- 7. Пат. 253051 Україна МПК 7B22C9/08. Спосіб термітного зварювання чавунів / Ю.Ю.Жигуц, Ю.Ю.Скиба.; заявник і патентовласник Ужгородський національний університет. Опубл. 15.01.2003, Бюл. №1.
- 8. Пат. на корисну модель № и 2005 03319 України МПК 7В22С9/08. Металотермічний реактор / Ю.Ю.Жигуц, Ю.Ю.Скиба, В.І.Похмурський, І.І.Крайняй.; заявник і патентовласник Ужгородський національний університет. Опубл. 17.10.2005, Бюл. №10.
- 9. Котик Ф.И. Контроль металлов и сплавов в машиностроении / Котик Ф.И., Ибрагимов С.Г. М.: Машиностроение, 1983. 248c.
- 10. Гречина В.П. Износостойкие чугуны и сплавы / Гречина В.П. М.: Машгиз. 1961. 210с.
- 11. Жигуц Ю.Ю. Технология производства термитного высокопрочного чугуна / Прогресивні технології і системи машинобудування: міжн. збірн. наук. праць. Донецьк: ДНТУ. 2012. № 1, 2 (43). С.142-147.

Надійшла до редколегії 14.01.2013.

УДК 669.162:669.046.516

ШЕВЧЕНКО А.Ф., д.т.н., с.н.с. МАНАЧИН И.А., аспирант

Институт чёрной металлургии им. З.И.Некрасова НАН Украины, г. Днепропетровск

АКТИВИЗАЦИЯ ПРИФУРМЕННОЙ ЗОНЫ ПРИ ИНЖЕКЦИОННОЙ ДЕСУЛЬФУРАЦИИ ЧУГУНА ЗЕРНИСТЫМ МАГНИЕМ

Введение. Актуальность. Практически все процессы инжекционного ковшевого рафинирования железоуглеродистых расплавов связаны с созданием в жидкой ванне развитой и активной тепло- и массообменной зоны, в объеме которой образуются и всплывают пузыри и различного типоразмера газовые полости, содержащие инжектирующий газ и частицы рафинирующего реагента. На поверхности этих газовых полостей и в приграничной зоне расплава протекает комплекс физико-химических процессов, обеспечивающих его рафинирование. Поэтому создание наиболее развитой реакционной поверхности способствует увеличению степени усвоения вдуваемых реагентов и скорости их взаимодействия с расплавом, что в свою очередь приводит к возможности увеличения интенсивности вдувания реагентов и сокращения продолжительности цикла операции рафинирования чугуна при обеспечении высокой степени усвоения вводимых реагентов.

Одним из весьма перспективных путей увеличения тепло- и массообменной поверхности в расплаве является максимальное рассредоточение и диспергирование вдуваемых двухфазных потоков. Особенно это актуально при внепечной десульфурации чугуна с использованием магнийсодержащих реагентов, так как увеличение интенсивности ввода магния при обеспечении высокой степени его усвоения позволяет реализовать рациональный процесс рафинирования нового научно-технического уровня с широкими технологическими возможностями.

Состояние решение проблемы. Наиболее распространенными в настоящее время процессами внепечной обработки чугуна являются технологические процессы вдувания зернистого (гранулированного) магния без разубоживающих добавок и продувка чугу-

на смесями на основе порошкового (или зернистого) магния и высококачественной молотой известью [1-3]. При вдувании порошковых магнийсодержащих смесей диспергирование двухфазного потока пытаются осуществить вдуванием через двухсопловые (Т-образные фурмы) или другого типа многосопловые фурмы [2]. Однако, этот опыт нельзя признать удовлетворительным, так как фурмы на выходе закупориваются и «забиваются»; фурмы неуправляемо превращаются в односопловые, а недостаточное диспергирование двухфазного потока ограничивает практическую интенсивность вдувания магния пределами 9-12 кг/мин. Приведенные ограничения при вдувании магния можно обосновать недостаточной рациональностью параметров вдуваемых двухфазных порошкосодержащих потоков, их пульсацией и нестабильностью течений.

При анализе изложенной ситуации авторами было сделано заключение о том, что одной из основных причин ограниченной интенсивности ввода магния в расплав является неудовлетворительное распределение вдуваемых магнийсодержащих порошков в тепло- и массообменной зоне, что сопровождается весьма локализованным парообразованием магния с последующим повышением бурности процесса обработки чугуна. Для устранения указанных недостатков и повышения интенсивности ввода магния американская фирма ESM реализовала [2, 4] вдувание магний-известковых порошковых смесей двумя независимыми инжекционными системами через две фурмы (рис.1).

