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AHoTauis. Po3rnagatotbca 2 BUAKM NOKPUTTIB: 1) CiTkK, chopMOBaHi ycepeanHi KOHTYpy
ABOMaA HaxWIEHUMU MAOCKMMU apKaMu i 2) CiTKM y BUIASAI rinapy, OTOYEHI 3aMKHYTUM
KOHTYpOM 31enTu4Hoi dopMn B nnaHi. [aHi pekoMmeHaauii woao BuMbOpy noyaTKOBOI
¢dopMU, po3MipiB CITOK i KOHTYPHOrO Kinbus. HaBeaeHi MeToaM BU3HAUYEHHSI BHYTPILLHIX
3yCU/b i NepeMilleHb AN CITOK i KOHTYPHOro Kinbug. HaBeAeHi npuknaan rnokpuTTis,
nobynosaHux B ECTOHIi, Ana akycTMYHUX ekpaHiB TpubyH. lpuBeaeHi pekomeHaauii
LLLOAO BUKOPUCTaHHA rinapis A8 NOKPUTTIB CNOPTUBHUX | FpOMaAcbkux byaisens.

AHHOTauma. PaccmatpuBatoTcs 2 BMAa NOKpbITMIA: 1) ceTn, chopMMpoBaHHbIE BHYTPU
KOHTYpa [ABYMS HaK/JOHEHHbIMW TMJIOCKMMU apkaMm W 2) ceTm B BuAe runapa,
OKPYXEHHble 3aMKHYTbIM KOHTYPOM 3fenTuyekoro @opmbl B nnaHe. [aHbl
pekoMeHzaumn no BblbOpy HavanbHOW (POPMbI, pa3MeEPOB CETEN N KOHTYPHOro KosbLa.
MpeactasneHbl MeTOAbI ONpeAesieHns BHYTPEHHUX YCUAWIA U NepeMeLleHnin Ans ceTein m
KOHTYPHOro Kosbua. lNpuBeaeHbl npuMepbl MOKPbITUIA, MOCTPOEHHbIX B DCTOHUWU, ANA
aKyCTMYeCKMX 3KpaHoB TpMbyH. [laHbl pekoMeHAauMM MO UCMOJSIb30BaHUIO rMNapos Ans
NOKPbLITUN CNOPTUBHbBIX U OBLLECTBEHHbIX 34aHUNA.

Abstract. Two types of roof networks are under investigation in our report: 1)
networks, formed inside the contour of two inclined planar arches and 2) hypar-formed
networks, surrounded by a closed contour ring, having an elliptical form on plan.
Recommendations for choice the initial form and dimensions of the network and the
contour ring are given. Methods of determination of inner forces and deflections for the
network and the contour ring are presented. Erected in Estonia networks for the
acoustic screens of song festival tribunes is presented. Use of hypar-networks as roof
structures for sports and spectacle halls is recommended.

Key words: Cable structures, suspension roofs, hypar-formed networks.

Introduction. The most propagated roof networks are shaped inside the contour
of two inclined planar arches. Massive counter-forts are usually supporting the
arches. When the zones at arches’ abutments have a curved form, the areas
neighbouring the keys of arches are very flat. The curvature in these flat zones
may even change the direction for stretching cables. As an example of an
unsuitable behaviour of the network in these zones the well-known Raleigh
Arena may be presented, erected in the USA in 1953. For stabilizing the action
of the blast wind, it was necessary to strengthen it by additional inclined cables.
Investigation of pre-stressed roof networks started at TUT at the end of 1950s in
connection with design of the acoustic screen for the song festival tribune in
Tallinn [1]. This acoustic screen is a hanging roof of negative Gaussian
curvature. The acoustic factor was dominant in the design of the screen surface,
so it is inclined in the direction of the audience. The roof of the screen consists
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of ribbed wooden panels, resting on the bearing cables. Its pre-stressed network
is formed inside the contour case, consisting of two planar arches. The back and
the front arches have common main supports in the form of massive counter-
forts, which develop considerable horizontal reactions to the arch forces.
Vertical columns are supporting the back arch. The front arch has no
intermediate supports, therefore it has to resist not only the moments applied in
its plane, but the perpendicular forces as well. Experience in design, model
testing and field investigation on the acoustic screen in Tallinn served for
subsequent investigations on network structures. The main advantages of
networks with elliptical contour ring consist in its fluent form and the
possibility of renounce to outer horizontal supports. These advances and
thorough investigations encouraged us to use the network of this kind in design
and construction of the acoustic screen for the song festival tribune in Tartu.

