РОЗДІЛ «ПРОКАТНЕ ВИРОБНИЦТВО»

УДК. 621. 771. 01

МАКСИМЕНКО О.П., д.т.н., профессор РОМАНЮК Р.Я., ст. преподаватель ЛОБОЙКО Д.И., магистр

Днепродзержинский государственный технический университет

АНАЛИЗ ПРЕДЕЛЬНЫХ УСЛОВИЙ ПРОКАТКИ С УЧЕТОМ ПРОДОЛЬНЫХ СИЛ ДЕФОРМИРУЕМОГО МЕТАЛЛА

Введение. Теория простого процесса продольной прокатки разработана достаточно глубоко. Вместе с тем, как отмечено в работе [1], отдельные положения её требуют определенной корректировки и уточнения. Так известно [2-4], что расчётная эпюра распределения нормального давления по длине очага деформации в предельном случае прокатки имеет вид вогнутой кривой. Такой характер распределения давления объясняется действием продольных нормальных растягивающих напряжений в зоне контакта полосы с валками. В этом случае среднее давление меньше 2k (k – сопротивление деформации чистого сдвига) прокатываемого металла, что по энергетическим условиям невозможно. Следовательно, нарушение равновесия полосы в валках должно произойти при меньшем угле захвата α_v и возможно при наличии зоны опережения.

Постановка задачи. Проанализируем вопрос о равновесии в очаге деформации более подробно с учётом продольных сил пластически деформированного металла.

Результаты работы. Для этого выделим текущей объем металла в зоне деформации (рис.1, а) и рассмотрим его равновесие. Заменяя действие валка на металл контактными силами, а влияние отброшенной части полосы продольными нормальными напряжениями (рис.1, б), можно получить следующее условие равновесия:

а – очаг деформации; б – выделенный текущий объем металла;

Рисунок 1 – К равновесию горизонтальных сил

$$-2\int_{\varphi}^{\alpha_{y}} p_{x} \sin \varphi d\varphi Rb + 2\int_{\varphi}^{\alpha_{y}} t_{x} \cos \varphi d\varphi Rb - \sigma_{x} h_{x} b = 0$$

или в безразмерной форме:

$$-2\int_{\varphi}^{\alpha_{y}} \frac{p_{x}}{2k} \sin \varphi d\varphi + 2\int_{\varphi}^{\alpha_{y}} \frac{t_{x}}{2k} \cos \varphi d\varphi - \frac{\sigma_{x}}{2k} \left(\frac{h_{1}}{R} + \varphi^{2}\right) = 0, \qquad (1)$$

где p_{χ} и t_{χ} – нормальное давление и удельная сила трения;

 σ_x – предельное нормальное напряжение;

 φ – текущий угол;

b – ширина полосы;

*h*₁ – конечная толщина полосы;

R – радиус валков.

При этом примем во внимание граничное условие, что на входе в очаг деформации при $\varphi = \alpha_y$ напряжение $\sigma_x = 0$. Как видно, первые два слагаемые выражения (1) представляют собой текущую результирующую накапливаемых горизонтальных контактных сил Q_x , а третье слагаемое, равное

$$Q_{xnp} = \frac{\sigma_x}{2k} \left(\frac{h_l}{R} + \varphi^2 \right),$$

является текущей продольной силой пластически деформируемого металла и представляет собой силу сопротивления – реакцию на действие контактных сил Q_x .

