constants A0, A1, A2 is discussed further. Parameter A2 characterises 
the period of function (4.1) and it is connected with period elementary relation 

2 2 /A T= π . That’s why for all square towers 2 4A =  (Fig. 5), and for 
triangular towers 2 6A =  or 2 3A =  (Fig. 6, 7). Situations when it is necessary 
to accept for triangular towers 2 6A =  and 2 3A =  explains Figs. 6, 7. Figures 
show that formula (4.1) at 2 6A =  (Fig. 6) allows to describe specific character 
of aerodynamic factor near to angle of wind attack 30ϕ ≈ °  and 90° . Formula 
(4.1) does not allow to describe this character at 2 3A = . Equation (4.1) at 
argument 2 6A =  will overestimate values of aerodynamic coefficient near to 
angle of wind attack 60ϕ ≈ °  which will be adequately described by equation 
(4.1) at 32A = . Therefore formula (4.1) at 2 3A =  needs to be applied to 

spatial lattice structures with solidity ratio 0,3ψ ≥ , accordingly, at 2 6A =  
equation (4.1) will be more correct to describe aerodynamic properties of spatial 
lattice structures with smaller values of solidity ratio. In probabilistic design of 
lattice towers it is necessary to consider two variants and to choose variant 
which gives results in a safety margin. 

By means of constants A0, A1 maximum max
aerC  and minimum min

aerC  values of 
aerodynamic coefficient of lattice towers are defined: 

max 0
0 1

min 0
0 1

/

/ .

;aer aer

aer aer

C C A A

C C A A

= +

= −
     (4.2) 
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For constants A0, A1 it is possible to offer inverse relationships, on the basis of 
that values max

aerC , min
aerC  are resulted in building codes and wind engineering 

literature: 
max min 0

0
max min 0

1

0,5( ) /

0,5

;

( ) / .
aer aer aer

aer aer aer

A C C C

A C C C

= +

= −
     (4.3) 

For square towers aerodynamic coefficient is minimum when a wind is perpen-
dicular one of tower sides (designated 0

aerC ). In building codes, for example 
Eurocode 1, and many wind engineering manuals it is possible to find relation 

max 0/aer aerC C  which is designated as maxk . Hence the equation (4.3) after 
simplification is given: 

0 max 1 max( 1) / 2, ( 1) / 2A k A k= + = − .   (4.4) 

For triangular towers relation of coefficients max 0/aer aerC C  to equally unit, and 

relation min 0/aer aerC C  is designated as mink . Values of factor mink  are resulted in 
wind engineering literature together with coefficient maxk . Consequently for 
trihedral towers the formula is used similarly to the equation (4.4): 

0 min 1 min(1 ) / 2, (1 ) / 2A k A k= + = − .   (4.5) 

Formulae (4.3) − (4.5) can be used in the absence of experimental data on 
aerodynamic coefficient. In this work constant A0, A1 for some values of solidity 
ratio of triangular and square towers are resulted in the table 3. 

Table 3 
Value of constants A0 and A1 

ψ for square tower 
circular members flat-sided members  

0,132 0,163 0,349 0,535 0,164 0,365 0,55 
A0 1,13 1,14 1,12 1,15 1,15 1,16 1,19 
A1 0,03 0,04 0,08 0,15 0,05 0,09 0,17 

ψ for triangular tower 
circular members flat-sided members  

0,163 0,364 0,547 0,159 0,168 0,345 0,531 
0,875 0,87 0,925 0,915 A0 0,945 0,92 0,935 0,893 0,878 0,94 0,9 
0,125 0,13 0,075 0,085 A1 0,055 0,08 0,065 0,108 0,122 0,06 0,1 

It would be desirable to note also that offered formulae in some cases describe 
experimental data with a small error. We think it is not error, and there is a 
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consequence of statistical scatter of values of aerodynamic coefficient received 
experimentally. Therefore further it is necessary to give formulae (4.1) - (4.5) 
corresponding probabilistic description. 

