Так как F_p для всех моделей меньше $F_{maba,}$ то обе модели адекватны с надежностью 0,95 истинной зависимости и могут быть использованы для технологического анализа процесса и прогноза значений показателей *Y*.

Выводы. Таким образом, основным фактором, определяющим пористость, теплопроводность, прочность и термостойкость теплоизоляционного пористого материала, является влажность сырьевой смеси перед термообработкой. Термостойкость в большей степени зависит от содержания глины в смеси. Очевидно, что именно эти факторы обеспечивают необходимую интенсивность тепломассо-обменных процессов в исходном материале, которая взаимосвязана с основным технологическим показателем – температурой внешнего теплоносителя.

Термодинамические параметры пара определяются температурой теплоносителя и продолжительностью термического контакта с теплоносителем. Таким образом, используя полученные данные, можно прогнозировать свойства пористого материала на стадии проектирования технологического оборудования или процесса.

ЛИТЕРАТУРА

- Пат. 27656 UA, МПК С04В14/00. Сировинна суміш для пористого теплоізоляційного матеріалу / Кошлак Г.В., Павленко А.М.; заявник та патентовласник Дніпродзержинський державний технічний університет. – № 200707203; заявл. 26.06.07; опубл. 12.11.07, Бюл. №18.
- 2. Пат. 25862 UA, МПК С04В14/00. Сировинна суміш для пористого теплоізоляційного матеріалу / Кошлак Г.В., Павленко А.М., Соколовська І.Є.; заявник та патентовласник Дніпродзержинський державний технічний університет. – № 200703899; заявл. 10.04.07; опублік. 27.08.07, Бюл. №13.
- 3. Пат. 25527 UA, МПК С04В14/00. Спосіб одержання пористого теплоізоляційного матеріалу / Кошлак Г.В., Павленко А.М.; заявник та патентовласник Дніпродзержинський державний технічний університет. № 200703898; заявл. 10.04.07; опублік. 10.08.07, Бюл. №12.
- 4. Хартман К. Планирование эксперимента в исследовании технологических процессов / Хартман К., Лецкий Э, Шеффер В. М.: Мир, 1977. 552с.
- 5. Адлер Ю.П. Планирование эксперимента при поиске оптимальных условий / Адлер Ю.П., Маркова Е.В., Грановский Ю.В. М.: Наука, 1976. 279с.

УДК 532.5.072.15

ЯКОВЛЕВА А.В.*, аспирант ПАВЛЕНКО А.М., д.т.н., профессор

*Запорожская государственная инженерная академия Днепродзержинский государственный технический университет

ПОЛЕЗНАЯ ЛУЧИСТАЯ МОЩНОСТЬ U-ОБРАЗНОГО «ТЕМНОГО» ТРУБНОГО ИЗЛУЧАТЕЛЯ

Введение. Отопительный сезон в Украине продолжается около 6 месяцев. Это обстоятельство придает большое значение проблеме отопления. Затраты энергии на отопление достаточно велики, что стимулирует постоянный поиск их снижения. Широко сегодня применяемая система центрального отопления является чрезвычайно энергоемкой, инерционной, плохоуправляемой.

Теплотехніка. Теплоенергетика

Постановка задачи. Перевод систем отопления предприятий и отдельных помещений большого объема (ангаров, вокзалов и т.д.) на автономные газовые системы позволяет получить значительную экономию топлива и материальных средств. Основными элементами таких систем являются инфракрасные излучатели. В последние годы наиболее широко применяются прямоточные и U-образные «темные» трубные излучатели, в которых топливом является природный газ. При проектировании таких систем отопления возникает необходимость численной оценки полезной лучистой мощности от излучателей на поверхность пола, стен и оборудования. В [1] приводится методика расчета для прямоточных излучателей. В данной статье предлагается методика для расчета U-образных излучателей.