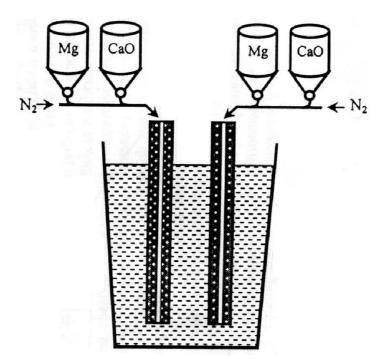


Рисунок 1 — Принципиальная схема рассредоточенного вдувания смеси магния с известью при помощи одновременной подачи реагентов через две индивидуальные инжекционные установки [4, 5]

Основные параметры этой инжекционной обработки следующие:

система вдувания
содержание магния в смеси
интенсивность вдувания магния
продолжительность операции вдувания
расход вдуваемого азота
степень усвоения магния
2 установки (на 1 ковш);
до 25%;
14-24 кг/мин;
6-13 мин;
120-160 нм³/ч;
30-40%.

Анализ промышленного применения приведенного технического решения показал следующие его недостатки: высокие капитальные и эксплуатационные затраты; ог-

раничение в возможности применения; высокая степень усвоения реагентов и значительная себестоимость обработки чугуна.

Постановка задачи. С учетом изложенного Институтом черной металлургии НАН Украины (г. Днепропетровск) предложен другой подход при решении задач интенсификации процесса ввода магния в ковш с жидким чугуном. Основные составляющие этого предложения включают следующие положения:

- обеспечение распределения частиц магния равномерно по сечению канала в период подготовки двухфазного потока к вдуванию;
 - исключение пульсаций в магниепроводе;
- подготовка и деление единого потока перед истечением из фурмы на несколько равных;
 - применение зернистого магния без пылевидных фракций и добавок;
- максимальное рассредоточение и диспергирование вдуваемого двухфазного потока в зоне истечения его в расплав и в прифурменной зоне.

Реализация процесса в основе включала специальные режимы дозирования магния, применение зернистого (0,4-1,6 мм) магния, специальные режимы разгона потока и подготовки к вдуванию, специальные условия деления потока и вдувание потока в расплав через погружаемую фурму с многосопловым оголовком (рис.2).

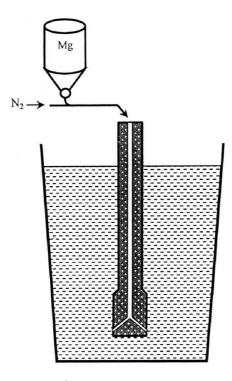
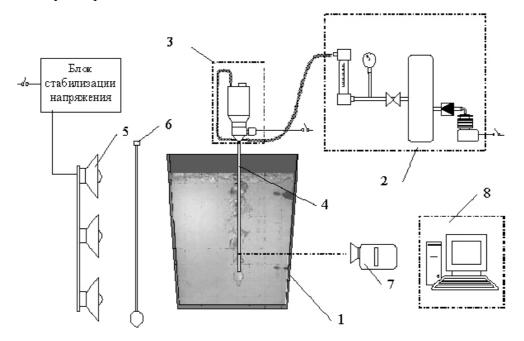



Рисунок 2 — Намеченное общее принципиальное решение обеспечения диспергированного вдувания зернистого или гранулированного магния в ковши с жидким чугуном при повышенной интенсивности подачи магния

Результаты работы. Отработку режимов и условий вдувания магния осуществляли на холодных физических и опытных моделях, в т.ч. на лабораторной установке с киносъемкой и замером процессов и параметров вдувания и барботирования жидкой ванны (рис.3), а также последующей компьютерной обработкой материалов исследований [5]. Это позволило определять величину межфазной поверхности, образующейся в прозрачной ванне, с получением числовых значений условной поверхности (Π_{Γ}) газо-

вых полостей по разработанной ранее и применяемой методике Днепропетровского национального университета [5].