Initial form of the network. Networks inside the contour of two inclines
planar arches. The initial form of the network depends upon distribution of
cables’ prestress forces and of mutual connecting cables in the nodes. For the
sake of simplicity of building up the network, usually networks with planar
cables (orthogonal networks or surfaces of revolution) and networks formed in
conditions of free mutual sliding of the cables in all internal nodes (so-called
self-forming networks) are preferred. The cables of the former networks are to
be connected during pre-stressing the network. In actual cases the network’s
surface is exclusively determined by the conditions of equilibrium of the nodes
[2]. Our main attention in the following will be paid to the self-forming and
orthogonal networks. In the first case the co ordinates of a network may be
determined by a vector equation of equilibrium for every node i,k.

Orthogonal network is the simplest case for determination of the initial form
of a network. Both the carrying and the stretching cables are located in parallel
and orthogonal vertical planes. The spacing between the cables has to be
determined in the state of structural design. Only the nodes’ co-ordinates, which
have to be determined by the conditions of equilibrium, are vertical. Such kind
of network is characterized by equal horizontal components in all sections of
every cable (the inner force of a section of a cable may be determined as the
quotient of the horizontal cable force to the corresponding cosine of the section
under investigation). The condition of equilibrium for the node 7,k (the point of
intersection of the ith carrying and the kth stretching cable) may be presented in
the following form:

Z. —Z. Z. —Z. Z, —Z. Z. Z.
i,k+1 ik ik-1 ik i+1,k ik i-1,k ik | _
Hon( + ]+H0yk + b =0, (1)
k-1

Ak a; bi,k i—Lk

143



36ipnux Haykosux npayb
Yxpaincovrkoeo incmumymy cmanegux KoHcmpyxyi
imeni B.M. llumanoecvkozo. — Bunyck 9, 2012 p.

where Hoxi and Hgy are horizontal forces of the ith carrying and the kth
stretching cable in the state of pre-stressing, a;; and b;; are horizontal
projections of the corresponding cable sections. In the case of a network with
equidistant cables this condition of equilibrium takes a simpler form

L (Zi,k—l +Zj k41 )+ A (Zi—l,k + Zi+1,k) )
e 21+ 2) ’ @
where 4 = Hy,a,/Hyb;, a, and b, are distances between the stretching and the

carrying cables, respectively. It is worth mentioning, that for the case 4 = 1 we
have

Zik = Yz T Zigr V2wt Ziv10)- 3)

Equation (3) corresponds to the hypar-formed network. Equation (2) may be
written for every node of the network with given horizontal components of
cable forces. As a result, we obtain a system of linear algebraic equations
related to the unknown ordinates z;;. Every equation consists of 5 unknown
ordinates. It should be mentioned that the product of the cable force and the
quantity in the parentheses represent the initial contact load Fj;; in the node.
The system of equations (2) may be solved by means of standard programs or
by means of simple iteration. The ordinates of the contour beam are to be given
ahead. For the ordinates of the contour beam located outside the regular nodes
we may use the iteration formulas of Collatz for fictitious nodes.

Hypar-formed networks. Equation for determination of a hyperbolic-parabolic
(hypar) surface (Figure 1) may be presented in the following form

|2 »?
z=fi—-f,—>. 4
¥ 27y “4)

The contact load between two families of cables in case of a hypar-network
surrounded by an elliptical contour beam represents a uniformly distributed load
po- Therefore the initial cable (pre-stressing) forces have the following
horizontal components

_ poa2 . _ pob2
Ox 2f; s Oy ny s

where f, and f, are the sags of the central cables, a and b are the half-axes of the
elliptical contour.

