РОЗДІЛ «ТЕПЛОТЕХНІКА. ТЕПЛОЕНЕРГЕТИКА»

УДК 532.542.86.(088.8)

ГОЦУЛЕНКО В.В., к.т.н., с.н.с. ГОЦУЛЕНКО В.Н.*, к.т.н., доцент

Институт технической теплофизики НАН Украины *Институт предпринимательства "Стратегия", г. Желтые Воды

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОАКУСТИЧЕСКИХ АВТОКОЛЕБАНИЙ ПРИ ИЗМЕНЕНИИ АКУСТИЧЕСКИХ ПАРАМЕТРОВ РЕЗОНАТОРА ГЕЛЬМГОЛЬЦА

Введение. Обоснованный Л.Крокко механизм запаздывания τ сгорания топлива оставался единственным общепризнанным механизмом вибрационного горения [1], что сыграло выдающуюся роль в развитии теории этого явления [2]. Способы подавления автоколебаний пытались определить экспериментально, с затратой значительных средств и времени.

В 50-х годах акустические поглотители, в основе которых положен резонатор Гельмгольца, были успешно применены для подавления автоколебаний в воздушнореактивных двигателях. Вслед за этим они нашли применение в камерах сгорания жидкостных реактивных двигателей [3]. Для стабилизации поперечных форм колебаний начали применять анти-импульсные перегородки, которые также используются для борьбы с продольно-поперечными колебаниями. Достаточно полной теории процесса подавления колебаний анти-импульсными перегородками еще не создано [3]. В [4] для уменьшения амплитуды автоколебаний, возникающих при вибрационном горении, был использован проточный динамический демпфер. Также в этой работе аналитически определены способы уменьшения амплитуды колебаний, близких по форме к гармоническим. Механизм отрицательного теплового сопротивления, порождающий автоколебания как при конвективном подводе теплоты, так и при сгорании газообразного топлива, был обоснован в [5]. Автоколебания, возбуждающиеся при проявлении этого механизма, имеют диаметрально противоположный характер [6] изменения в сравнении с колебаниями генерируемыми механизмом Л.Крокко. Эта особенность должна быть учтена при разработке способов управления амплитудой колебаний вибрационного горения или их полного подавления.

Постановка задачи. Задачей данной работы является математическое моделирование автоколебаний вибрационного горения в трубе Рийке (рис.1), возбуждаемых совместным действием механизмов неустойчивости Л.Крокко, запаздывания сгорания топлива и предложенного авторами отрицательного теплового сопротивления при включении в колебательный контур резонатора Гельмгольца. При этом определяется влияние акустических параметров резонатора ($L_{a_{\Gamma}}$ – акустической массы и $C_{a_{\Gamma}}$ – акустической гибкости) на характер демпфирования рассматриваемых автоколебаний, что позволит осуществить оптимально демпфирование автоколебаний с помощью резонатора Гельмгольца.

Результаты работы. Нестационарные движения сжимаемой среды в сосредоточенном колебательном контуре трубы Рийке [6-7], акустические параметры которой L_a и C_a , а к емкости перед источником теплоподвода подключен резонатор Гельмгольца (рис.1), описываются следующей системой уравнений:

$$\begin{cases} C_{a} \frac{dP}{dt} = G_{T}(t-\tau) + G_{\Gamma} - \varphi(P), \quad L_{a} \frac{dG_{T}}{dt} = F(G_{T}) - P, \\ C_{a_{\Gamma}} \frac{d\tilde{P}}{dt} = -G_{\Gamma}, \quad L_{a_{\Gamma}} \frac{dG_{\Gamma}}{dt} = P - \tilde{P} - k_{\Gamma}G_{\Gamma}^{2}, \end{cases}$$
(1)

201

Теплотехніка. Теплоенергетика

где $P = p_0 - p_{\rm T}$, $\tilde{P} = p_0 - p_{\rm F}$, функция $\varphi(P)$ является обращением зависимости $P = k_{\rm дp} G_{\rm BX}^2$, т.е. $\varphi(P) = \sqrt{P/k_{\rm дp}}$, $G_{\rm F}$ – массовый расход воздуха в емкость резонатора, $G_{\rm T}$ – массовый расход продуктов сгорания, $F(G_{\rm T})$ – напорная характеристика тепло-подвода [6].

