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Анотація. Розглядаються 2 види покриттів: 1) сітки, сформовані усередині контуру 
двома нахиленими плоскими арками і 2) сітки у вигляді гіпару, оточені замкнутим 
контуром элептичної форми в плані. Дані рекомендації щодо вибору початкової 
форми, розмірів сіток і контурного кільця. Наведені методи визначення внутрішніх 
зусиль і переміщень для сіток і контурного кільця. Наведені приклади покриттів, 
побудованих в Естонії, для акустичних екранів трибун. Приведені рекомендації 
щодо використання гіпарів для покриттів спортивних і громадських будівель. 

Аннотация. Рассматриваются 2 вида покрытий: 1) сети, сформированные внутри 
контура двумя наклоненными плоскими арками и 2) сети в виде гипара, 
окруженные замкнутым контуром элептичекогой формы в плане. Даны 
рекомендации по выбору начальной формы, размеров сетей и контурного кольца. 
Представлены методы определения внутренних усилий и перемещений для сетей и 
контурного кольца. Приведены примеры покрытий, построенных в Эстонии, для 
акустических экранов трибун. Даны рекомендации по использованию гипаров для 
покрытий спортивных и общественных зданий. 

Abstract. Two types of roof networks are under investigation in our report: 1) 
networks, formed inside the contour of two inclined planar arches and 2) hypar-formed 
networks, surrounded by a closed contour ring, having an elliptical form on plan. 
Recommendations for choice the initial form and dimensions of the network and the 
contour ring are given. Methods of determination of inner forces and deflections for the 
network and the contour ring are presented. Erected in Estonia networks for the 
acoustic screens of song festival tribunes is presented. Use of hypar-networks as roof 
structures for sports and spectacle halls is recommended. 

Key words: Cable structures, suspension roofs, hypar-formed networks. 

 

Introduction. The most propagated roof networks are shaped inside the contour 
of two inclined planar arches. Massive counter-forts are usually supporting the 
arches. When the zones at arches’ abutments have a curved form, the areas 
neighbouring the keys of arches are very flat. The curvature in these flat zones 
may even change the direction for stretching cables. As an example of an 
unsuitable behaviour of the network in these zones the well-known Raleigh 
Arena may be presented, erected in the USA in 1953. For stabilizing the action 
of the blast wind, it was necessary to strengthen it by additional inclined cables. 
Investigation of pre-stressed roof networks started at TUT at the end of 1950s in 
connection with design of the acoustic screen for the song festival tribune in 
Tallinn [1]. This acoustic screen is a hanging roof of negative Gaussian 
curvature. The acoustic factor was dominant in the design of the screen surface, 
so it is inclined in the direction of the audience. The roof of the screen consists 
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of ribbed wooden panels, resting on the bearing cables. Its pre-stressed network 
is formed inside the contour case, consisting of two planar arches. The back and 
the front arches have common main supports in the form of massive counter-
forts, which develop considerable horizontal reactions to the arch forces. 
Vertical columns are supporting the back arch. The front arch has no 
intermediate supports, therefore it has to resist not only the moments applied in 
its plane, but the perpendicular forces as well. Experience in design, model 
testing and field investigation on the acoustic screen in Tallinn served for 
subsequent investigations on network structures. The main advantages of 
networks with elliptical contour ring consist in its fluent form and the 
possibility of renounce to outer horizontal supports. These advances and 
thorough investigations encouraged us to use the network of this kind in design 
and construction of the acoustic screen for the song festival tribune in Tartu. 

Initial form of the network. Networks inside the contour of two inclines 
planar arches. The initial form of the network depends upon distribution of 
cables’ prestress forces and of mutual connecting cables in the nodes. For the 
sake of simplicity of building up the network, usually networks with planar 
cables (orthogonal networks or surfaces of revolution) and networks formed in 
conditions of free mutual sliding of the cables in all internal nodes (so-called 
self-forming networks) are preferred. The cables of the former networks are to 
be connected during pre-stressing the network. In actual cases the network’s 
surface is exclusively determined by the conditions of equilibrium of the nodes 
[2]. Our main attention in the following will be paid to the self-forming and 
orthogonal networks. In the first case the co ordinates of a network may be 
determined by a vector equation of equilibrium for every node i,k. 