)
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Fig. 1. Hypar-formed roof structure

Behaviour of a network under the action of external loads. Self-forming
networks. In general, the initial form of a network is characterized by the

position vectors of its nodal points 7, , or by the corresponding co-ordinates x;

vix and z;; and by the cable forces Sy; and Ty The stress-strain state of the
network under the action of nodal forces of any kind is determined by vector
equations of equilibrium of nodal points and equations of deformation
compatibility for the cable sections neighbouring the node. The unknowns for
actual calculation cases include 3 displacement components and 2 inner forces
of the cable’s sections for every nodal point; these unknowns are covered by 3
conditions of equilibrium and 2 equations of deformation compatibility of cable
sections for every nodal point. Detailed method for analysis of self-forming
networks under the action of outer loads is left aside in that report and in
following the main attention will be paid to the orthogonal networks.

Orthogal networks under the action of vertical loads applied in the nodes.
For an orthogonal network loaded by vertical loads a simplified solution can be
obtained in the form of a system of non-linear equations [3], including one
unknown displacement for every node and one unknown inner force component
for every cable. On the base of our former works the transversal horizontal
displacements of the networks nodes have been left aside in these equations. In
the case of a network with equidistant cables the condition of equilibrium for
the node i,k may be presented in the form
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and the equations of deformation compatibility for the i-th carrying and the k-th
stretching cable as follows

3/2

2
H,-H,, Z 1+ Zi k" Zig _ Uy —Up "
E4, a, b,

’ (7
Wikt = Wir | Zivik — Zik | Wik — Wik
+ > . > — + > - 5
Z{ a, [ a, 2a, ﬂ
2%
H,-H,, z 1+ Zing " Zik — Yk " Vko n
EA, b, b, ®)

+Z Witk ~ Wik | Zisik ~Zik + Wik — Wik
2
b, b, 2h,

where u;,, and u;, are displacements of contour nodes for the ith carrying cable
and v, and v, for the kth stretching cable. The displacements may be
determined by means of influence lines composed for the displacements of the
contour beam.

Hypar-network under the action of uniform vertical loads. In the following
the analytical model of calculation for a hypar-network is presented. As the
most influential factors in presented approximate model of analysis may be
considered the following ones: 1) casting aside lateral displacements in
conditions of equilibrium and equations of deformation compatibility; 2) use of
simplified approximation of deflection functions for the network; 3) simplified
approximation of deformed form of the contour ring and its linear dependence
upon cable forces; 4) casting aside deformation of the contour ring under the
action of pressure forces (bending deformations are taken into account as the
main factors influencing onto the form transformation); 5) linear dependence of
network’s deflections upon the cable forces; 6) substitution of the real mesh of
the network by a fictitious differential one (Fig. 2).
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Fig. 2. Equilibrium of differential element for a fictitious network
The conditions of equilibrium for a differential element of an orthogonal

network (Fig. 2), in the case of application only vertical loads may be presented
as follows

©)

Conditions of deformation compatibility for a network’s differential element
connect the cable forces with deflections of the network. For determination of
the stress-strain state two following equations of deformation compatibility are
to be used

212
8_u+6_w(%+la_wj:—Hx—H0x 1+(@j : (10)
Ox oOx\ox 2ox Et, Ox
H,-H P
@4_8_“} 6_z+16_w S — U % , (11)
oy oyloy 20y Et, Oy

where H, and H, are forces of carrying and stretching cables correspondingly, u,
v and w are the components of displacements in direction of axes x, y and z
respectively, Et, and Et, are the rigidities in tension of the families of carrying
and stretching cables reduced to a width unit. For elimination of horizontal
displacements u, v we have to integrate Eqgs. (10) and (11). Integrals

X2 a Y2 6
U= J.—udx and v= J-—vdy are to be equalized to corresponding
;, Ox 5 Oy
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displacements of the contour structure; the integrating boundaries corresponding
to elliptical contour structure, have the following values x,= — x; =a(1 — x*/a*)"?
and y,=— y; = b(1 — y*/bH)"~

Horizontal displacements of an elliptical contour ring under action of cable
forces may be approximated in the following form