5. Stochastic Stress State. Probabilistic model of stress stochastic process 
( , , )S z tϕ ϕ is based on the Eq. (3.5). For estimate of distribution density of this 

process it is necessary to know distribution density of three random quantities in 
the Eq. (3.5). As shown above, the distribution density ( , , )S z tϕ ϕ  submits to 

Weibull’s law and distribution density Aϕ  is given by formula (3.4). For 

distribution density ( )aerCϕ i  equation similar to the formula (3.4) is received: 

0

2 0 2
1 0

( )
( / )

aer
C aer

aer aer

Cf C
A C C A

ϕ
ϕπ

=
⋅ − −

.   (5.1) 

Owing to noncorrelated of random components max ( , )N z t , Aϕ , ( )aerCϕ i  their 
combined distribution density looks like: 

,2( )
2

0

1 1( ) 1 ln
w

w

S

f S S dZ
Z

ϕ
ϕ

αζ
β

ϕ ϕ ϕπ
⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ ;   (5.2) 

,( ) exp | | /w
wS S β

ϕ ϕ ϕζ α⎡ ⎤= −⎣ ⎦ ;    (5.3) 

0
, , max0 [ ( ) ( ) ( )]w w

w w ref aer hA z C z b z= β β
ϕα α α .   (5.4) 

The frequency structure of process ( , , )S z tϕ ϕ  can be characterized by its 
effective frequency and a power spectrum. For these purposes it is possible to 
use one of three lines of table 1. 

6. Reliability of Tower Elements 

Let’s examine the steel element of lattice tower takes sign-variable stochastic 
stress of compression and a stretching. The principal ideas of applied method 
were developed in works [6-9]. The failure of an element takes place when a 
stochastic stress ( , )S z tϕ  under equivalent static wind load exceeds the random 
limit of carrying capacity of the tower element. Failure of the element is defined 
by the equation: 

( ) 0RS S t− < .       (6.1) 



Збірник наукових праць 
Українського науково-дослідного та проектного інституту 
сталевих конструкцій імені В.М. Шимановського. – Випуск 3, 2009 р. 
 

 188 

The non-failure probability of tower element in general case is estimated by the 
equation (Pichugin-Makhinko, 2006) [6, 8]: 

0

( ) exp[ ( | )] ( )R ef R R RP t N S T f S dS
∞

+= −∫ ;   (6.2) 

,

0,

( )ˆ( | ) ( )
( )2

e m ef R
R ef R

T f S
N S T S f S

f S+ = = ϕ
ϕ ϕ

ϕ ϕ

ω

π
.  (6.3) 

Here efT  is lifetime of lattice tower; 0,S ϕ  is characteristic maximum of 

stochastic stress ( , )S z tϕ ; ( )Rf i  is density distribution of carrying capacity of 

the tower element; N̂ϕ  is standard ( , )S z tϕ : 

2max
ˆˆ 1

2 m
NN V −= +ϕ .      (6.4) 

Equations (6.2) - (6.3) consider spatiotemporal structure of stochastic process 
( )Sϕ i , its distribution law and it completely solves a problem of reliability of 

individual elements of the lattice tower. However its application in practice is 
related with bulky and inconvenient procedures of numerical integration. 
Therefore hypothesis is applied to quantity ( )N+ i : for any stochastic process 
with distribution density which correspond to exponential type it is possible to 
present ( )N+ i  as (Pichugin-Makhinko, 2005): 

( )0, 0,
ˆ( | ) exp /R ef RN S T S S+

⎡ ⎤= − −⎣ ⎦ϕ ϕ ϕλ γ ,   (6.5) 

where 0,ϕγ , 0,ϕλ  are normalised characteristic maximum and normalised 

characteristic intensity of stochastic stress ( , )S z tϕ  accordingly [9]: 

equation root: , 0,( ) 2e m ef nT f ϕ ϕω γ π= ;         (6.6) 

0, 0,
0,

1 [ ( ) | ]
( ) n

n

d f
f dϕ ϕ ϕ
ϕ ϕ

λ γ γ γ
γ γ

= − = .   (6.7) 

