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Energy-efficient Hydraulic Actuator of the Dumper Carcass Lift Mechanism 

The goal of researching is finding alternative constructions of hydraulic actuator of the carcass lifting 
device, which are working without using internal combustion engine energy and, consequently, guarantee energy 
saving and economical effect of technological car using.  

In the article it was offered the construction of original hydraulic actuator of the carcass lifting device. 
The feature of such hydraulic system is using hydraulic accumulator of high pressure, plunger pumps, control 
systems, herewith gear pump and its drive from car engine, which are specific for serial lifting mechanism, in the 
offered scheme are not present. As a source of energy, which is needed to lift the carcass, was offered not to use 
the internal combustion engine, but hydraulic accumulator with recharging from chattering of the car sprung 
mass. 

The feature of this hydrosystem is the use of a high pressure accumulator, plunger pumps, control 
system, with the gear pump and its drive from the engine of the car, typical for the serial lift mechanism, in the 
proposed scheme are absent. As a source of energy necessary for lifting the body, it is proposed not to use an 
internal combustion engine, as in serial hydraulic drives, and a hydraulic accumulator with the energy of the 
working fluid accumulated from the oscillations of the submerged car's masses. 

Was counted the economy, which can be earned by the reducing of the fuel uses, during realization of 
unloading operations of one car per year. 
plunger pump, working fluid, hydraulic accumulator 
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Synthesis of Modal Control of Multidimensional Linear 
Systems in Agricultural Production Based on Linear 
Matrix Inequalities 
 

The paper gives a solution to the problem of constructing modal regulators for linear multidimensional 
systemsin agricultural productionthat provide D-stability (asymptotic stability) of the control object. The control 
is represented as regulators providing feedback on the output of the control object, and uses the full and low 
order observers of Luenberger. To calculate the matrices of the regulators, we use the technique of linear matrix 
inequalities and generalize the Lyapunov stability concept (D - stability). The theorems are given which give 
necessary and sufficient conditions for D - stability of the controlled system. 
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The constructive solution of the synthesis problem D - stabilizing (modal) regulators according to the 
measured output of the control object, based on the construction of observers of the state of the object of the 
complete and reduced order, is given. The solution is based on the use of the theory of linear matrix inequalities 
(LMI). For numerical simulation of the resulting modal regulators you can use effective methods of convex 
optimization and corresponding software that is included in a number of application packages, in particular, in 
the MatLab system.In this paper we describe methods for solving not only the direct problem of modal control, 
when the choice of parameters of a regulator is ensured by the coincidence of the roots of the characteristic 
equation of a closed system with a predefined set of complex numbers located on the left side of the complex 
plane, but also other problems of modal control, in which the requirement the exact placement of the roots in the 
left integrated half-plane is not superimposed, but only their membership in certain specified areas is required. 
Such areas, described by a system of linear matrix inequalities (LMI), are called LMI domains. 
dynamical system, modal control, regulators, D - stability, Luenberger observers, linear matrix 
inequalities, kroneker product of matrices 
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Introduction. Often, in control tasks from the set of stabilization controls, it is 
necessary to select a subset, which provides for the system additional properties. Such 
property may be, for example, the location of the roots of the characteristic polynomial of a 
closed system in a given region of the complex plane.Control having such additional 
properties is called modal control, and the regulator that provides it is considered modal. 
Modal control relates to the root methods of linear ACS synthesis, in which, based on the 
desirable indicators of the quality of control, the desired characteristic polynomial is 
constructed, and hence the location of the roots of the characteristic equation is determined. 
Characteristic values of the roots of Latin are called modes, hence the name of the regulator 
and control - modal. 
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Formulation of the problem. The following statement of the problem is possible: the 
choice of control parameters provides for the exact coincidence of the roots of the 
characteristic equation of a closed system with a predefined set of complex numbers located 
on the left side (condition of stability) of the complex plane. Such a task is sometimes called 
the direct task of modal control. In this paper, we describe the following methods for solving 
other problems of modal regulation, in which the requirement of the exact placement of the 
roots in the left integrated half-plane is not superimposed, but only their membership in a 
given domain is required.As noted above, the task of modal control is related to the 
construction of a regulator, in which the poles of the closed system are located at given points 
or given areas of the complex plane. The values of such characteristics of a closed system as 
the transition time, damping, the velocity of transient processes in the regulator, and others 
are determined by the arrangement of the eigenvalues of the matrix of the closed system in 
certain areas of the complex plane. 

