РОЗДІЛ «РАДІОЕЛЕКТРОНІКА»

УДК 621.376

МАРЧЕНКО С.В., ст.преподаватель СЪЯНОВ А.М., д.т.н., профессор МОРОЗОВ В.М., к.ф.-м.н., доцент

Днепродзержинский государственный технический университет

ОСОБЕННОСТИ ПРИМЕНЕНИЯ МЕТОДА ПРОНИЗЫВАЮЩЕЙ ОБЛАСТИ ДЛЯ ЭЛЕКТРОДИНАМИЧЕСКОГО РАСЧЕТА ФАР С ДИЭЛЕКТРИЧЕСКИМ ЗАПОЛНЕНИЕМ

Введение. При математическом моделировании сложных электродинамических СВЧ-структур одним из подходов является метод интегрального уравнения (МИУ), позволяющий строить эффективные электродинамические алгоритмы [1]. Методы частичных соприкасающихся областей (МЧСО или метод "сшивания") и метод частичных пересекающихся областей, основанные на МИУ, требуют определения функции Грина с учетом диэлектрического плоскослоистого заполнения для каждой простой области, на которые разбивается сложная область определения электромагнитного поля. В методе интегрального уравнения на основе выделения пронизывающей области [2] необходимо определить с учетом диэлектрического заполнения функцию Грина только для одной области – пронизывающей. Несмотря на существующие подходы, разработанные рядом авторов и одним из авторов этой работы для метода частичных пересекающихся областей, учет диэлектрического заполнения в методе пронизывающей области имеет свои особенности, которые и были рассмотрены в этой работе.

Постановка задачи. Целью данной работы является показать особенности решения скалярных задач электродинамики СВЧ с учетом диэлектрического плоскослоистого заполнения методом пронизывающей области:

- представление функции Грина и функции источника стороннего поля для учета диэлектрического заполнения волноводной области;

- пересчета тангенциальных компонент электрического поля в диэлектриче-

Рисунок 1 – Единичный излучатель бесконечной линейной ФАР с волноводной вставкой и слоем ди-электрического покрытия

ских слоях покрытия через тангенциальные компоненты внешнего пространства;

- определение коэффициента отражения волны в области ближайшей к источнику поля, через отраженные и прошедшие волны в диэлектрической вставке.

На рис.1 изображен центральный излучатель бесконечной ФАР с волноводной вставкой, относительная диэлектрическая проницаемость которой равна єІ, и одним слоем диэлектрического покрытия с проницаемостью єІІ, є0=1 при сканировании в Нплоскости.

Разобьем сложную область определения электромагнитного поля (рис.1) на две простые частичные области.

Область 1 – регулярный волновод, продлённый в бесконечность (пронизывающая область) с диэлетрическим заполнением:

$$-\frac{W}{2} \le \widetilde{o} \le \frac{W}{2}; -\infty < z < +\infty.$$

Область 2 – полубесконечный "канал Флоке", состоящий из двух подобластей: подобласть II – область 2, заполненная диэлектриком єII:

$$-\frac{F}{2} \le \tilde{o} \le \frac{F}{2}; \ 0 \le z \le z \text{II}.$$

подобласть III - область 2, заполненная диэлектриком є0:

$$-\frac{F}{2} \le \tilde{o} \le \frac{F}{2}; \, z \mathrm{II} \le z < +\infty \; .$$

Алгоритм решения. Используя вторую формулу Грина, запишем интегральное представление для полного поля пронизывающей области:

$$\begin{split} E_{y}^{l}(x,z) &= E_{y_{exc}}^{l}(x,z) + \\ &+ \int_{0}^{zII} \left\{ E_{y}^{l(II)}(x',z') \frac{\partial G_{II}^{l}(x,z;x',z')}{\partial x'} \bigg|_{x'=-\frac{W}{2}} \right| - E_{y}^{l(II)}(x',z') \frac{\partial G_{II}^{l}(x,z;x',z')}{\partial x'} \bigg|_{x'=\frac{W}{2}} \right\} dz' + \tag{1} \\ &+ \int_{zII}^{\infty} \left\{ E_{y}^{l(III)}(x',z') \frac{\partial G_{III}^{l}(x,z;x',z')}{\partial x'} \bigg|_{x'=-\frac{W}{2}} \right| - E_{y}^{l(III)}(x',z') \frac{\partial G_{III}^{l}(x,z;x',z')}{\partial x'} \bigg|_{x'=\frac{W}{2}} \right\} dz' , \\ &\quad x \in \left[-\frac{W}{2}, \frac{W}{2} \right]; \quad x' \in \pm \frac{W}{2}; \quad z = 0; \quad z' \in [0, zII] \cup [zII, +\infty), \end{split}$$