Рисунок 1 – Схема колебательного контура трубы Рийке с резонатором Гельмгольца

При уменьшении длины ℓ_{Γ} трубки резонатора Гельмгольца его акустическая масса $L_{a_{\Gamma}} = \ell_{\Gamma}/S_{\Gamma} \rightarrow 0$; в системе (1) $k_{\Gamma} = 0$, $P = \tilde{P}$, и она преобразуется в динамическую систему с одной степенью свободы:

$$\begin{cases} \left(C_{a} + C_{a_{r}}\right)\frac{dP}{dt} = G_{r} - \varphi(P), \\ L_{a}\frac{dG_{r}}{dt} = F(G_{r}) - P. \end{cases}$$

$$(2)$$

Таким образом, в этом случае действие резонатора Гельмгольца сводится лишь к увеличению акустической гибкости основного колебательного контура. Анализ свойств автоколебаний системы (2) проводился в [6].

Также несложно проверить, что при уменьшении емкости резонатора, когда $C_{a_{\Gamma}} \rightarrow 0$, из (1) получается система (2), в которой следует положить $C_{a_{\Gamma}} = 0$. Следовательно, в случае уменьшения акустической гибкости $C_{a_{\Gamma}}$ резонатора его динамическое воздействие на основной колебательный контур ослабевает и при нулевой гибкости $C_{a_{\Gamma}} = 0$, даже когда $L_{a_{\Gamma}} \neq 0$, его действие вовсе аннулируется.

Перейдем к безразмерным переменным, полагая:

$$x_{1} = G_{T} / G_{T}^{*}, \ x_{2} = P / P^{*}, \ x_{3} = G_{\Gamma} / G_{\Gamma}^{*}, \ x_{4} = \tilde{P} / \tilde{P}^{*}, \ t' = t / m_{t}, \ \tau' = \tau / m_{t},$$
(3)

где m_t – характерный масштаб времени (например, $m_t = 1 c$), а параметры стационарного режима G_t^* , P^* , G_{Γ}^* и \tilde{P}^* определяются из (1), где положено:

$$dP/dt = 0, \quad dG_{\rm T}/dt = 0, \quad d\widetilde{P}/dt = 0, \quad dG_{\rm T}/dt = 0.$$
 (4)

Полагая $G_{\rm T}^* = \xi$, из (1) при условии (4) получаем следующие выражения для параметров стационарного режима: $P^* = \tilde{P}^* = F(\xi)$, $G_{\rm T}^* = 0$, причем $k = F(\xi)/\xi^2$. В дальнейшем, т.к. величина $G_{\rm T}^*$ входит в знаменателе в состав безразмерной переменной x_3 , полагаем $G_{\Gamma}^* = m$, где m – произвольная размерная константа (например $m = \xi$). После замены переменных (3) система (1) приводится к следующей форме:

$$\begin{cases} \left(\frac{L_{a}\xi}{m_{t}F(\xi)}\right)\frac{dx_{1}}{dt'} = \frac{F(\xi x_{1})}{F(\xi)} - x_{2}, \quad \left(\frac{C_{a}F(\xi)}{m_{t}\xi}\right)\frac{dx_{2}}{dt'} = x_{1}(t'-\tau') + \frac{m}{\xi}x_{3} - \sqrt{x_{2}}, \\ \left(\frac{mL_{a_{\Gamma}}}{m_{t}F(\xi)}\right)\frac{dx_{3}}{dt'} = x_{2} - x_{4} - \frac{k_{\Gamma}m^{2}}{F(\xi)}x_{3}^{2}, \quad \left(\frac{C_{a_{\Gamma}}F(\xi)}{m_{t}m}\right)\frac{dx_{4}}{dt'} = -x_{3}. \end{cases}$$
(5)

На рис.2 изображены предельные циклы и формы, соответствующие им периодические автоколебательные решения системы уравнений (5) при изменении акустической массы L_{a_r} резонатора Гельмгольца, когда $\tau' = 0.1$, $C_{a_r} = C_a$.