The purpose of the article is to consider the problem of modal control in such areas, 
which can be described by a system of linear matrix inequalities - these areas will later be 
called LMI-domains [1,3,4,5]. It can be shown that these areas include vertical and horizontal 
bands, circles, conical sectors, as well as sections of these areas. 

Presenting main material. One of the effective methods for solving problems of 
modalation control synthesis is connected with the use of Lyapunov quadratic functions and 
the technique of linear matrix inequalities. 

The general approach to the modal control synthesis is based on the use of LMI. It 
turns out that the domains of a certain type on the complex plane in which it is necessary to 
place the eigenvalues of a matrix of a closed linear system can be described by linear matrix 
inequalities, that is, as LMI-regions, first recording the necessary inequalities with respect to 
the variables, and then executing their replacement on some matrices by a special substitution.  

In the general case, consider the formal procedure for obtaining linear matrix 
inequalities that determine the criteria for placing all eigenvalues of the matrix of the control 
object in the required LMI domain. Note that for numerical solution of the obtained linear 
matrix inequalities, existing effective algorithms that are implemented in some mathematical 
packages, in particular MatLab [1.8], can be used. 

In the general case, consider the formal procedure for obtaining linear matrix 
inequalities that determine the criteria for placing all eigenvalues of the matrix of the control 
object in the required LMI domain. Note that for numerical solution of the obtained linear 
matrix inequalities, existing effective algorithms that are implemented in some mathematical 
packages, in particular MatLab [1.8], can be used. 

Let's introduce the concept of LMI-area. Let D be some area of the left integrated half-
plane. A dynamical system will be called D-stable if all its poles, that is, all the eigenvalues of 
the matrix, lie in the domain D. In this case, the matrix A will also be called D-stable. In a 
particular case, when D coincides with the entire left-most complex half-plane, D-stability is 
reduced to asymptotic stability, which is characterized by the Lyapunov inequality, which is a 
linear matrix inequality. Namely, the matrix A is asymptotically stable if and only if there 
exists a symmetric matrix X satisfying the inequalities 

0TAX XA ,   0X . 
 Define a class of domains that are characterized in terms of linear matrix inequalities. 
To do this, we introduce the matrix functions of the complex variable into consideration 
z C  (C – a set of complex numbers) that take values in the space of self-connected 
Hermitian ( m m ) – matrices (Hermit Charles, 1822 - 1901) 

( ) T
Df z P zG zG ,                                                 (1) 
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where mmR  and mmRG  – given matrices ( m mR  – set of real matrices of 
dimension mm ), z  –  combined complex number. 
 Domain 

:  ( ) 0DD z C f z                                                (2) 

called LMI-domain generated by the function fD(z), which is often called the characteristic 
function of the domain D. 
 From this definition it follows that the LMI-domain is a subset of a complex plane that 
is represented by a linear matrix inequality with respect to variables Re( )x z  and Im( )y z . 
Consequently, the LMI-domain is convex. Also, because of any z D  takes place 

( ) ( ) 0D Df z f z , then the LMI-domain is symmetric with respect to the actual axis. 
 The most important property of LMI domains is that they are completely determined 
in terms of linear matrix inequalities with respect to some symmetric positively defined 
matrix. In order to get these inequalities, we will match the function fD(z) the next ( mm ) – 
block matrix 

( , ) ( ) ( )T TM A X P X G AX G XA ,                           (3) 

 where " " –the operation of the kroneker product of matrices (Kronecker Leopold, 
1823 - 1872). 