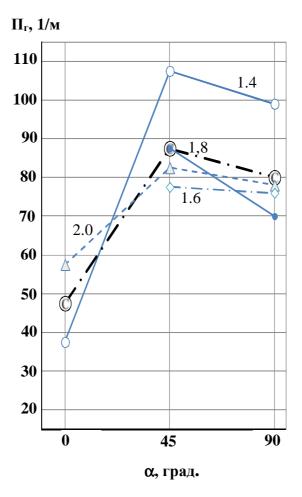
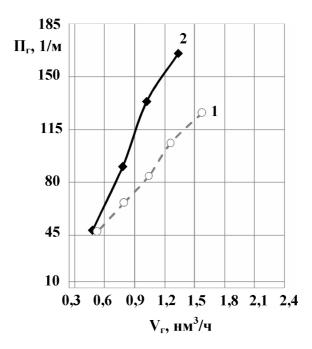

1 — прозрачная модель заливочного ковша; 2 — блок управляемой подачи сжатого газа; 3 — дозирующее устройство для твердой фазы; 4 — фурменное устройство; 5 — система подсветки; 6 — светорассеивающий экран; 7 — цифровая видеокамера; 8 — персональный компьютер для обработки видеоматериала

Рисунок 3 — Схема лабораторной установки для холодного моделирования процесса вдувания газовых и двухфазных потоков в жидкую ванну

Исследованиями на лабораторной и опытно-промышленной установке инжекционной подачи магния было установлено, что при скорости потока более 40-50 м/с частицы магния достаточно равномерно распределяются по сечению канала, что создает благоприятные предпосылки для деления потока на несколько равноценных. При концентрации магния около 8 кг/нм³ (или около 30 кг/м³) и скорости потока более 90 м/с практически не наблюдается пульсаций потока, а по своим свойствам двухфазный поток азота с зернистым магнием приближается к газовому потоку, способному делиться на несколько.

При вдувании потока в жидкую ванну в зоне истечения и в прифурменной зоне ванны образуется тепло- и массообменная барботирующая зона. Выполненные замеры (при варьировании расхода газа, диаметра сопла и угла истечения струи в ванну) показали, что при прочих равных условиях величина суммарной поверхности газовых полостей в ванне зависит от угла отклонения вдуваемого потока (α) от вертикальной оси (рис.4). Наиболее высокие значения условной поверхности создаются при вдувании потока под углом 45°. Эта закономерность установлена при продувках одноканальной фурмой.

При вдувании потока через двухсопловую фурму условная межфазная поверхность $\Pi_{\rm r}$ так же, как при продувках через одноканальную фурму увеличивается с повышением расхода инжектирующего газа (рис.5), но в большей степени, чем при одноканальной фурме, что обусловлено бо́льшими абсолютными значениями поверхности образующейся парогазовой среды при использовании двухсопловой фурмы. Последний


расход вдуваемого газа 1,3 $\text{м}^3/\text{ч}$; цифры у линий — диаметр канала (мм);

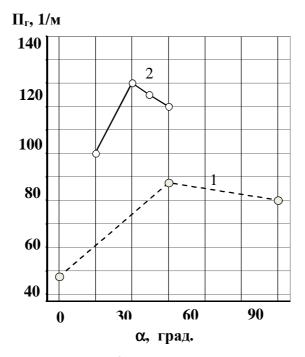
- $\bigcirc \diamondsuit \triangle \bullet$ Фактические значения (Π_{Γ}) при различных параметрах;
- \mathbb{O} средние значения (Π_{Γ}) по серии экспериментов

Рисунок 4 — Изменение условной поверхности (Π_{Γ}) газовых полостей в жидкой ванне при различных углах отклонения (α) канала односопловой фурмы (в оголовке) от вертикальной оси

факт свидетельствует о том, что в случае использования многосопловой (в частности двухсопловой) фурмы при всех прочих равных условиях и равных расходах (объеме) вдувания газа происходит большее диспергирование парогазовой фазы, что сопровождается увеличением условной поверхности в ванне на 30-45% (рис.5). Следовательно, вдувание парогазовых сред в жидкую ванну через многосопловые фурмы способствует большему диспергированию и дроблению газовой фазы с образованием более развитой межфазной поверхности, что способствует ускорению тепло- и массообменных процессов между жидким чугуном и парообразной магний-газовой средой. Изложенное является благоприятной предпосылкой для повышения эффективности усвоения магния и увеличения интенсивности его вдувания.