где $E_y^{1(j)}$, j=II, III – у-компонента напряженности электрического поля соответствующей области или подобласти;

 $E_{y_{exc}}^{1}(x, z)$ – тоже для стороннего источника; $G_{r}^{-1}(x, z; x', z')$ n=0 III III – функция Грина бесконечного

 $G_n^{-1}(x, z; x', z')$, n=0, I,II, III – функция Грина бесконечного волновода с плоскослоистым диэлектрическим заполнением.

Тангенциальные составляющие напряженности поля второй области:

$$\begin{split} E_{y}^{2(II)}(x,z) &= \sum_{mf=-\infty}^{\infty} \left(T \Pi_{mf} e^{-CJ \cdot \gamma \Pi_{mf} \cdot (z-z\Pi)} + R \Pi_{mf} e^{CJ \cdot \gamma \Pi_{mf} (z-z\Pi)} \right) \cdot F D_{mf}(x) \quad , \\ E_{y}^{2(III)}(x,z) &= \sum_{mf=-\infty}^{\infty} T \Pi_{mf} e^{-CJ \cdot \gamma \Pi_{mf} \cdot (z-z\Pi)} \cdot F D_{mf}(x) \quad , \end{split}$$

где TII_{mf} , RII_{mf} , $TIII_{mf}$ – комплексные амплитудные коэффициенты, подлежащие определению;

FD_{mf}(*x*) – ортонормированные поперечные собственные функции "канала Флоке";
 *µ*I_{*mf*}, *µ*II_{*mf*} – продольные коэффициенты распространения волны во второй области.
 "Истокообразное" представление функции Грина:

Радіоелектроніка

$$G_n^1(x,z;x',z') = \sum_{MWG=1}^{\infty} WD_{MWG}(x) \cdot WD_{MWG}(x') \cdot f_{MWG}^{[n]}(z,z') \quad ,$$

где $WD_{MWG}(x)$, $WD_{MWG}(x')$ – поперечные собственные функции прямоугольного волновода, удовлетворяющие граничным условиям Дирихле; $f_{MWG}^{[n]}(z,z')$ – продольная компонента для соответствующей подобласти функции

Грина первой области.

Продольные компоненты были найдены с учетом месторасположения точек источников поля и наблюдения в интегральном представлении и свойств симметрии функции Грина:

$$f_{MWG}^{[n]}(z,z') = \begin{cases} k0 \cdot e^{CJ \cdot CWI_{MWG}^{[n]} \cdot (z+zI)}, & z \in (-\infty; -zI], n = 0 ; \\ \frac{e^{-CJ \cdot CWI_{MWG}^{[n]} - |z-z'|}}{2 \cdot CJ \cdot CWI_{MWG}^{[n]} + kIt \cdot e^{-CJ \cdot CWI_{MWG}^{[n]} \cdot z} + \\ + kIr \cdot e^{CJ \cdot CWI_{MWG}^{[n]} - z}, & z \in [-zI;0], n = I ; \\ + kIr \cdot e^{-CJ \cdot CWI_{MWG}^{[n]} \cdot (z-zII)} + kIIr \cdot e^{CJ \cdot CWI_{MWG}^{[n]} \cdot (z-zII)} & z \in [0; zII], n = II ; \\ kIIIt \cdot e^{-CJ \cdot CWI_{MWG}^{[n]} \cdot (z-zII)}; & z \in [zII; +\infty), n = III , \end{cases}$$

$$(2)$$

где $CWL_{MWG}^{[n]}$ – продольный коэффициент распространения волны в соответствующей подобласти регулярного волновода.

"Сшивая" выражения для продольных компонент и их производных на границах раздела z=-zI; 0; zII, находим функцию Грина первой области.