Recall that the kronecker product matrix is called block matrix, formed by multiplying 
each element ija  of the matrix A on the matrix B [2]. Given this, note that blocks of the matrix 

( , )M A X  can be written in the form 

( , ) T
ij ij ij jiM A X p X g AX g XA ,       , 1,2,...,i j m ,                   (4) 

 where ijp , ijg  – the elements of the matrices P and G, respectively. 
To construct modal regulators that provide the stability of control objects, it is 

important to prove Theorem 1 of stability [3,5,7]. 
Let D–LMI-domain. Then the matrix A is D – stable if and only if there is a matrix 
TX X which satisfies the linear matrix inequalities 

( , ) 0M A X ,      0X .                                                 (5) 

 If the matrix (5) is multiplied left and right on the matrix E Y , where E – unit 
matrix, 1Y X , then taking into account the properties of the operation of the kronecker 
product after a series of transformations we obtain the criterion D – stability of the matrix A 

( , ) ( ) ( ) 0T TL A Y P Y G YA G A Y ,     0TY Y .                  (6) 

On the basis of Theorem 1 one can propose the following algorithm for constructing 
LMI - domains that determine the D-stability criterion of the system ( ) ( )x t Ax t : 

1. A characteristic function fD(z) of the form (1) is constructed so that the set D 
generated by it has the desired form. 

2.  Using substitution (1, , ) ( , , )Tz z X AX XA  the function fD(z) of the block matrix 
( , )M A X  of the form (3) are brought into conformity.  

3.  A system of matrix inequalities of the form (5) (or (6)) is formed and is solved 
with respect to the matrix X (or Y). 
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4. In accordance with the above theorem 1 we conclude that D is the stability of a 
multidimensional linear system ( ) ( )x t Ax t . 
 Note one important property of the LMI - domains: LMI - the domains are locked in 
relation to the intersection operation, that is, the intersection of the LMI - the domains will 
also be LMI- domain. 

Consider some important examples of constructing an LMI domain. 
 As a first example, consider the set 1 :  Re( )D z C z  (Fig.1.a) which 
corresponds to asymptotically stable systems with a degree of stability no less . Obviously, 
this domain generates a function 

1
( ) 2Df z z z , and according to Theorem 1, the 

matrix A is asymptotically stable with a degree of stability not less  if and only if there is a 
matrix X = XT, which satisfies the linear matrix inequalities of the form (5) 

2 0TAX XA X ,        0X . 

 Another example of the LMI domain is 2 :  | |D z C z q r  – inside the circle 
with a radiusr centered at the point ( ,0)q  (Fig.1.b). For thisdomain 

0)(2 rzq
zqr

zfD , 

and the linear matrix inequalities (5) characterizing this region take the form 

0T

rX qX AX
qX XA rX

,     0X . 

 

 
 

Figure 1 – Examples of LMIs are domains of stability 
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Vertical strip 3 2 1:  Re( )D z C z  (Fig.1.c) matches the function 

3

1

2

( ) 2 0
( )

0 ( ) 2D

z z
f z

z z  

and, respectively, linear matrix inequalities 

1

2

2 0
0

0 2

T

T

AX XA X
AX XA X

,    0X . 

 Horizontal half-strip 4 :  Re( ) 0,  ImD z C z z  (Fig.1.d) corresponds 
to the characteristic function 

4

2
( )

( ) 2D

z z
f z

z z  

and linear matrix inequalities 
2

0
2

T

T

X AX XA
AX XA X

,     0X .  

 Finally, to the conic sector D5 = {z  :  Re(z)tg < Imz }(Fig.1.e) corresponds the 
function 

5

( )sin ( )cos
( )

( )cos ( )sinD

z z z z
f z

z z z z  

and linear matrix inequalities 
( ) sin ( ) cos

0
( ) cos ( ) sin

T T

T T

AX XA AX XA
AX XA AX XA

,     0X . 