Сопоставление величин суммарной условной поверхности газовых полостей в жидкой ванне (рис.6) подтверждает, что абсолютные значения $\Pi_{\rm r}$ при двухсопловой фурме в среднем на 40 $^1/_{\rm m}$ или на 35-50% (относительных) больше, чем при односопловой фурме. На двухсопловой фурме так же, как и на одноканальной большее диспергирование достигается при угле отгиба сопел на 25-45° от вертикальной оси.

- 1 вдувание через односопловую фурму;
- 2 вдувание через двухсопловую фурму


Рисунок 5 — Зависимость условной межфазной поверхности (Π_{Γ}) пузырей газа в ванне от расхода газа (V_{Γ}) при вдувании через двухсопловую фурму с диаметром сопел 1,0 мм и эквивалентную ей односопловую фурму с диаметром канала 1,4 мм. Угол отклонения сопел на выходе от вертикальной оси (α) составляет 45°

Таким образом, экспериментально показано, что при прочих равных условиях вдувание двухфазных потоков через многосопловую (в частности, через двухсопловую) фурму сопровождается бо́льшим диспергированием парогазовой среды с образованием более развитой тепло- и массообменной поверхности в рафинируемой ванне. Последнее является основой для организации процесса вдувания диспергированного магния (без разубоживающих добавок) через многосопловые фурмы, которые должны обеспечивать более высокое усвоение магния и увеличение интенсивности вдувания магния в ковши с жидким чугуном.

На основании проведенных исследований сформулированы исходные данные для промышленной технологии и конструкции погружаемых двухсопловых фурм вдувания зернистого магния в ковши с жидким чугуном.

Выводы. Исследованиями на холодных физических моделях показано, что в случае вдувания зернистого магния имеются условия и предпосылки для диспергирования и деления двухфазных магнийсодержащих потоков на несколько равных с последующим диспергированием их в жидкой ванне после истечения из канала фурмы. Этот процесс сопровождается увеличением межфазной поверхности, образующейся в ванне, на 30-50% и определяет благоприятные предпосылки для увеличения степени усвоения магния и возможности увеличения интенсивности ввода магния в жидкий чугун.

Реализация рекомендуемого процесса включает вдувание зернистого магния через двухсопловые и многосопловые погружаемые фурмы с отклонением сопел на выходе на 25-45° от вертикальной оси.

удельный расход газа $1,3 \text{ нм}^3/\text{ч}$; диаметр каналов фурм – 1,4-2,0 мм

- 1 вдувание одноканальной погружаемой фурмой;
 - 2 вдувание двухсопловой погружаемой фурой

Рисунок 6 – Изменение условной межфазной поверхности (Π_{Γ}) газовых полостей в жидкой ванне (вода) при варьировании угла отклонения (α) канала сопел фурмы от вертикальной оси

По результатам исследований на моделях сформированы исходные условия для технологии и устройств вдувания магния в чугун через многосопловые фурмы.

ЛИТЕРАТУРА

- 1. Шевченко А.Ф. Технология и оборудование десульфурации чугуна магнием в большегрузных ковшах / Шевченко А.Ф., Большаков В.И., Башмаков А.М. // Киев: Наукова думка, 2011. 207с.
- 2. Оптимизация десульфурации чугуна на Voestalpine Stahl GmbH, опыт и применяемые меры / Р.Шварценбруннер и др. // IX Международный симпозиум по десульфурации чугуна и стали, 18-21 сент. 2006 г.: сб. докладов. Галати Румыния, 2006. С.69-73.
- 3. Создание и развитие рациональных технологий внепечной десульфурации чугуна / [Большаков В.И., Шевченко А.Ф., Лю Дун Ие и др.] // Сталь. -2009. -№ 4. -C.13-20.
- 4. Освоение технологии производства сталей с использованием установки десульфурации чугуна в условиях конвертерного производства ОАО "Северсталь" / [Степанов А.А., Ламухин А.М., Зинченко С.Д. и др.] // VII Международного симпозиума по десульфурации чугуна и стали, 20-24 сент. 2004 г.: сб. докладов. Нижний Тагил, 2004. С.83-87.
- 5. Компьютерная обработка кинограмм процесса взаимодействия газовых струй с жидкостью / [Рузова Т.А., Толстопят А.П., Шевченко А.Ф. и др.] // Енергетика та автоматизація виробничих процесів: Науковий вісник НГУ. Дніпропетровськ. 2007. № 12. С.91-99.

Поступила в редколлегию 25.12.2012.