5p°, |2 e
u, =Wclbv[—(Hx—H0x)b2+(Hy—H0y)a2J(1_y42j2; (12)
54° % s
n =g LA (i1, ) 1= o)

where E.l. is the bending rigidity of the contour beam. Approximation of
displacements u; and v, brings us to values, very near to exact ones. For
solution of Eqgs (11), (12), (13) we have to approximate the deflection function
of the network’s surface. Assuming the form of deflected cables square
parabolas, we may use the following approximation

xZ 2
WZWO[a—2+;:—2— : (14)

Taking into account Egs. (10) and (11), determining their second and third
integrals and presenting the cable forces as function of displacements from the
equations of deformation compatibility, we obtain a system of two equations

AIAHX+BIAHy: Cl, (15)
AAH, +B,AH, = C; , (16)

where coefficients 4;,.4,.B1,.B,, C1, C, depend from the deflection w, and
coordinates x, y.

Cable forces AH, and AH,, determined from Eqs. 6-16 as functions of the
network’s deflection, are to be inserted into the condition of equilibrium 3.4; as
result we obtain a cubic equation regard to  {y = wy /f; containing functions of
powers of independent parameters x and y. To eliminate these functions we have
to apply a certain method for approximate analysis of mathematical physics. As
the main method we have preferred method of Galyorkin (known also as
Bubnoft-Galyorkin method); the latter consists in inserting the basis function (in
our case (1 — x*/a* — y*/b)) as multiplier into the equation to be solved, and
integrating the obtained equation in boundaries of elliptical contour ring (in case
of doubly symmetrical structure in boundaries of a quarter of it). The functions to
be integrated may be written as follows:
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After integrating and taking into use non-dimensional parameters we obtain the
key formula as a cubic equation for determination of the relative deflection of

—

Wo

the network ¢, = : [5]

(1+y+48)C," +3[(1—-ay) +2(1-a)E]L, +

. . (18)
+{2[(1+a2\|/)+(1—oc)2 §}+(1+l)po}§0 =p,
o
4 2
, a‘t,(1+x,) 5 f? 51
where a=—"; y=—2"—"—"%: kK =—=2; kK =="—-; p=I+l/y are
VTN (S M PR T A
. 5 Et f° . o
geometrical factors, ® =—— L2 - is the rigidity parameter of the
9a (1+x, )(A+pE)
5 Etya3 a
network (dimension kN/m); & = 2~ Vb | is the relative stiffness of the
T2EI(1+x,)
2 2
contour ring po* = Pt , P = P4 are the parameters of the initial and the
21D 2f @

additional loading correspondingly.

For the cable forces we may write
H, =Hy +®C[(2+¢,)-2(1-a+G,)E]; (19)

H =H, -p’®¢ [(2a-¢))y-2(1-a+¢,)E]. (20)

After determination of the relative deflection and cable forces we can calculate
the extreme bending moments of the contour beam by the equation

14+ k> (1—k2)K(k)
3 3K°E(k)

1

szO :E

(bez - Hyaz)

-1, 1)

where k = (1 - B%)"2, K(k) and E(k) are the full elliptical integrals of the first
and the second grade accordingly. For the cross section at x = a the equation
(21) is to be taken without the member 1 inside the square brackets.
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Effectiveness at use of hypar-network roof structures with deformable elliptical
contour ring depends greatly upon their structural parameters. The latter are
connected with successful collaboration between the network and the
surrounding contour ring. Limitations at evaluation the behaviour of the
structure are usually determined by excessive tensile and bending deformations
of cables (together with the roof covering) and resistance of the contour ring to
bending moments (with consideration of its pressure). Self-evidently the
economy of materials is also to be taken into account.

The layout dimensions a, b (simultaneously their relationship = b/a) and the
overall sag of carrying and stretching cables (f = f.+f,) are usually given
beforehand. The main factors, having remarkable influence upon behaviour of
the structure under the action of network’s external loads, are the following
ones:

1. ratio between the cable sags o = f, /f;

2. ratio between the effective thickness of the fictitious shell layers
T=4/t

3 factor of rigidity for the network layers ®@;

4.  relative stiffness of the contour ring &;

5 network’s pre-stressing parameter po*;

6 parameter of the external load p*.