Рисунок 2 – Предельные циклы и формы автоколебаний при изменении L_а

Характер деформации предельного цикла и автоколебательных решений системы (5) при $\tau' = 0.1$, $L_{a_{\Gamma}} = L_a$ и варьировании акустической гибкости $C_{a_{\Gamma}}$ резонатора Гельмгольца приведен на рис.3. В этом случае автоколебания, как и в предыдущем случае (рис.2), возбуждаются совместным действием механизма Л.Крокко и отрицательного теплового сопротивления.

Рисунок 3 – Предельные циклы и формы автоколебаний при изменении C_а,

Теплотехніка. Теплоенергетика

При малых значениях запаздывания τ' механизм неустойчивости Л.Крокко фактически не проявляется и автоколебания в динамической системе (рис.1) возбуждаются из-за наличия восходящей (неустойчивой) ветви $dF(G_T)/dG_T > 0$ на напорной характеристике $F(G_T)$ (механизм теплоподвода) [4-6]. Однако с ростом τ' действие механизма Л.Крокко усиливается, и он начинает преобладать над механизмом теплоподвода. Это приводит к диаметрально противоположному характеру изменения амплитуды автоколебаний в трубе Рийке (рис.1) при варьировании акустических параметров резонатора Гельмгольца.

Рассмотрим далее, как на автоколебания в основном колебательном контуре влияет резонатор Гельмгольца при одновременном увеличении его акустической гибкости и массы. Для этого положим в (5) $C_{a_{\Gamma}} = \varepsilon^{-1} \cdot C_{a}$, $L_{a_{\Gamma}} = \varepsilon^{-1} \cdot L_{a}$ при $\varepsilon \to 0$:

$$\begin{cases} \left(\frac{L_{a}\xi}{m_{t}F(\xi)}\right)\frac{dx_{1}}{dt'} = \frac{F(\xi x_{1})}{F(\xi)} - x_{2}, \quad \left(\frac{C_{a}F(\xi)}{m_{t}\xi}\right)\frac{dx_{2}}{dt'} = x_{1}(t'-\tau') + \frac{m}{\xi}x_{3} - \sqrt{x_{2}}, \\ \left(\frac{mL_{a}}{m_{t}F(\xi)}\right)\frac{dx_{3}}{dt'} = \varepsilon \left[x_{2} - x_{4} - \frac{k_{r}m^{2}}{F(\xi)}x_{3}^{2}\right], \quad \left(\frac{C_{a}F(\xi)}{m_{t}m}\right)\frac{dx_{4}}{dt'} = -\varepsilon \cdot x_{3}. \end{cases}$$
(6)

Автоколебательное решение системы (6) можно получить методом малого параметра, разлагая его в ряд по степеням $\varepsilon > 0$:

$$X_{\varepsilon}(t',\tau') = \sum_{k=0}^{\infty} X_k(t',\tau') \varepsilon^k, \quad X_{\varepsilon} = [x_1(t',\tau',\varepsilon), x_2(t',\tau',\varepsilon), x_3(t',\tau',\varepsilon), x_4(t',\tau',\varepsilon)]^T, \quad (7)$$

где $X_k(t',\tau') = [x_{1,k}(t',\tau'), x_{2,k}(t',\tau'), x_{3,k}(t',\tau'), x_{4,k}(t',\tau')]^T$ $(k \ge 0)$. При $\varepsilon = 0$ система (6) вырождается в следующую динамическую систему:

$$\left(\frac{L_{a}\xi}{m_{t}F(\xi)}\right)\frac{dx_{1}}{dt'} = \frac{F(\xi x_{1})}{F(\xi)} - x_{2}, \quad \left(\frac{C_{a}F(\xi)}{m_{t}\xi}\right)\frac{dx_{2}}{dt'} = x_{1}(t'-\tau') - \sqrt{x_{2}}, \quad (8)$$