Нетрудно показать, что выражение (1) соответствует начальному уравнению равновесия выделенного в очаге деформации элемента металла, составленного Т.Карманом. С учетом упрощения, сделанного им, это уравнение имеет вид:

$$-2p_x \sin\varphi d\varphi Rb + 2t_x \cos\varphi d\varphi Rb + d\sigma_x h_x b + \sigma_x dh_x b = 0$$

или в безразмерной форме:

$$-2\frac{p_x}{2k}\sin\varphi d\varphi + 2\frac{t_x}{2k}\cos\varphi d\varphi + d\frac{\sigma_x}{2k}\left(\frac{h_1}{R} + \varphi^2\right) + \frac{\sigma_x}{2k}2\varphi d\varphi = 0.$$

Проинтегрируем данное уравнение:

$$-2\int_{\varphi}^{\alpha_{y}} \frac{p_{x}}{2k} \sin \varphi d\varphi + 2\int_{\varphi}^{\alpha_{y}} \frac{t_{x}}{2k} \cos \varphi d\varphi + \int_{\varphi}^{\alpha_{y}} \left(\frac{h_{1}}{R} + \varphi^{2}\right) d\frac{\sigma_{x}}{2k} + 2\int_{\varphi}^{\alpha_{y}} \frac{\sigma_{x}}{2k} \varphi d\varphi = c.$$
(2)

Как видно, из условия $\varphi = \alpha_y$ можно определить постоянную интегрирования *c*, которая равна 0.

Сравнивая выражения (1) и (2), приходим к выводу, что они аналогичны. Тогда продольное напряжение σ_{χ} можно найти, непосредственно решая уравнение Т.Кармана с учетом условия пластичности:

$$\frac{\sigma_x}{2k} = \frac{p_x}{2k} - 1. \tag{3}$$

Как известно [2-4], в зависимости от условий и параметров прокатки эти напряжения по длине очага деформации существенно изменяются. Если при углах захвата меньших коэффициента трения f_v напряжения σ_x в любом сечении очага деформации

являются сжимающими, то при $\alpha_y > f_y$ на определенном участке очага деформации они становятся растягивающими. Очевидно, что на этом участке и текущие силы $Q_{x\,np}$ будут растягивающими, т.е. направленными в направлении прокатки. Проанализируем характер изменения силы $Q_{x\,np}$ в различных условиях прокатки на конкретном примере. Пусть прокатка ведется в валках радиусом R=100 мм, обжатие $\Delta h = 0,36$ мм, начальная толщина полосы $h_0 = 1$ мм, а коэффициент трения в установившемся режиме деформации f_y принимает значения 0,06; 0,0415; 0,03. Решение уравнения Т.Кармана осуществляли с применением ЭВМ при использовании приближенного метода Рунге-Кутта. Заметим, что в решении исходили из кулоновской модели трения в очаге деформации. Результаты расчета распределения контактных напряжений и текущей продольной силы $Q_{x\,np}$ приведены на рис.2. Как видно, характер изменения продольной силы пластически деформируемого металла существенно (количественно и качественно) за-

висит от отношения $\frac{\alpha_y}{f_y}$.

Рисунок 2 – Контактные напряжения (а, б) и текущая результирующая горизонтальных контактных сил (в) при $t_x = f_y p_x$

При $\frac{\alpha_y}{f_y} = 1$ (кривая 1) во всех сечениях очага деформации сила Q_{xnp} является

сжимающей. Противоположная картина наблюдается при прокатке в условиях, ко*α*...

гда $\frac{\alpha_y}{f_y} = 2$. В этом случае текущая продольная сила по всей длине очага деформации

является растягивающей (кривая 3, рис.2, в). Она направлена в соответствии с движением полосы и как бы выполняет роль активной (движущей) силы. Ранее обращалось внимание на то, что Q_{xnp} является силой сопротивления, реакцией на действие контактных сил, и потому активную роль выполнять не может. Поэтому равновесие металла в валках должно нарушиться (с последующей пробуксовкой) при меньшем угле за-

хвата ($\frac{\alpha_y}{f_y} < 2$). В подтверждение проведенного анализа рассмотрим распределение

силы Q_{xnp} вдоль очага деформации при $\frac{\alpha_y}{f_y}$ = 1,446 (кривая 2, рис.2, в). При прокатке

в этих условиях на одной части очага деформации текущая сила Q_{xnp} является растягивающей, а на другой – сжимающей, причем площади положительных и отрицательных её значений одинаковы. Для оценки влияния этой силы на характер течения металла, стабильность процесса и предельную захватывающую способность валков удобно ввести понятие средне-интегральной результирующей силы:

$$Q_{cp.np} = \frac{1}{\alpha_y} \int_{0}^{\alpha} Q_{x\,np} d\varphi.$$
⁽⁴⁾

Результаты расчетов показали, что средняя результирующая в зависимости от параметров прокатки может быть сжимающей, равной нулю и растягивающей. Следуя логике, можно предположить, что предельные условия прокатки наступают при $Q_{cp.np} = 0$.