Orthogonal network is the simplest case for determination of the initial form 
of a network. Both the carrying and the stretching cables are located in parallel 
and orthogonal vertical planes. The spacing between the cables has to be 
determined in the state of structural design. Only the nodes’ co-ordinates, which 
have to be determined by the conditions of equilibrium, are vertical. Such kind 
of network is characterized by equal horizontal components in all sections of 
every cable (the inner force of a section of a cable may be determined as the 
quotient of the horizontal cable force to the corresponding cosine of the section 
under investigation). The condition of equilibrium for the node i,k (the point of 
intersection of the ith carrying and the kth stretching cable) may be presented in 
the following form: 
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where H0xi and H0yk are horizontal forces of the ith carrying and the kth 
stretching cable in the state of pre-stressing, ai,k and bi,k are horizontal 
projections of the corresponding cable sections. In the case of a network with 
equidistant cables this condition of equilibrium takes a simpler form 
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where λ = H0ya1/H0xb1, a1 and b1 are distances between the stretching and the 
carrying cables, respectively. It is worth mentioning, that for the case λ = 1 we 
have  

zi,k = ¼(zi,k-1+zi,k+1+zi-1,k+zi+1,k).      (3) 

Equation (3) corresponds to the hypar-formed network. Equation (2) may be 
written for every node of the network with given horizontal components of 
cable forces. As a result, we obtain a system of linear algebraic equations 
related to the unknown ordinates zi,k. Every equation consists of 5 unknown 
ordinates. It should be mentioned that the product of the cable force and the 
quantity in the parentheses represent the initial contact load F0,i,k in the node. 
The system of equations (2) may be solved by means of standard programs or 
by means of simple iteration. The ordinates of the contour beam are to be given 
ahead. For the ordinates of the contour beam located outside the regular nodes 
we may use the iteration formulas of Collatz for fictitious nodes. 

Hypar-formed networks. Equation for determination of a hyperbolic-parabolic 
(hypar) surface (Figure 1) may be presented in the following form  

2

2

2

2

b

y
f

a

x
fz yx  .       (4) 

The contact load between two families of cables in case of a hypar-network 
surrounded by an elliptical contour beam represents a uniformly distributed load 
p0. Therefore the initial cable (pre-stressing) forces have the following 
horizontal components 
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where fx and fy are the sags of the central cables, a and b are the half-axes of the 
elliptical contour. 
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Fig. 1. Hypar-formed roof structure 

Behaviour of a network under the action of external loads. Self-forming 
networks. In general, the initial form of a network is characterized by the 
position vectors of its nodal points kir ,  or by the corresponding co-ordinates xi,k ,  

yi,k and zi,k  and by the cable forces S0,i and T0,k. The stress-strain state of the 
network under the action of nodal forces of any kind is determined by vector 
equations of equilibrium of nodal points and equations of deformation 
compatibility for the cable sections neighbouring the node. The unknowns for 
actual calculation cases include 3 displacement components and 2 inner forces 
of the cable’s sections for every nodal point; these unknowns are covered by 3 
conditions of equilibrium and 2 equations of deformation compatibility of cable 
sections for every nodal point. Detailed method for analysis of self-forming 
networks under the action of outer loads is left aside in that report and in 
following the main attention will be paid to the orthogonal networks. 

Orthogal networks under the action of vertical  loads applied in the nodes. 
For an orthogonal network loaded by vertical loads a simplified solution can be 
obtained in the form of a system of non-linear equations [3], including one 
unknown displacement for every node and one unknown inner force component 
for every cable. 0n the base of our former works the transversal horizontal 
displacements of the networks nodes have been left aside in these equations. In 
the case of a network with equidistant cables the condition of equilibrium for 
the node i,k may be presented in the form 
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and the equations of deformation compatibility for the i-th carrying and the k-th 
stretching cable as follows 
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where ui,m and ui,o are displacements of contour nodes for the ith carrying cable 
and vk,n and vk,o for the kth stretching cable. The displacements may be 
determined by means of influence lines composed for the displacements of the 
contour beam. 