Результаты работы. Конструктивно U-образный трубный излучатель (с симметричным расположением ветвей излучающей трубы) можно представить следующим образом.

Рисунок 1 – Конструктивная схема U-образного трубного излучателя (поперечный разрез)

Конструкция U-образного «темного» трубного излучателя состоит из горелочной и уходящей ветвей излучающей трубы диаметрами d_1' и d_1'' (с поверхностями F_1' и F_1''), расположенными внутри отражателя с поверхностью F₂. Расстояние между осями симметрии ветвей S; расстояние по вертикали от осей ветви до нижней кромки отражателя h; высота отражателя H; угол наклона его боковых стенок к горизонту α .

Поверхности горелочной F_1' и уходящей F_1'' ветвей излучающей трубы участвуют в лучистом теплообмене с лучевоспринимающими поверхностями (пол, стены) отапливаемого помещения, в котором находятся люди и оборудование, а также с поверхностью F₂ отражателя. Кроме того, поскольку температуры T_1' и T_1'' горелочной и уходящей ветвей трубы различны $(T_1' > T_1'')$, происходит лучистый теплообмен энергиями между ними. Внутренняя поверхность отражателя F₂ участвует в лучистом теплообмене с F_1' , F_1'' и поверхностями помещения и оборудования. Поскольку поверхность F₂ вогнутая, она излучает «сама на себя». Таким образом, полезная лучистая мощность U-образного трубного излучателя на поверхность пола, стен и оборудования складывается из полезной мощности от горелочной, уходящей ветвей и отражателя. Так как лучистый поток от ветвей F_1' , F_1'' и отражателя F₂ на указанные поверхности

«проходит» через нижнее основание отражателя, примем в качестве лучевоспринимающей расчетной поверхности помещения условную (расчетную) замыкающую плоскую поверхность F₃, ширина которой равна ширине отражателя в основании.

При оценке полезной лучистой мощности U-образного излучателя примем следующие допущения: поверхности F_1 , F_1 , F_2 , F_3 (длиной по одному метру) изотермические, серые; излучение их диффузное и подчиняется закону Ламберта; все поверхности разделены лучепрозрачной средой. С учетом принятых допущений мощность результирующего лучистого потока Q_{ii} , Вт/м для любых двух поверхностей, участвующих в лучистом теплообмене, определяется по зависимости [2]:

$$Q_{ij} = C_{ij}^{\ npue} \varphi_{ij} F_i (T_i^4 - T_j^4) , \qquad (1)$$

где C_{ij} , Bт/м²К⁴ – приведенный коэффициент излучения системы двух поверхностей F_i и F_i, определяемый по формуле

$$C_{ij}^{npus} = \frac{C_0}{100^4 \left[1 + \varphi_{ij} \left(\frac{1}{A_i} - 1 \right) + \varphi_{ji} \left(\frac{1}{A_j} - 1 \right) \right]},$$
(2)

 $C_0=5,67, BT/(M^2K^4)$ – коэффициент излучения абсолютно черного тела; $\varphi_{ij}, \varphi_{ji}$ – угловые коэффициенты собственного излучения соответствующих поверхностей. Определяются по [2] с использованием свойств взаимности и замыкаемости лучистых потоков в рассматриваемой системе поверхностей.

Обозначим температуры поверхностей горелочной и уходящей ветвей излучающей поверхности соответственно T_1 и T_1 , температуру внутренней поверхности отражателя – Т₂, а условной поверхности – Т₃, равной температуре реальной поверхности пола помещения. Для дальнейшего анализа примем, что известны температуры T_1' , T_1'' , T_3 (необходимо заметить, что определение численных значений T_1' и T_1'' является предметом специальных исследований и здесь не рассматривается). Температура Т₂ для U-образного излучателя определяется по аналогии [3]:

$$T_{2} = \sqrt[4]{\frac{C_{1'2}^{npue}\varphi_{1'2}F_{1'}T_{1'}^{4}(1-K) + C_{1'2}^{npue}\varphi_{1'2}F_{1''}T_{1''}^{4}(1-K) + C_{23}^{npue}\varphi_{23}F_{2}T_{3}^{4}}{C_{1'2}^{npue}\varphi_{1'2}F_{1'}(1-K) + C_{1''2}^{npue}\varphi_{1''2}F_{1''}(1-K) + C_{23}^{npue}\varphi_{23}F_{2}}},$$
(3)