Dependence of network’s deflection upon the loading factor by different values
of the factor & is presented in Fig. 3. It may be stated, that smaller deflections
correspond to relatively small curvature of stretching cables; for actual
structures the value o is to be chosen in bounds of 0.3-0.5. Limitations are
connected mainly with bending moments in the stage of pre-stressing the
network and action of interrupting the stretching cables. The other
considerations, in the first place estimation of the contour ring’s bending,
constrain renunciation from the values 3 > 1. The influence of ratio of cables’
cross sectional areas Tt onto the network’s deflection may be evaluated as
moderate one Variation of this factor in bounds from 0,7 to 1,5 brings about
moderate changes of the network’s relative deflection. Its main influence onto
the structural behaviour is connected with reduction of deformation of the
contour ring — that phenomena is expressed by the value of the parameter &. The
relative stiffness (more punctually the relative yielding) of the contour ring is
probably the most influential factor in determination of network’s deflection.
Usually it is suitable to choose the values of the contour rings cross section of
minimal dimensions; at need of restriction of the network’s deflection, it is
more effective to increase the cross section area of cables (at first of stretching
ones) than increase of the rigidity of the contour ring.
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Fig. 3. Dependence of the relative deflection upon the loading parameter

The influence of the network’s pre-stressing factor p,* in case of suitable
structure parameters is moderate, it may be limited by very small values (for
example about 10 % - 20 % from the maximum loading parameter p*).
Nevertheless, when it is not contradicted by conditions of prestressing realization
or by need of minimizing the contour ring’s bending moments, the increase of
pre-stressing forces may be useful in consideration the network’s rigidity.

Conceptual design of the possible roof structure for a football stadium. Let
us have as calculation example the roof structure in the form of a hypar-network
surrounded by an elliptical contour ring; the structure parameters are chosen
with consideration of accommodation the stadium with a football playground
and tribunes for the spectators. Let us proceed from the main dimensions
L =2a=160m, B =2b =128 m (corresponding 3 = 0,8), f'= f, + f, =28,0 m.
The dead load p; = 0,80 kN/m?, the live load p, = 1,0 kN/m?, the initial
contact load together with the own weight of the cable net po,= 0,40 + 0,28 =
=0,68 kN/m’?, Ppoy = 0,40 -0,28 = 0,12 kN/m’. Taking for the ratio of cable sags
o = 0,4, we have f, = 20,0 m, f, = 8,0 m.

Let us have the cables as steel ropes d = 60 mm for carrying cables doubled
ropes with the distance b; = 2,0 m, for stretching cables single ropes with the
same distance a; = 2,00 m; then we have the effective thickness ¢, = 2,390 mm,
t, = 1,195 mm and their ratio t = 0,5. Now we may calculate the values of

510 5/

geometrical parameters 1+x, =1+——-=1104,.1+—=
b

-
and u=1+%,:1,7613.

a
For the following we have to choose the contour ring’s cross section; let us have
a tubular bar D.xt. = 3600x80 mm, it’s geometrical parameters 4. = 0,8847 mz,
I, = 1,3709 m*, W = 0,7616 m’. Now we may calculate & =22,419 and
@ =389,89 kN/m.

=1,026, y = 1.3135
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For the key equation (18) we have the network’s pre-stress forces Hy, = 108,8 kN/m,.
Hoy, = 30,72 kN/m; pre-stress and loading parameters for cases of loading the
network by total or dead load have correspondingly values p,*=0.2260; p,* =

=0,3064 for dead load and p*=0,7150 for total load.
After calculating the coefficients we have the cubic key equation as follows
91,99 z,* + 82,132 z° + 89,676 z = 0,7387 or 0,3283.

Corresponding values for the relative and absolute deflection are &y, =0,03306, w,
=0,661 m and &, =0,01574, w, =0,315 m.

Change of the curvature may be characterized by the ratio of the roof centre
deflection under the action of the live load to the shorter span (diameter); for
0,661-0,315 1

128 370
normal for suspension roof structures. The cable forces for the state of pre-
stressing are Hy,=108,80 kN/m and H,=30,72 kN/m.