Hypar-network under the action of uniform vertical loads. In the following 
the analytical model of calculation for a hypar-network is presented. As the 
most influential factors in presented approximate model of analysis may be 
considered the following ones: 1) casting aside lateral displacements in 
conditions of equilibrium and equations of deformation compatibility; 2) use of 
simplified approximation of deflection functions for the network; 3) simplified 
approximation of deformed form of the contour ring and its linear dependence 
upon cable forces; 4) casting aside deformation of the contour ring under the 
action of pressure forces (bending deformations are taken into account as the 
main factors influencing onto the form transformation); 5) linear dependence of 
network’s deflections upon the cable forces; 6) substitution of the real mesh of 
the network by a fictitious differential one (Fig. 2). 
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Fig. 2. Equilibrium of differential element for a  fictitious network  

The conditions of equilibrium for a differential element of an orthogonal 
network (Fig. 2), in the case of application only vertical loads may be presented 
as follows  

   2 2

2 2
.x y

z w z w
H H p

x y

   
 

 
     

(9) 

Conditions of deformation compatibility for a network’s differential element 
connect the cable forces with deflections of the network. For determination of 
the stress-strain state two following equations of deformation compatibility are 
to be used 
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where Hx and Hy are forces of carrying and stretching cables correspondingly, u, 
v and w are the components of displacements in direction of axes x, y and z 
respectively, Etx and Ety are the rigidities in tension of the families of carrying 
and stretching cables reduced to a width unit. For elimination of horizontal 
displacements u, v we have to integrate Eqs. (10) and (11). Integrals 
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displacements of the contour structure; the integrating boundaries corresponding 
to elliptical contour structure, have the following values x2= – x1 =a(1 – x2/a2)1/2  
and y2= – y1 = b(1 – y2/b2)1/2. 

Horizontal displacements of an elliptical contour ring under action of cable 
forces may be approximated in the following form 
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where EcIc is the bending rigidity of the contour beam. Approximation of 
displacements u1 and v1 brings us to values, very near to exact ones. For 
solution of Eqs (11), (12), (13) we have to approximate the deflection function 
of the network’s surface. Assuming the form of deflected cables square 
parabolas, we may use the following approximation 
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Taking into account Eqs. (10) and (11), determining their second and third 
integrals and presenting the cable forces as function of displacements from the 
equations of deformation compatibility, we obtain a system of two equations 

A1Hx + B1Hy = C1 ;      (15) 

A2x +B2Hy = C2 ,      (16) 

where coefficients A1,.A2,.B1,.B2, C1, C2  depend from the deflection w0 and 
coordinates x, y. 

Cable forces Hx and Hy, determined from Eqs. 6-16 as functions of the 
network’s deflection, are to be inserted into the condition of equilibrium 3.4; as 
result we obtain a cubic equation regard to 0 = w0 /fx containing functions of 
powers of independent parameters x and y. To eliminate these functions we have 
to apply a certain method for approximate analysis of mathematical physics. As 
the main method we have preferred method of Galyorkin (known also as 
Bubnoff-Galyorkin method); the latter consists in inserting the basis function (in 
our case (1 – x2/a2 – y2/b2)) as multiplier into the equation to be solved, and 
integrating the obtained equation in boundaries of elliptical contour ring (in case 
of doubly symmetrical structure in boundaries of a quarter of it). The functions to 
be integrated may be written as follows: 
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After integrating and taking into use non-dimensional parameters we obtain the 
key formula as a cubic equation for determination of the relative deflection of 

the network 
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For the cable forces we may write 
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After determination of the relative deflection and cable forces we can calculate 
the extreme bending moments of the contour beam by the equation 
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where k = (1 - 2)1/2, K(k) and E(k) are the full elliptical integrals of the first 
and the second grade accordingly. For the cross section at x = a the equation 
(21) is to be taken without the member 1 inside the square brackets.  
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Effectiveness at use of hypar-network roof structures with deformable elliptical 
contour ring depends greatly upon their structural parameters. The latter are 
connected with successful collaboration between the network and the 
surrounding contour ring. Limitations at evaluation the behaviour of the 
structure are usually determined by excessive tensile and bending deformations 
of cables (together with the roof covering) and resistance of the contour ring to 
bending moments (with consideration of its pressure). Self-evidently the 
economy of materials is also to be taken into account. 

The layout dimensions a, b (simultaneously their relationship  = b/a) and the 
overall sag of carrying and stretching cables (f = fx+fy) are usually given 
beforehand. The main factors, having remarkable influence upon behaviour of 
the structure under the action of network’s external loads, are the following 
ones: 

1. ratio between the cable sags  = fy /fx; 
2. ratio between the effective thickness of the fictitious shell layers 

 = ty / tx 
3. factor of rigidity for the network layers ;  
4. relative stiffness of the contour ring ; 
5. network’s pre-stressing parameter p0*;  
6. parameter of the external load p*. 