где К – коэффициент, учитывающий тепловые потери Q2 от наружной поверхности отражателя; $K = \frac{Q_2}{Q_{1'2} + Q_{1'2}}$. Численные значения изменяются в пределах K=0...1. K=0, когда тепловые потери отсутствуют (отражатель выполнен из материала с коэффициентом отражения R=1, например, из полированной нержавеющей стали, листов алюминия).

По формулам (1)...(3) проведены расчеты мощностей результирующих лучистых потоков $Q_{1'3}$, $Q_{1''3}$, $Q_{1''2}$, Q_{23} в системе рассматриваемых поверхностей F_1 , F_1'' , F₂, F₃ при исходных данных, приведенных в табл.1.

	Параметры излучателя							
№ варианта	d [^] , м	d´´, м	S, м	Н, м	h, м	α	$\frac{a}{2}$, M	
1	0,1	0,1	0,3	0,18	0,05	60	0,15	
2	0,08	0,08	0,3	0,18	0,04	60	0,15	
3	0,1	0,1	0,3	0,15	0,05	60	0,15	
4	0,1	0,1	0,2	0,18	0,05	60	0,15	
5	0,1	0,1	0,3	0,18	0,1	60	0,15	
6	0,1	0,1	0,3	0,18	0,05	60	0,15	

Таблица 1 – Исходные данные для расчета

В вариантах 1...5 приняты $A_{i'} = A_{i''} = 0.8$, $A_2 = 0.1$, $A_3 = 0.9$, $T_{i'} = 700K$, $T_{i'} = 500K$, $T_3 = 290K$. В варианте 6 принят $A_2 = 0.8$. Остальные исходные данные те же.

Проведен анализ влияния геометрических параметров излучателя на результирующие тепловые потоки. Результаты расчетов представлены в табл.2.

Таблица 2 – Расчетные значения тепловых потоков при различных геометрических параметрах излучателя (K=0)

№ варианта	<i>Q</i> _{1'3} , Вт/м	<i>Q</i> _{1″3} , Вт/м	$Q_{ m l'2}$, Bt/m	$Q_{1''2}$, Bt/m	$Q_{ m 23}$, Вт/м	$Q_{1'3} + Q_{1''3} + Q_{23}$ BT/M
1	1542,704	366,943	418,812	-86,303	332,090	2241,737
2	1276,989	303,741	401,408	-72,420	328,976	1909,706
3	1542,639	366,927	324,848	-41,804	283,123	2192,689
4	1493,644	355,232	364,546	-85,314	279,354	2128,23
5	1377,656	327,685	409,653	-109,649	373,752	2079,093
6	1542,704	366,943	1247,659	-147,921	1100,852	3010,500

Выводы. Из результатов расчетов следует:

1. Изменение диаметров горелочной и уходящей ветвей излучающей трубы от 0,1 м до 0,08 м (варианты 1 и 2) приводит к уменьшению $Q_{1'3}$ и $Q_{1'3}$ соответственно от 1542,704 до 1276,989 Вт/м и от 366,943 до 3003,741 Вт/м. Следовательно, уменьшается полезная лучистая мощность $Q_{1'3} + Q_{1'3} + Q_{23}$ излучателя на пол помещения и окружающие стенки от 2241,737 до 1909,706 Вт/м.

2. Уменьшение Н – высоты корпуса отражателя – от 0,18 до 0,15 м (варианты 1 и 3) приводит к несущественным изменениям всех анализируемых потоков.