Сторонний источник электромагнитного поля находится при $z = -\infty$, т.е. в области $z \in (-\infty; -zI]$. Для определения электромагнитного поля в областях необходимо знать выражение для стороннего источника при z = 0. Представление для стороннего источника в зависимости от координаты z:

$$E_{yexc}^{1}[n](z) = \begin{cases} e^{-CJ \cdot CWI_{MWG}^{[n]}(z+z\mathbf{I})} + h0 \cdot e^{CJ \cdot CWI_{MWG}^{[n]}(z+z\mathbf{I})}, & z \in (-\infty; -z\mathbf{I}], n = 0 \\ hIt \cdot e^{-CJ \cdot CWI_{MWG}^{[n]}(z)} + hIr \cdot e^{CJ \cdot CWI_{MWG}^{[n]}(z)}, & z \in [-z\mathbf{I}; 0], n = \mathbf{I} \\ hIIt \cdot e^{-CJ \cdot CWI_{MWG}^{[n]}(z-z\mathbf{I})} + hIr \cdot e^{CJ \cdot CWI_{MWG}^{[n]}(z-z\mathbf{I})}, & z \in [0; z\mathbf{I}], n = \mathbf{II} \\ hIII \cdot e^{-CJ \cdot CWI_{MWG}^{[n]}(z-z\mathbf{I})}, & z \in [z\mathbf{I}; +\infty), n = \mathbf{III} \end{cases}$$
(3)

"Сшивая" записанные выше представления и их производные при z=-zI; 0; zII, найдем выражение для стороннего источника при z=0.

Используя условия сшивания компонент напряженностей электрического поля и их производных при z=zII, находим выражения для TII_{mf} è RII_{mf} через коэффициен-

ты $TIII_{mf}$. Выражения для TII_{mf} è RII_{mf} , функция Грина (2) и функция стороннего источника (3) подставляются в интегральное представление (1) при фиксировании точки наблюдения при z=0, что приводит к интегральному уравнению Фредгольма второго рода. Применяя метод Галеркина к интегральному уравнению, получаем систему линейных алгебраических уравнений (СЛАУ), которая была решена методом редукции.

После определения неизвестных $TIII_{MF}$ вычисляем компоненты напряженности электрического поля в диэлектрическом слое TII_{MF} и RII_{MF} , сшивая функции и производные выражений для напряженностей электрического поля подобластей II и III при z=z1. Выражаем поле падающей и отраженной волн области, ближайшей к источнику поля, через отраженные и прошедшие волны в диэлектрической вставке (рис.2).

Рисунок 2 — Диэлектрическое заполнение волноводного канала для определения коэффициента отражения

Таким образом, поле в волноводе [-zI; 0] имеет следующий вид:

$$E_{y}^{I}(z=0) = R 0_{MWG} \cdot \left[\frac{e^{-CJ \cdot CWL_{MWG}^{I} \cdot zI}}{2} \left(1 - \frac{CWL_{MWG}^{0}}{CWL_{MWG}^{I}} \right) + \frac{e^{CJ \cdot CWL_{MWG}^{I} \cdot zI}}{2} \right]$$
$$\left(1 + \frac{CWL_{MWG}^{0}}{CWL_{MWG}^{I}} \right) + \left[\frac{e^{-CJ \cdot CWL_{1}^{I} \cdot zI}}{2} \left(1 + \frac{CWL_{1}^{0}}{CWL_{1}^{I}} \right) + \frac{e^{CJ \cdot CWL_{1}^{I} \cdot zI}}{2} \left(1 - \frac{CWL_{1}^{0}}{CWL_{1}^{I}} \right) \right]$$

Определив TII_{mf} , RII_{mf} , а также компоненты поля в волноводе при z=0, сшиваем поля области I и области II при z=0 и получаем коэффициент отражения для волны H_{10} .

Результаты работы. На рис.3, 4 представлены известные результаты, полученные методом сшивания [1] (отмечены линиями) и полученные по рассмотренному алгоритму (отмечены крестиками). На рис.3 изображены кривые зависимости модуля коэффициента отражения для слоя с относительной диэлектрической проницаемостью ε =3.0625, а на рис.4 – кривые зависимости модуля коэффициента отражения для диэлектрической вставки с относительной диэлектрической проницаемостью ε =2. Нормированный поперечный размер канала Флоке – F/λ_0 =0.5714; для плоскопараллельного волновода: W=F – для случая диэлектрического покрытия; W =0.937*F – для диэлектрической вставки. Толщина диэлектрического покрытия zII определяется в длинах волн $\lambda = \frac{\lambda_0}{\sqrt{\varepsilon}}$, а толщина волноводной вставки zI определяется через поперечный размер

"канала Флоке". В табл.1, 2 приведены результаты сходимости решения задачи от учитываемых типов волн. При расчете на ПК учитывалось 29 гармоник Флоке и такое же количество типов волн в волноводе. Полученные результаты совпадают с графической точностью с известными данными.