которая согласно (2) описывает автоколебания в трубе Рийке без подключенного к ней резонатора. Обозначим через $x_1^*(t')$, $x_2^*(t')$ периодическое решение системы (8). Тогда нулевое приближение в (7) запишется в виде $X_0 = [x_1^*(t'), x_2^*(t'), 0, 0]^T$. Для нахождения следующих слагаемых X_k ($k \ge 1$) необходимо выполнить стандартную процедуру подстановки (7) в (6). Далее, приравнивая слагаемые при одинаковых степенях ε , получается рекуррентная последовательность линейных дифференциальных уравнений, из которой с любой заданной точностью можно получить автоколебательное решение $X_{\varepsilon}(t', \tau')$ исходной системы (7). На рис.4. приведены трехмерное сечение аттрактора (рис.4, а), автоколебания, определяемые системой (6) при $\varepsilon = 1/10$ (рис.4, б), а также автоколебания (рис.4, в), описываемые системой (8). Положение равновесия в системе (6) является неустойчивым и при малейшем отклонении от него фазовая точка некоторое время движется в окрестности предельного цикла, она вплотную приближается к своему аттрактору, и режим динамики становится установившимся периодическим.

Реализовать на практике случай, когда $\varepsilon \to 0$, можно уменьшением диаметра d_{Γ} трубки резонатора и увеличением перепада температур: T – в камере горения и T_0 – в емкости резонатора. Действительно, это следует из следующих соотношений:

$$\frac{L_{\rm a}}{L_{\rm a_{\Gamma}}} = \frac{\ell}{\ell_{\Gamma}} \frac{S}{S_{\Gamma}} = \frac{\ell}{\ell_{\Gamma}} \left(\frac{d}{d_{\Gamma}}\right)^2, \qquad \frac{C_{\rm a}}{C_{\rm a_{\Gamma}}} = \frac{c_0^2}{c_{\Gamma}^2} \frac{V}{V_{\Gamma}} = \frac{T_0}{T} \frac{V}{V_{\Gamma}},$$

где $c_0 = \sqrt{kRT_0}$ – скорость звука в объеме V_{Γ} резонатора, $c = \sqrt{kRT}$ – скорость звука в камере горения.

Рисунок 4 – Характер демпфирования автоколебаний при увеличении акустических параметров резонатора Гельмгольца

Выводы. Получена динамическая система с сосредоточенными параметрами, представляющая математическую модель трубы Рийке при присоединении к ней резонатора Гельмгольца. Установлен характер преобразования предельных циклов и соответствующих им форм автоколебаний в такой динамической системе при совместном действии механизмов неустойчивости Л.Крокко и отрицательного теплового сопротивления с изменением акустических параметров резонатора Гельмгольца.

ЛИТЕРАТУРА

- 1. Крокко Л. Теория неустойчивости горения в жидкостных ракетных двигателях / Л.Крокко, Чжен Синь-и. М.: Изд-во иностранной литературы, 1958. 351с.
- 2. Ларинов В.М. Автоколебания газа в установках с горением / В.М.Ларинов, Р.Г.Зарипов. Казань.: Изд-во Казанского гос. техн. ун-та, 2003.–327с.
- 3. Натанзон М.С. Неустойчивость горения / Натанзон М.С. М.: Машиностроение, 1986. 247с.
- 4. Гоцуленко В.В. Математическое моделирование снижения амплитуд колебаний вибрационного горения в крупных промышленных агрегатах /В.В.Гоцуленко // Математическое моделирование, РАН. –2005.–Т. 17, № 11.– С.16-24.
- 5. Гоцуленко В.В. Тепловое сопротивление как механизм возбуждения автоколебаний / В.В.Гоцуленко, В.Н.Гоцуленко // Сборник науч. трудов Днепродзержинского гос. техн. ун-та. Днепродзержинск, ДГТУ. 2009. С.95-100.
- 6. Басок Б.И. Проблема термоакустических колебаний и вибрационного горения / Б.И.Басок, В.В.Гоцуленко // Техническая теплофизика и промышленная теплоэнергетика: сборник науч. трудов.– Днепропетровск. – 2009. – Вып. 1. – С.5-15.
- 7. Гоцуленко В.В. Автоколебания в трубе Рийке при ее собственном волновом сопротивлении /В.В.Гоцуленко // Системные технологии. 2004. №4'(33). С.45-51.