Here ( )nf ϕ i  distribution density of normalised type of process ( , )S z tϕ . It is 
given by 
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2( )
2 2

0

1( ) 1 ln w

nf dZ
Z

ζ γ
β

ϕ
ψγ γ ψ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ ;   (6.8) 

1 2(1 ) (1 ) / 2w mVψ βΓ −= + + ;     (6.9) 

( ) exp[ (| | ) ]wβζ γ γ ψ= − .     (6.10) 

The used hypothesis allows to formulate non-failure probability of tower 
element as 

[ ]{ }
1

2

0, 0,

1( ) exp exp ( ) 0.5
2

1(

;

) ,

RV

R
R

P t E Z Z dZ

E Z p Z
Vϕ ϕ

π

λ γ

−

∞

−

= − −

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫
  (6.11) 

where RV  is coefficient of variation of carrying capacity of tower element; 
ˆ ˆ/R Rp N N= ϕ  is relation of standard. 

7. Reliability of Tower Spatial Section. The reliability of a lattice tower is 
defined by reliability of tower spatial sections. The reliability of tower spatial 
sections depends on their structural form. Therefore procedure of reliability 
estimation of the most widespread spatial sections of square and triangular 
towers is examined further. Failure section is interpreted as failure of any 
section element. It is considered, that reliability of elements identical to 
designation (chord, girder, diagonal strut) is equal. This statement is entered on 
the basis of hypothesis about equal probability of different wind directions. 
Let’s go into designations: ( )chP t  − chord reliability; ( )gP t  − girder reliability; 

( )dsP t  − diagonal strut reliability. 

1. Triangular tower with cross bracing (see Fig. 8): 3 6
sec ( ) ( ) ( )ch dsP t P t P t= . 

2. Triangular tower with single lattice and girders: 3 3 3
sec ( ) ( ) ( ) ( )ch g dsP t P t P t P t= . 

3. Triangular tower with tension bracing: 3 6 3
sec ( ) ( ) ( ) ( )ch ds gP t P t P t P t= . 

4. Triangular tower with cross bracing and girders:  
3 3 2 3

sec( ) ( ) ( ){1 [1 ( )] }ch g dsP t P t P t P t= − − . 

5. Square tower with a cross bracing: 2 8 2
sec ( ) ( ) ( )[2 ( )]ch ds chP t P t P t P t= − . 
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6. Square tower with single lattice and girders:  
3 4 4

sec ( ) ( ) ( ) ( )[2 ( )]ch ds g chP t P t P t P t P t= − . 

7. Square tower with tension bracing: 4 8 4
sec ( ) ( ) ( ) ( )ch ds gP t P t P t P t= . 

8. Square tower with a cross bracing and girders:  
3 4 4 4

sec ( ) ( ) ( ) ( )[2 ( )][2 ( )]ch g ds ch dsP t P t P t P t P t P t= − − . 

If to accept ( ) ( ) ( )ch g dsP t P t P t p= = =  it’s possible to make some remarks 
about sections reliability. Section 4 has greatest reliability, the least - section 7 
as it can be only stretched. The section 8 is more reliable, than the section 4, and 
section 7 is less reliable, than section 3. It is possible to explain that square 
sections contain more elements than triangular sections. At tension bracing in 
square and triangular sections failure of any elements breaks geometrical 
stability of tower section. Hence reliability of these sections that above, than 
smaller elements quantity is contained by sections. At cross bracing with girders 
of square section contain more reserve elements, than triangular sections. 
Therefore they are more reliable. 

Conclusions 

This paper formulates a mathematical method for the reliability estimation of 
lattice towers to gust-excited along-wind vibrations. The method, integrally in 
closed form and simple to apply, leads to analytical expressions of the 
equivalent static wind load, of the gust factor, of the aerodynamic coefficient 
and reliability of tower spatial section. Relative simplicity, wide field of 
applications, the precision, and the reliability of this method make it very 
suitable for rapid engineering design of lattice tower and guyed masts also. 
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