Dependence of network’s deflection upon the loading factor by different values 
of the factor  is presented in Fig. 3. It may be stated, that smaller deflections 
correspond to relatively small curvature of stretching cables; for actual 
structures the value  is to be chosen in bounds of 0.3–0.5. Limitations are 
connected mainly with bending moments in the stage of pre-stressing the 
network and action of interrupting the stretching cables. The other 
considerations, in the first place estimation of the contour ring’s bending, 
constrain renunciation from the values  > 1. The influence of ratio of cables’ 
cross sectional areas  onto the network’s deflection may be evaluated as 
moderate one Variation of this factor in bounds from 0,7 to 1,5 brings about 
moderate changes of the network’s relative deflection. Its main influence onto 
the structural behaviour is connected with reduction of deformation of the 
contour ring – that phenomena is expressed by the value of the parameter . The 
relative stiffness (more punctually the relative yielding) of the contour ring is 
probably the most influential factor in determination of network’s deflection. 
Usually it is suitable to choose the values of the contour rings cross section of 
minimal dimensions; at need of restriction of the network’s deflection, it is 
more effective to increase the cross section area of cables (at first of stretching 
ones) than increase of the rigidity of the contour ring. 
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Fig. 3. Dependence of the relative deflection upon the loading parameter 

The influence of the network’s pre-stressing factor po* in case of suitable 
structure parameters is moderate, it may be limited by very small values (for 
example about 10 % - 20 % from the maximum loading parameter p*). 
Nevertheless, when it is not contradicted by conditions of prestressing realization 
or by need of minimizing the contour ring’s bending moments, the increase of 
pre-stressing forces may be useful in consideration the network’s rigidity.  

Conceptual design of the possible roof structure for a football stadium. Let 
us have as calculation example the roof structure in the form of a hypar-network 
surrounded by an elliptical contour ring; the structure parameters are chosen 
with consideration of accommodation the stadium with a football playground 
and tribunes for the spectators. Let us proceed from the main dimensions 
L = 2a = 160 m, B = 2b = 128 m (corresponding  = 0,8), f = fx + fy =28,0 m. 
The dead load p1 = 0,80 kN/m2, the live load p2 = 1,0 kN/m2, the initial 
contact load together with the own weight of the cable net p0x= 0,40 + 0,28 = 
= 0,68 kN/m2, p0y = 0,40 – 0,28 = 0,12 kN/m2. Taking for the ratio of cable sags 
 = 0,4, we have fx = 20,0 m, fy = 8,0 m.  
Let us have the cables as steel ropes d = 60 mm for carrying cables doubled 
ropes with the distance b1 = 2,0 m, for stretching cables single ropes with the 
same distance a1 = 2,00 m; then we have the effective thickness tx = 2,390 mm, 
ty = 1,195 mm and their ratio  = 0,5. Now we may calculate the values of 

geometrical parameters 
22

2 2

55
1 1 1,104,..1 1,026

3 3
yx

x

ff

a b
      , = 1.3135 

and 11 1,7613    . 

For the following we have to choose the contour ring’s cross section; let us have 
a tubular bar Dctc = 360080 mm; it’s geometrical parameters Ac = 0,8847 m2, 
Ic = 1,3709 m4, W = 0,7616 m3. Now we may calculate and 
389,89 kN/m. 
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For the key equation (18) we have the network’s pre-stress forces H0x = 108,8 kN/m,. 
H0y = 30,72 kN/m; pre-stress and loading parameters for cases of loading the 
network by total or dead load have correspondingly values ;.*p 226000   p1* = 

= 0,3064 for dead load and * 0,7150p  for total load. 

After calculating the coefficients we have the cubic key equation as follows 

91,99 z0
3 + 82,132 z0

2 + 89,676 z0 = 0,7387 or 0,3283. 

Corresponding values for the relative and absolute deflection are 0 =0,03306, w0 

=0,661 m and 0 =0,01574, w0 =0,315 m. 

Change of the curvature may be characterized by the ratio of the roof centre 
deflection under the action of the live load to the shorter span (diameter); for 

our actual case we have the ratio 
0,661 0,315 1

128 370


 , what may be taken as 

normal for suspension roof structures. The cable forces for the state of pre-
stressing are H0x=108,80 kN/m and H0y=30,72 kN/m. 

