Система уравнений движения в этом случае не упрощается и представляется в виде (6).

ЛИТЕРАТУРА

- 1. Богданов С.Ю. Расширение на обобщённые функции классической задачи динамики для подкреплённой цилиндрической оболочки // Системні технології 4(45) 2006. Регіональний міжвузівський збірник наукових праць. Дніпропетровськ.2006. с.134-138.
- 2. Луговой П.З., Мейш В.Ф., Штанцель Э.А. Нестационарная динамика неоднородных оболочечных конструкций. К.:, 2005. 536с.
- 3. Шилов Г.Е. Математический анализ. Второй специальный курс. Москва, Наука, 1965. 312с.

Поступила в редколлегию 15.02.2013

УДК 539.3

БАЩУК Е.Ю., к.физ.-мат.н.

Институт механики им.С.П. Тимошенко НАН Украины

ПЛОСКАЯ ЗАДАЧА ТРЕХМЕРНОЙ УСТОЙЧИВОСТИ ЖЕСТКО ЗАЩЕМЛЕННОЙ ПЛАСТИНЫ С ТРЕЩИНОЙ

Введение. В настоящее время решения задач устойчивости материалов и элементов конструкций с трещинами осуществляется, в основном, с использованием прикладных подходов, позволяющих свести трехмерные уравнения к одномерным или двумерным. Используемые гипотезы приводят к тому, что механические процессы, происходящие в материале, отражаются сугубо приближенно, в результате наличия неустранимых погрешностей. В настоящее время для получения более достоверной информации о критических параметрах нагружения необходимо применять к исследованию устойчивости упругих сред и элементов конструкций трехмерный подход. Под трехмерным подходом, следуя [1], понимается подход исследования задач, в котором используются все гипотезы механики твердого тела, за исключением гипотез, позволяющих уменьшить размерность исследуемой задачи

Рассматриваемая в статье задача исследуется в рамках точного подхода. Для получения значений критических параметров наиболее соответствующих механическим процессам, происходящим в упругих средах, в настоящее время, применяются уравнений трехмерной линеаризированной теории устойчивости. Здесь используется второй вариант теории, для случая малых деформаций и линейной связи между напряжениями и деформациями [1,4].

Постановка задачи. Рассмотрим линейно упругую изотропную прямоугольную пластину, находящуюся в условиях плоской деформации в плоскости x_10x_2 и сжимаемую в направлении $0x_2$ нагрузкой \mathring{p}_{22} постоянной интенсивности. Пластина имеет размеры $2l_1 \times 2l_2$ и ослаблена в направлении действия нагрузки центральной трещиной длины 2t с берегами свободными от нагружения. Пластина жестко защемлена и в ней реализуется неоднородное докритическое состояние, компоненты которого отмечаются сверху индексом "o" (рис.1, а). К решению задачи устойчивости применяются уравнения ТЛТУДТ и используется второй вариант теории [1,6]. С учетом симметрии решения рассматривается половина пластины (рис.1, б). Для нахождения критических параметров пластины требуется определить из решения

задачи упругости начальные напряжения σ_{ij} основного состояния, а затем из решения уравнений (ТЛТУДТ) определить критические характеристики устойчивости пластины.

Сформулируем задачу теории упругости.



Рисунок 1

Отыскивается функция $\overset{\circ}{\pmb{u}} = (\overset{\circ}{u}_1,\overset{\circ}{u}_2)$, удовлетворяющая следующие соотношения: уравнение равновесия

$$-\frac{\partial \stackrel{\circ}{\sigma}_{im}}{\partial x_i} = \stackrel{\circ}{F}_m; \quad x \in \overline{\Omega}, \tag{1}$$

граничные условия

$$\overset{\circ}{\sigma}_{1m} = 0; |x_1| = l_1 \land 0 \le x_2 \le l_2;
\overset{\circ}{u}_1 = 0 \land \overset{\circ}{u}_2 = const; |x_1| \le l_1 \land x_2 = l_2;
\overset{\circ}{\sigma}_{21} = \overset{\circ}{u}_2 = 0; |x_1| \le l_1 \land x_2 = 0.$$
(2)

условия на трещине

$$\overset{\circ}{\sigma}_{1m} = 0; \ x_1 = \pm 0 \land 0 \le x_2 \le t. \tag{3}$$

Закон Гука для изотропного тела имеет вид:

$$\overset{\circ}{\sigma}_{ii} = A_{im} \overset{\circ}{\varepsilon}_{mm}; \overset{\circ}{\sigma}_{12} = 2G \overset{\circ}{\varepsilon}_{12}; A_{ii} = \lambda + 2G; A_{12} = \lambda;$$

$$\overset{\circ}{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial \mathring{u}_i}{\partial x_j} + \frac{\partial \mathring{u}_j}{\partial x_i} \right); \lambda = \frac{Ev}{(1+v)(1-2v)}; G = \frac{E}{2(1+v)}, \tag{4}$$

где $\overline{\Omega}$ — расчетная область; \mathring{F}_m — компонента массовой силы; $x = (x_1, x_2)$ — точка на расчетной схеме; A_{ij} — упругие постоянные (коэффициенты жесткости); G — модуль сдвига, λ — коэффициент Ламе. В (3) x = -0 соответствует левому берегу трещины.