 Apply now to the apparatus for synthesizing modal control of the linear system for a 
given LMI- domain. The classical approach to the synthesis of linear feedback (regulators) in 
the state space is associated with the canonical representation of the controlled object and the 
construction of a modal control (controller) that provides the given eigenvalues (mods) of the 
matrix of a closed system. Then the construction of the modal control reduces to the finding 
of the characteristic polynomial of the matrix A, the choice of the canonical basis, and the 
solution of the system of linear equations. At the same time, an alternative way of 
synthesizing stabilizing regulators is possible, based on the application of the theory of linear 
matrix inequalities and effective algorithms for their solution, implemented, for example, in 
the MatLab package [6,8]. 
 Let the control object be described by the equation 

( ) ( ) ( )dx t Ax t Bu t
dt

,                                           (7) 

where 
 

( ) nx t R  – state of the regulator, ( ) mu t R  – control.
 The task is to choose the law of management u(t)from the class of linear feedback on 

the state of the form 

( ) ( )u t Kx t ,                                                      (8) 
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 where K  –  the matrix of the parameters of the regulator corresponding to the order 
in which the matrix of the closed system (7), (8) will be D-stable, that is, all its eigenvalues of 
the roots lie in the given LMI- domain. 
 According to Theorem 1, the problem of D-stability is reduced to the finding of the 
matrices 0TX X and , satisfying inequality ( , ) 0M A BK X ,which is nonlinear in 
relation to these matrices. However, if you enter the notation Z KX , then the last inequality 
can be imagined as a linear matrix inequality of the form 

( , ) (( ) ) ( ( ) )

( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ) ( ) 0

T T

T T

T T T T T T

M A BK X P X G A BK X G X A BK
P X G AX BZ G AX BZ P X G AX G BZ
G AX G BZ M A X G BZ G BZ  

on unknown matrices KandZ. After these matrices are found, the desired matrix of the 
parameters of the regulator is like K= ZX-1. 
 Let's consider another approach to the synthesis of D-stabilizing regulators based on 
the measured output, based on the construction of observers of the state of the object. Let's 
start with Luenberger's observers in complete order. 

For a controled object 

( ) ( ) ( ),
( ) ( ),

x t Ax t Bu t
y t Cx t

                                                  (9) 

where ( ) nx t R  – state of the regulator, ( ) mu t R  – control, ( ) py t R  – the 
measured output of an object) we choose a regulator in the form of an observer of the state of 
Luenberger of complete order 

( ) ( ) ( ) ( ) ( ) ,
( ) ( ),
r r r

r

x t Ax t Bu t L Cx t y t
u t Kx t

                              (10) 

 where ( ) n
rx t R  – state of the regulator. 

It is necessary to define matrices and so that the closed system (9), (10) is D-stable. 
We introduce the vector of inconsistency ( ) ( ) ( )re t x t x t and as a state of a closed 

system we choose a vector ( ), ( )
TT Tx t e t ,which satisfies the generalized equation 

( ) ( )
( ) 0 ( )

x t A BK BK x td
e t A LC e tdt . 

Obviously, for D - stability of this system, it is necessary and sufficient that the 
matrices A + BK and A + LC be D - stable. Applying now to the matrix A + BK of Theorem 1, 
in which the criterion of D-stability is given in the language of linearmatrix inequalities, we 
arrive at the following form of LMI 

1 1 1 1

1 1 1

( , ) (( ) ) ( ( ) )

                        ( , ) ( ) ( ) 0,

T T

T T T

M A BK X P X G A BK X G X A BK

M A X G BZ G Z B
      (11) 

where 1 1Z KX . 

Applying to the matrix criterion D - stability in the form of inequality (6), we obtain 
another LMI 
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2 2 2 2

2 2 2

( , ) ( ( )) (( ) )

                      ( , ) ( ) ( ) 0,

T T

T T T

L A LC X P X G X A LC G A LC X

L A X G Z C G C Z
       (12) 

where 2 2Z X L . 
Thus, we arrive at the necessity of derivation of Theorem 2. 
It is necessary and sufficient that the linear matrix inequalities (11) and (12) be solved 

with respect to the variables in order for the object (9) to be D-stabilized by means of the 
controller at the output of the form (10) 1 1 0TX X , 1Z and 2 2 0TX X , 2Z . In the 
case of the possibility of solving these inequalities, the parameters of the regulator are as 
follows 

1
1 1K Z X ,        1

2 2L X Z . 