For their increments we have Hx = 392,1 kN/m and Hy = 225,84 kN/m. 

The maximum cable force N = 
108,8 392,1

2
cos arctg xf

a


 
 
 

= 560,0 kN/m and corresponding 

tensile stress   = 560 / 2,390 = 234,3 N/mm2. 

For determination of the bending moment for the contour ring we have to 

calculate its ellipticity k 21 = 0,6; to this value correspond the full 

elliptical integrals K(k) = 1,7508, E(k) = 1,4181; calculation of coefficients 

 22

2 2

1 ( )1

3 3 ( )

k K kk

k k E k


 and 

 22

2 2

1 ( )1
1

3 3 ( )

k K kk

k k E k


   brings us to the values 

0,5277 at x = a and –0,4723 at x = 0; these coefficients are to be multiplied to the 

value  2 21

2 x yH b H a  in cases both of maximum loading and pre-stressing. 

Taking into account corresponding forces and contour ring’s dimensions, we have 
for the state of loading max M = 108100 kN/m the maximum compression stress 
we obtain at the normal force N = Hya and the bending moment max M; so we 
have 

3 2108100 256,56 80
max 10 141,9 23,2 165,1 N/mm

761,6 884,7
       

 
. 
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Examples of construction of networks in Estonia. For Estonia song festivals 
are events of important meaning. Therefore we have special song festival courts 
both in our city Tallinn and in the second town Tartu, where the first song 
festival was organized more than 140 years ago. On the both courts acoustic 
screens for song festival tribunes were constructed as inclined network 
structures. The first of them [1] was built in 1960 with the contour structure of 
two planar arches and massive counter-forts, the latter, erected in 1994 [4], 
represents an inclined hypar-network surrounded by an elliptical contour ring 
and covered by a timber shell (Fig. 4). 

 
Fig. 4. Acoustic screen for the song festival tribune in Tartu 

Both of them differ from roof structures for usual buildings by inclined form 
and absence of supporting columns on the front side. In Fig. 5 is presented the 
model 1:10 of the acoustic screen for the song festival tribune in Tartu. 

 
Fig. 5. Experimental model for the acoustic screen of  the song  festival tribune in Tartu 



Збірник наукових праць 
Українського інституту сталевих конструкцій  
імені В.М. Шимановського. – Випуск 9, 2012 р. 
 

 154 

The possible roof structure for a spectacle or sports building may be illustrated 
by an experimental model, investigated at TTU (Fig. 6). 

 
Fig. 6. Model for a roof network for spectacle or sports buildings 

Conclusion 

Methods of calculation. For analysis of roof cable networks both discrete and 
continual models of calculation may be used. Continual models are suitable for 
hypar-formed networks. One of the most important preferences of the method, 
described in the subsection 3.3, consists in use of the cubic equation as the key 
equation for analysis. In that equation the linear member is the most importance. 
Therefore it may be solved by simple iteration process. Our experience affirms 
possibility to extend the results of analysis, obtained for hypar-networks, 
without remarkable inaccuracy also onto self-forming networks. Proceeding 
from a number of approximations in the continual model of analysis, presented 
in the subsection 3.3, we have compared corresponding results of analysis with 
results of more precise calculation for cases of symmetrical and one-sided live 
loading (Fig. 7). Our experience demonstrates appropriateness of using the 
method of calculation, given in the subsection 3.2, not only for orthogonal, but 
also for other form of networks (for example to self-forming ones). It is worth 
mentioning, that continual and discrete methods of analysis are eminently 
analogous. 
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Fig. 7.  Comparison of results of approximate and more precise analysis 
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Comparison of networks with the contour structures of inclined arches and 
elliptical ring. The contour structure of two inclined planar arches is usually 
supported by massive counter-forts and due to its great stiffness, the network 
may be characterized by relatively small deflections under the outer loads. But 
this advantage is contracted by abrupt change of cables’ curvature. Relatively 
flat regions at the arch crowns are especially unfavourable as they tend to loose 
contact load and are susceptible to the action of fluctuating wind. The 
unfavourable distribution may be observed as for deflections so for cable forces. 
It is to be mentioned, that the comparison was made with equal areas of under-
roof room; the stiffness of the contour bars was also equal (corresponding to the 
parameter  = 80). The additional material consumption for the massive 
counter-forts was not taken into account by comparison in spite of its 
remarkable cost. 
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