3. Уменьшение S – расстояния между осями симметрии ветвей излучающей трубы (и, следовательно, ширины основания корпуса излучателя) – от 0,3 до 0,2 м (варианты 1 и 4) приводит к незначительным уменьшениям анализируемых лучистых потоков (и, следовательно, полезной мощности). Уменьшение S сокращает расход материала для изготовления корпуса отражателя, что является положительным фактором.

4. Увеличение h – расстояния от осей симметрии горелочной и уходящей ветвей до основания отражателя – от 0,05 до 0,1 м (варианты 1 и 5) приводит к уменьшению общей полезной лучистой мощности излучателя от 2241,737 до 2079,093 Вт/м.

5. Увеличение A₂ – поглощательной способности внутренней поверхности отражателя – от 0,1 до 0,8 (варианты 1 и 6) приводит к значительному увеличению полезной мощности излучателя от 2241,737 до 3010,500 Вт/м, поэтому является желательным в практике проектирования «темных» U-образных излучателей.

Представляет интерес проведение анализа влияния тепловых потерь от наружной поверхности корпуса отражателя на полезную лучистую мощность излучателя.

В табл.3 представлены расчетные значения мощностей результирующих тепловых потоков при К=0,2.

№ варианта	<i>Q</i> _{1'3} , Вт/м	<i>Q</i> _{1"3} , Вт/м	$Q_{ m l'2},{ m Bt/m}$	$Q_{1^{\prime\prime}2}$, Bt/m	Q_{23} , Вт/м	$Q_{1'3} + Q_{1''3} + Q_{23}$ BT/M
1	1542,704	366,943	441,203	-63,890	301,520	2211,167
2	1276,989	303,741	422,679	-51,157	297,213	1877,943
3	1542,639	366,927	341,346	-25,220	253,065	2162,631
4	1493,644	355,232	384,209	-65,650	255,08	2103,894
5	1377,656	327,685	454,592	-64,710	311,937	2017,278
6	1542,704	366,943	1310,840	-84,739	981,645	2891,292

Таблица 3 – Расчетные значения тепловых потоков при различных геометрических параметрах (K=0,2)

Сопоставляя результаты расчетов (табл.2, 3) при одних и тех же исходных данных по соответствующим вариантам, делаем вывод, что значения $Q_{1'3}$ и $Q_{1'3}$ не изменяются при К=0 и К=0,2.

При К=0,2 мощность тепловых потоков $Q_{1'2}$ и $Q_{1'2}$ с горелочной и уходящей ветвей на внутреннюю поверхность отражателя незначительно возрастает по сравнению со значениями при К=0. Это происходит вследствие увеличения разности температур между наружными поверхностями F_1' и F_1'' горелочной и уходящей ветвей излучающей трубы и внутренней поверхностью отражателя: при постоянных значениях T_1' и T_1'' значение T₂ уменьшается при наличии тепловых потерь. Q_{23} при К=0,2 уменьшается в сравнении со значением Q_{23} при К=0. Причиной этого является обстоятельство, указанное выше: при К=0,2 T₂ меньше, чем T₂ при К=0, а T₃ является постоянной величиной.

Суммарный ($Q_{1'3} + Q_{1''3} + Q_{23}$) результирующий тепловой поток (полезная лучистая мощность излучателя) на поверхность T₃ (пола помещения) от горелочной $Q_{1'2}$ и уходящей $Q_{1''2}$ ветвей излучающей трубы, а от внутренней поверхности отражателя Q_{23} при K=0 больше, чем при K=0,2. Это объясняется потерями количества теплоты (20%) от ($Q_{1'2} + Q_{1'2}$) с наружной поверхности отражателя в окружающую среду.