 We now synthesize a regulator based on the Luangenberger observer of incomplete 
order [1,5]. Suppose that in the control object (9) the rank of the matrix C is (p< n). Consider 
an observer 

( ) ( ) ( ) ( )dz t Fz t TBu t Qy t
dt

,                                       (13) 

where ( ) lz t R , l n p –observer state, ( )y t  and ( )u t  – the measured output and 
control in the object (9), and the matrices F, T and Q satisfy the matrix equation 

TA FT QC .                                                        (14) 
 Re-enter the vector of inconsistency ( ) ( ) ( )e t z t Tx t and note that due to the 
equations of the object and the observer for him equality is fulfilled 

( ) ( )de t Fe t
dt

.
 

 Thus, if the matrix F is a D-stable, then the vector z (t) asymptotically tracks the vector 
Tx (t) and in combination with the vector y (t) gives an estimate of the state vector of the 
object. 

To simplify, but not diminishing the generality, we will accept  = ( 0 l
), where  

unit matrix of dimension p. Note that this can be achieved by replacing the variables 
accordingly. We break the matrix A and B into blocks 

11 12

21 22

A A
A

A A
,       1

2

B
B

B
, 

  11  Rp p, B1  Rp m – (the orders of other blocks are determined in an obvious manner). 
 Choose the matrices F, T, and Q, which satisfy the equation (14), in the following way 

22 12F A LA ,   lT L E ,   21 11 22 12Q A LA A LA L ,          (15) 

where the matrix L should be determined from the condition that the matrix F be D-
stable. 

In accordance with the chosen choice, we introduce the equation of the regulator 
(control) in the form  

22 12 2 1 21 11 22 12
( ) ( ) ( ) ( )r

r
dx t A LA x t B LB u t A LA A LA L y t

dt
, 
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1 2( ) ( ) ( )ru t K x t K y t ,                                              (16) 

where the matrices K1 and K2 must be determined from the condition of the D-stability 
of the closed system (9), (16). Substituting the equation of control into the output system and 
taking into account that ( ) ( ) ( )rx t Tx t e t , we will get 

1
( ) ( ) ( ),

( ) ( ),

dx t A BK x t BK e t
dt

de t Fe t
dt

 

where 2 1 1K K K L K . 
Thus, the matrix K is based on the condition that the matrix A + BK is D-stable, and 

then, taking into account the already found matrix L, the matrices of the regulator K1 and K2 
are determined. Applying now Theorem 1 and the technique of derivation of Theorem 2, we 
arrive at the following theorem 3. 

In order for an object described by system (9) to be D-stabilized by means of a 
regulator on the output of the reduced order of form (16), it is necessary and sufficient that the 
linear matrix inequalities 

1 1 1 1( , ) ( , ) ( ) ( ) 0T T TM A BK X M A X G BZ G Z B , 

22 12 2 22 2 2 12 12 2( , ) ( , ) ( ) ( ) 0T T TL A LA X L A X G Z A G A Z  
weresolvedwithrespecttomatrixvariables 1 1 0TX X , 1Z and 2 2 0TX X , 2Z , where the 
matrix 1( , )M A X  and 22 2( , )L A X are determined by formulas (3) and (6) respectively. In 
the case of the possibility of solving these inequalities, the parameters of the regulator are as 
follows 

1 2K H ,    2 1 2K H H L , 

where 1
1 2 1 1H H H Z X ,   1

m pH R , 2
m lH R ,    1

2 2L X Z . 
 Conclusion. Thus, the use of the Luenberger observers allows for the synthesis of D-
stable regulators for the complete and reduced order of the Leuvenberger observers on the 
basis of solving only linear matrix inequalities. 
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