Для приближенного решения задачи теории упругости используется метод Холецкого и метод сопряженных градиентов [5].

Для нахождения критических параметров в задаче устойчивости требуется определить минимальное по модулю и отличное от нуля собственное решение (p,u), удовлетворяющее следующие соотношения:

уравнения в возмущениях

$$\frac{\partial}{\partial x_i} \left(\sigma_{im} + p \stackrel{o}{\sigma}_{im} \frac{\partial u_m}{\partial x_j} \right) = 0; \ x \in \overline{\Omega}$$
 (5)

граничные условия

$$\sigma_{1m} = 0; |x_1| = l_1 \land 0 \le x_2 \le l_2;$$

$$\sigma_{21} + p \, \sigma_{22}^{\circ} \, \frac{\partial u_1}{\partial x_2} = 0 \land \stackrel{\circ}{u}_2 = 0; |x_1| \le l_1 \land x_2 = 0;$$

$$u_1 = 0 \land u_2 = 0; |x_1| \le l_1 \land x_2 = l_2.$$
(6)

условия на сторонах трещины

$$\sigma_{1m} = 0; x_1 = \pm 0 \land 0 \le x_2 \le t . \tag{7}$$

Закон Гука определяется соотношением (4), где следует опустить индекс $\cdot \circ$. Критические параметры определяются из равенства

$$p^{kp} = p = p_1; u^{kp} = u = u_1$$
 (8)

Для приближенного решения уравнений ТЛТУДТ используется метод итерирования подпространства и градиентный метод [4].

Результаты и анализ расчетов. Целью расчетов является исследования влияния механических и геометрических характеристик пластины с трещиной на характер поведения критических параметров.

Рассматривается изотропная пластина, механические и геометрические характеристики которой варьируются в следующих пределах: $0.25 \Gamma\Pi a \le E \le 250 \Gamma\Pi a$, $0 \le v \le 0.4$, $0.1 \le \alpha \le 0.3$, где $\alpha = \frac{l_1}{l_2}$ — параметр тонкостенности.

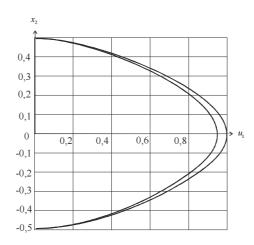
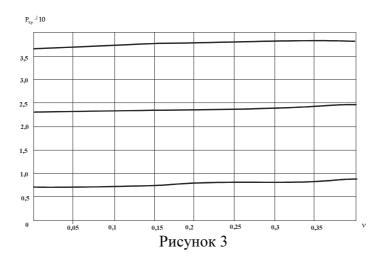


Рисунок 2

На рис.2 изображены графики функций $u_1(x_1 = const, x_2)$, представляющие форму потери устойчивости пластины в различных вертикальных сечениях пластины. Видно, что формы потери устойчивости пластины близки к функции $u_1(x_1, x_2) = A(x_1)\cos(\pi x)$, где

 $A(x_1)$ — амплитуда косинусоиды в сечении $x_1 = const$. Горизонтальное возмущение берегов трещины описывается одной функцией $u_1(\pm 0, x_2) = A(0)\cos(\pi x)$. Это означает, что в возмущенном состоянии отсутствует раскрытие или надавливание берегов трещины.



На рис. З показана зависимость критической нагрузки от величины коэффициента Пуассона при фиксированных параметрах тонкостенности и модулях Юнга. Из рисунка видно, что изменение коэффициента Пуассона незначительно влияет на величину критической нагрузки (в пределах 7% при $\alpha \le 0.25$ и в пределах 10% $0.25 < \alpha \le 0.3$), а форма потери устойчивости практически не изменяется. Подобные результаты (незначительное влияние коэффициента Пуассона на значение критической нагрузки) получены для слабоармированных волокнистых материалов и для прямоугольных пластин [2,3]

При анализе влияния модуля Юнга на критические параметры установлено, что для произвольных фиксированных значениях α,t,v критическая нагрузка изменяется прямо пропорционально модулю Юнга E. Такой результат является механически непротиворечивым. Поведение функции \mathbf{u} , возмущения смещений, в этом случаи практически не зависит от величины E.

ЛИТЕРАТУРА

- 1. Гузь А. Н. Устойчивость трехмерных деформируемых тел. К.: Наук. думка, 1971. –276 с.
- 2. Гузь А. Н. Механика разрушения композитных материалов при сжатии.— К.: Наук. думка, 1990.—630 с.
- 3. Гузь А. Н., Гладун Е.Ю. О трехмерной устойчивости пластины с трещиной // Прикл. механика. -2001. -37, № 10. С. 53–62.
- 4. Коханенко Ю.В. Численное исследование краевых эффектов в слоистых композитах при одноосном нагружении // Прикл. механика.—2010.—46, № 5. С. 29—45.
- 5. Парлет Б. Симметричная проблема собственных значений. Численные методы: Пер. с англ.— М: Мир.— 1983.— 384 с.
- 6. Guz A.N. Fundamentals of Three–Dimensional Theory of stability of Deformable Bodies. Berlin, Heidelberg. Springer Verlag, 1999. 555 p.

Поступила в редколлегию 15.02.2013