For their increments we have AH, = 392,1 kN/m and AH,= 225,84 kN/m.
108,8 +392,1

cos (arctg 2f*j
a

tensile stress o = 560 /2,390 = 234,3 N/mm”.

our actual case we have the ratio

, what may be taken as

The maximum cable force N = = 560,0 kN/m and corresponding

For determination of the bending moment for the contour ring we have to
calculate its ellipticity & = N = 0,6; to this value correspond the full
elliptical integrals K(k) = 1,7508, E(k) = 1,4181; calculation of coefficients
Lkt (1R)KG) 1k (1-F)K®)
3k 3k*E(k) 3k 3K°E(k)
0,5277 at x = a and —0,4723 at x = 0; these coefficients are to be multiplied to the

—1 brings us to the values

value %(bez -H yaz) in cases both of maximum loading and pre-stressing.

Taking into account corresponding forces and contour ring’s dimensions, we have
for the state of loading max M = 108100 kN/m the maximum compression stress
we obtain at the normal force N = H,a and the bending moment max M; so we
have

(108100 256,56 x80
maxo =

+ 10° =141,9+23,2 =165,1 N/mm”.
761,6 884,7
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Examples of construction of networks in Estonia. For Estonia song festivals
are events of important meaning. Therefore we have special song festival courts
both in our city Tallinn and in the second town Tartu, where the first song
festival was organized more than 140 years ago. On the both courts acoustic
screens for song festival tribunes were constructed as inclined network
structures. The first of them [1] was built in 1960 with the contour structure of
two planar arches and massive counter-forts, the latter, erected in 1994 [4],
represents an inclined hypar-network surrounded by an elliptical contour ring
and covered by a timber shell (Fig. 4).

Fig. 4. Acoustic screen for the song festival tribune in Tartu

Both of them differ from roof structures for usual buildings by inclined form
and absence of supporting columns on the front side. In Fig. 5 is presented the
model 1:10 of the acoustic screen for the song festival tribune in Tartu.

2610

660
2b=5325

1Y
L .

Fig. 5. Experimental model for the acoustic screen of the song festival tribune in Tartu
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The possible roof structure for a spectacle or sports building may be illustrated
by an experimental model, investigated at TTU (Fig. 6).
»

Fig. 6. Model for a roof network for spectacle or sports buildings

Conclusion

Methods of calculation. For analysis of roof cable networks both discrete and
continual models of calculation may be used. Continual models are suitable for
hypar-formed networks. One of the most important preferences of the method,
described in the subsection 3.3, consists in use of the cubic equation as the key
equation for analysis. In that equation the linear member is the most importance.
Therefore it may be solved by simple iteration process. Our experience affirms
possibility to extend the results of analysis, obtained for hypar-networks,
without remarkable inaccuracy also onto self-forming networks. Proceeding
from a number of approximations in the continual model of analysis, presented
in the subsection 3.3, we have compared corresponding results of analysis with
results of more precise calculation for cases of symmetrical and one-sided live
loading (Fig. 7). Our experience demonstrates appropriateness of using the
method of calculation, given in the subsection 3.2, not only for orthogonal, but
also for other form of networks (for example to self-forming ones). It is worth
mentioning, that continual and discrete methods of analysis are eminently
analogous.

—1,90 -0,50 -0,25 0 0,25 0,50 0,75 1,‘00
\ \\\\ os /; x/a, y/b
N N > 7 /)
N ~ /
AN 1,0 /)
AN AN ,//
N \ N lis /
~ N /
_________ carrying cable 2.0 INL Y
N

— — — stretching cable 251 \\\v 2

approximation w cm

Fig. 7. Comparison of results of approximate and more precise analysis
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Comparison of networks with the contour structures of inclined arches and
elliptical ring. The contour structure of two inclined planar arches is usually
supported by massive counter-forts and due to its great stiffness, the network
may be characterized by relatively small deflections under the outer loads. But
this advantage is contracted by abrupt change of cables’ curvature. Relatively
flat regions at the arch crowns are especially unfavourable as they tend to loose
contact load and are susceptible to the action of fluctuating wind. The
unfavourable distribution may be observed as for deflections so for cable forces.
It is to be mentioned, that the comparison was made with equal areas of under-
roof room; the stiffness of the contour bars was also equal (corresponding to the
parameter & = 80). The additional material consumption for the massive
counter-forts was not taken into account by comparison in spite of its
remarkable cost.
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