Оценим, насколько точно характеризует предельные условия прокатки в установившемся режиме выше сформулированное предположение. Для этого сравним опытные данные А.П.Грудева зависимости опережения от угла захвата [6] с расчетом средней результирующей продольных сил $Q_{cp.np}$ по предложенной методике. Результаты опытов и расчета $Q_{cp.np}$ приведены на рис.3. В этой работе А.П.Грудев обращает внимание на то, что при угле захвата, равном 0,34 рад, прокатка проводилась со значительным опережением, равным 10%. Казалось бы, в очаге деформации имеется достаточный запас сил трения для того, чтобы дополнительно увеличить угол захвата. Однако при увеличении угла захвата до 0,35 равновесие сил в очаге деформации нарушилось, вследствие чего происходила пробуксовка полосы. Как видно из графиков рис.3, в момент пробуксовки средняя результирующая $Q_{cp.np}$ действительно принимает примерно нулевое значение. Аналогичные результаты были получены и при сравнении опытных данных [7] с расчетами по предложенной методике. Следует подчеркнуть, что потеря равновесия полосы в валках происходит при наличии зоны опережения (кривые 2, рис.3). Это соответствует результатам опытов [6, 7]. Кроме того, предельное отношение α_{max}^{max}

 $\frac{a_y}{f_y}$ меньше двух и равно 1,446, что ближе к производственным данным прокатки.

1 – опытная зависимость опережения от угла захвата, согласно [5];
 2 – теоретическая зависимость опережения от угла захвата;
 3 – изменение средней продольной результирующей сил в очаге деформации

Рисунок 3 – Теоретическая и экспериментальная зависимость опережения и средней результирующей силы от угла захвата

Выводы. Таким образом, можно констатировать, что процесс прокатки устойчиво протекает, пока $Q_{cp.np}$ является сжимающей силой, если она равна нулю, возникают предельные условия прокатки. В случае, если средняя результирующая $Q_{cp.np}$ становится растягивающей силой, устойчивый процесс прокатки невозможен.

ЛИТЕРАТУРА

- Долженков Ф.Е. Уширение, опережение и вытяжка при продольной прокатке (о некоторых противоречиях современной теории прокатки) / Ф.Е.Долженков // Известия вузов. Черная металлургия. – 2003. – №5. – С.41-44.
- 2. Хейн А.Я. Процесс ленточной и тонколистовой прокатки / А.Я.Хейн. М.: Металлургиздат., 1941. 247с.
- 3. Целиков А.И. Теория расчета в прокатных станах / А.И.Целиков. М.: Металлургиздат., 1962. 494с.
- 4. Чекмарев А.П. Анализ формул для определения удельного давления металла на валки. / А.П.Чекмарев, В.А.Токорев // Прокатное производство: труды НЧМ. – Изд. АН Украинской ССР. – 1961. – Вып. 3. – С.16-43.
- 5. Грудев А.П. Захватывающая способность прокатных валков / А.П.Грудев. М.: «СП Интермет Инжиниринг», 1988. 283с.
- 6. Грудев А.П. Внешнее трение при прокатке / А.П.Грудев. М.: Металлургиздат., 1973. 288с.
- Чекмарев А.П. Экспериментальное исследование максимальных углов захвата в установившемся процессе прокатки / А.П.Чекмарев, В.И.Прокофьев // Обработка металлов давлением: науч. труды ДМетИ. М.: Металлургия. 1967. Вып. LII. С.79-88.

Поступила в редколлегию 02.03.2012.