Следует обратить внимание, что все полученные результаты справедливы для одномерной модели лучистого теплообмена, т.е. не учитывается перенос теплоты излучением вдоль U-образного излучателя. Это является ее недостатком. Положительной стороной одномерной модели является то, что она проста и позволяет вскрыть основные закономерности лучистого теплообмена внутри U-образного излучателя и наметить пути разработки эффективных излучателей и систем отопления.

ЛИТЕРАТУРА

 Алексеев Г.Ф. Угловые коэффициенты и теплообмен при отоплении зданий трубными инфракрасными излучателями / Г.Ф.Алексеев, В.В.Дрепин // Труды Российской национальной конференции по теплообмену. Том 6. – Москва: МЭИ. – 2002. – С.223-226.

Теплотехніка. Теплоенергетика

- 2. Блох А.Г. Теплообмен излучением // Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. М.:Энергоатомиздат, 1991. 432с.
- АлексеевГ.Ф. Расчетная оценка температуры поверхности отражателя при отоплении прямоточными «темными» трубными излучателями / Г.Ф.Алексеев, И.Г.Яковлева, Дрепин В.В. // Вопросы тепломассообмена, энергосбережения и экологии в теплотехнических процессах. – Иваново: ИГЭУ. – 2003. – С.22-27.

УДК 532.5.072.15

ПАВЛЕНКО А.М., д.т.н., профессор ОСЕННЯЯ О.С. аспирант

Днепродзержинский государственный технический университет

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ЭМУЛЬГИРОВАНИЯ ТОПЛИВ В ВИХРЕВЫХ АППАРАТАХ

Введение. Эмульгированные гомогенные жидкости (ЭГМ) используются во многих технологических процессах в различных отраслях промышленности. Поэтому и методики аппаратного исполнения технологий гомогенизации достаточно хорошо исследованы. Если к структуре данных составов предъявляются более строгие требования по дисперсности и устойчивости, то как правило прибегают к математическому моделированию основных рабочих процессов с целью последующей оптимизации конструкции аппаратов. Примером ЭГМ могут быть гомогенизированные мазуты. Формирование заданной структуры может происходить в вихревом аппарате, который устанавливается непосредственно перед сжигательными устройствами. Разогретый мазут поступает в вихревую смесительную камеру, туда же подается насыщенный водяной пар. В вихревом слое на начальной стадии контакта формируются две среды: сплошная (мазут) и паровые трубки, которые в процессе движения конденсируются и дробятся.

Постановка задачи. Задача исследования состоит в разработке методики количественной оценки гидродинамических характеристик вихревого гомогенизатора.

Результаты работы. В [1] анализируются параметры вихревого аппарата с целью определения их оптимального соотношения. В основу исследований следует заложить модель течения жидкости в вихревой камере, предложенную в работе [1].

В работе [2] установлено существование наиболее выгодного для потока в камере закручивания отношения r_c/R_κ (r_c – радиус сопла). Наличие экстремума на графике зависимости угла факела от геометрической характеристики, если последнюю изменять посредством увеличения R_κ , было отмечено в работе [3].

Поиск оптимальных размеров камеры закручивания является одной из важных задач экспериментальных исследований аэродинамики вихревого испарителя.

В работе [4] автор считает, что по уровню гидравлического сопротивления неприемлемы камеры с $r_c/R_k < 0.33$, а по уровню относительных скоростей и крутке потока неприемлемы камеры с $r_c/R_k > 0.6$. Оптимальное значение r_0/R_k лежит в пределах 0.35...0.5. Исследования аэродинамического сопротивления камер в диапазоне $r_c/R_k=0.2...1$ показали, что минимальные потери достигаются в камере открытого типа с $r_c/R_k=0.8...1$. Анализ опубликованных работ показал, что до настоящего времени вопрос об оптимуме r_c/R_k для камер закручивания остается открытым. Анализ формул для k и газодинамической характеристики камеры показывает, что при увеличении R_k имеет место рост Ar (гидродинамическая характеристика устройства), а затем ее уменьшение вследствие снижения k.