Рисунок 3 – Зависимость модуля коэффициента отражения от угла сканирования со слоем диэлектрического покрытия

Таблица 1 – Численная сходимость при наличии диэлектрического слоя покрытия для параметров решетки: $W=F=0.5714\lambda_0, \ \theta=60^\circ,$ $\epsilon II=3.0625, \ zII=0.5\lambda$

Число		
учитываемых	Модуль R	Фаза R
типов волн		
3	0.43191	-68.002
5	0.46220	-68.246
7	0.47239	-68.460
9	0.47722	-68.599
11	0.47996	-68.694
13	0.48169	-68.762
15	0.48287	-68.812
17	0.48372	-68.852
19	0.48437	-68.883
21	0.48486	-68.908
23	0.48526	-68.929
25	0.48558	-68.946
27	0.48585	-68.962
29	0.48608	-68.974

Рисунок 4 – Зависимость модуля коэффициента отражения от угла сканирования с диэлектрической вставкой

Таблица 2 – Численная сходимость при наличии диэлектрической волноводной вставки для параметров решетки: F=0.5714 λ_0 , θ =0°, W=0.937*F, ϵ I=2, zI=0.824*F

Число		I D
учитываемых	Модуль К	Фаза К
типов волн		
3	0.44230	203.260
5	0.44731	204.852
7	0.44924	205.195
9	0.45007	205.276
11	0.45047	205.274
13	0.45069	205.243
15	0.45081	205.204
17	0.45090	205.168
19	0.45096	205.138
21	0.45101	205.115
23	0.45105	205.102
25	0.45109	205.095
27	0.45113	205.095
29	0.45117	205.098

Радіоелектроніка

В волноводе и "канале Флоке" учитывалось одинаковое количество типов (гармоник "Флоке"), т.к. геометрические размеры областей практически одинаковы (правило Миттры).

Из табл.1, 2 сходимости алгоритма МПО при наличии диэлектрического заполнения решетки следует, что достаточно учитывать от 21 до 29 типов волн (гармоник "Флоке") в областях в зависимости от параметров заполнения. При этом не меняются 3 знака после запятой в модуле коэффициента отражения, а фаза определяется с точностью до целой величины.

Выводы. В работе представлена методика построения функции Грина для плоскослоистого диэлектрического заполнения в методе пронизывающей области. Показан подход для получения корректного итогового интегрального уравнения при наличии магнитодиэлектрического заполнения, связанный с правильным определением стороннего источника и представления полей одних областей через другие.

Полученные численные результаты совпадают с графической точностью с известными, что свидетельствует о корректности методики построения функции Грина и электродинамического алгоритма в рассматриваемом методе интегрального уравнения.

ЛИТЕРАТУРА

- Амитей Р. Теория и анализ фазированных антенных решёток / Амитей Р., Галиндо В., Ву Ч.; пер с англ. под ред. Маркова Г.Т., Чаплина А.Ф. – М.: Мир, 1974. − 455с.
- 2. Прохода И.Г. Тензорные функции Грина и их приложения в электродинамике СВЧ / И.Г.Прохода, С.Г.Дмитрюк, В.М.Морозов. Днепропетровск: ДНУ, 1985. 63с.
- 3. Марченко С.В. Электродинамический расчет плоской волноводной ФАР методом пронизывающей области / С.В.Марченко, В.М.Морозов // Изв. вузов. Радиоэлектроника. 2009. № 7. С.28-33.

Поступила в редколлегию 20.05.2013.

УДК 621.391

РЯЗАНЦЕВ О.В., к.ф-м.н., доцент КУЛИК М.В., ассистент СЪЯНОВ А.М., д.т.н., профессор МАНУКЯН А.С., ассистент

Днепродзержинский государственный технический университет

ДЕТЕКТИРОВАНИЕ СИГНАЛОВ С $\pm \pi/2$ ФАЗОВЫМИ ВРЕЗКАМИ

Введение. В работах [1, 2] описан вариант модифицированной фазовой манипуляции и приведены результаты воздействия соответствующего сигнала на частотноселективные устройства (ЧСУ) для режимов резонанса токов или напряжения. В данной работе исследовались возможности выделения кодовой последовательности для сигнала с $\pm \pi / 2$ фазовыми врезками (ФВ) и анализировалась канальная селективность для различных структур детекторов.

Постановка задачи.

Целью работы являются:

1) разработка структур детекторов для сигнала с $\pm \pi$ / 2 фазовыми врезками и возвратом к фазе, использование которого, как показано в [1, 2], может обеспечить вы-