зования струи металла в полости выпускного канала в газожидкостный поток с различной степенью организации его после выхода из летки. Определен режим, при котором брызгоунос имеет минимальное значение, а поток наиболее организован.

При всех вариантах расположения сопел ниже их уровня возникает однородный газожидкостный поток с большой поверхностью раздела газ-жидкость, но с различной степенью их организации. При этом увеличивается время истечения в 1,56-2,13 раза относительно обычного режима выпуска.

Решающим фактором для организации струи является место установки сопел. *По мере перемещения сопел от нижнего края вверх летки* степень организации потока улучшается. Минимальный брызгоунос зафиксирован при расположении сопел в 300 мм от торца модели летки, т.е. в реальной летке для 240-т конвертера это расстояние составит около 1500 мм от ее торца.

ЛИТЕРАТУРА

- Об альтернативном направлении развития конвертерной технологии / А.Д.Кулик, В.В.Несвет, В.П.Полетаев, А.А.Похвалитый // Экологическая безопасность: проблемы и пути решения: 6-ая Междунар. науч.-практ. конф., 6-10 сентября 2010 г., г. Алушта: сб. трудов. – Х., 2010. – С.241-245.
- О назревшей необходимости расширения рафинировочного потенциала конвертерной технологии (рабочие гипотезы: в порядке обсуждения) / А.Д.Кулик, М.А.Кащеев, А.А.Похвалитый, А.С.Пономарь // Сборник научных трудов Днепродзержинского государственного технического университета (технические науки). 2011. № 2 (17). С.25-30.

Поступила в редколлегию 27.06.2013.

УДК 621.785.539:787.044:669.296

ЛЫСЕНКО А.Б., д.ф.-м.н., профессор ГУБАРЕВ С.В., ассистент КАЛИНИНА Т.В., к.ф.-м.н, доцент

Днепродзержинский государственный технический университет

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА И СКОРОСТИ ОХЛАЖДЕНИЯ НА СТРУКТУРУ СПЛАВОВ Cu-Zr

Введение. В последние десятилетия при производстве металлических сплавов, наряду с традиционными металлургическими технологиями, находят использование методы закалки из жидкого состояния (ЗЖС). В этих методах тонкие слои перегретого расплава приводятся в контакт с массивным теплоприемником и быстро охлаждаются путем отвода тепла в его внутренние слои [1-3]. Для типичных условий ЗЖС скорость охлаждения расплава достигает значений ~10⁶ К/с, при которых нормальный ход процессов кристаллизации нарушается и фиксируются метастабильные структурные состояния, в том числе аморфные и нанокристаллические с уникальным комплексом свойств. Переход материалов в аморфное состояние происходит при достаточно высоких (критических) скоростях охлаждения расплава v_c , которые соответствуют слоям толщиной в несколько десятков микрометров. Уровень значений v_c может быть существенно снижен за счет целенаправленного подбора природы и относительных количеств компонентов, которые обеспечивают замедление процессов зарождения и роста

кристаллов. Таким путем были получены так называемые объемные металлические стекла (OMC), т.е. сплавы, затвердевающие без кристаллизации в относительно крупных (>1 мм) сечениях [4-7]. Разработка составов новых ОМС, а также способов и режимов их изготовления являются актуальными задачами современного материаловедения, занимающегося проблемами микрометаллургии прецизионных сплавов.

Постановка задачи. В настоящей работе представлены результаты исследований быстрозакаленных сплавов системы Cu-Zr в зависимости от состава и скорости охлаждения, выполненных с целью определения оптимальных соотношений базовых элементов для создания на их основе многокомпонентных композиций с высокой склонностью к некристаллическому затвердеванию.

Результаты работы. *Методика эксперимента.* Для исследования выбраны следующие составы сплавов $Cu_{100-x}Zr_x$ (x = 32, 36, 38, 41, 44, 50, 55, 62, 67, 73 ат.%), которые представлены стрелками на двойной диаграмме Cu-Zr (рис.1, δ) [8]. Для приготовления сплавов использовались компоненты высокой степени чистоты (99,9% для Zr и 99,98% для Cu). Плавление осуществлялось в вакуумной печи сопротивления СШВЭ-1.2, 2/25-43 с остаточным давлением 10⁻³ Па в алундовых тиглях. Для достиже-

- *a* равновесная диаграмма состояния системы Cu-Zr (Zr, at %);
- δ составы исследуемых сплавов;
- в концентрационные интервалы обнаружения аморфных (А) и аморфно-кристаллических (А+К) структур в сплавах, полученных закалкой из жидкого состояния
- Рисунок 1 Фазовый состав сплавов Cu-Zr в равновесном состоянии и после закалки из расплава

ния однородности сплавы переплавлялись 3 раза. Состав сплавов контролировали взвешиванием слитков, сравнением фазового состава отожженных образцов с данными диаграммы состояния системы Cu-Zr [8], а также выборочно методом химического анализа. Закалку из жидкого состояния выполняли путем соударения малой (~100 мг) порции расплава, перегретого на 100 К выше точки плавления, с масмедной пластиной. сивной расположенной под углом 45° к направлению движения капли. Изготовленные таким способом чешуевидные образцы имели толщину $l \cong 100-300$ мкм и использовались для структурных исследований в качестве объектов, закаленных из расплава с минимальными скоростями охлаждения. B другой модификации метода ЗЖС неподвижную пластину заменяли полым медным цивращающимся линдром, co скоростью до 8000 об/мин. На внутреннюю поверхность цилиндра струей аргона под дав-

лением (2-5)·10⁵ Па впрыскивали каплю перегретого расплава. Соударяясь с движущейся цилиндрической поверхностью, капля растекалась по ней тонким слоем и затвердевала в виде фольг, толщина которых изменялась в пределах ~ 20-100 мкм. Помимо относительно бездефектных и однородных по толщине фольг этим способом получали так называемые "усы", т.е. миниатюрные образцы толщиной менее 20 мкм, которые использовали для структурных исследований материалов, полученных в экстремальных условиях ЗЖС. Скорость охлаждения υ продуктов быстрой закалки определяли по их толщине l с помощью зависимостей $\upsilon(l)$, полученных авторами работы [9] согласованием результатов численных решений соответствующей тепловой задачи с массивом экспериментальных оценок υ :

$$lg(\upsilon) = \begin{cases} 8,06 - 1,69 \, lg(l) & \partial \pi & l > 100 & \text{мкм} \\ 10,53 - 2,93 \, lg(l) & \partial \pi & 20 \le l \le 100 & \text{мкм} \\ 8,43 - 1,311 \, lg(l) & \partial \pi & l < 20 & \text{мкм} \end{cases}$$
(1)

Рентгеновские исследования литых и быстрозакаленных сплавов осуществляли на рентгеновском дифрактометре ДРОН-3 в монохроматическом $Cu_{K\alpha}$ -излучении. Съемку дифрактограмм вели в интервале углов отражения $2\theta = 20-100^{0}$. Фазовый состав исследуемых образцов определяли сравнением экспериментальных наборов меж-плоскостных расстояний и относительных интенсивностей дифракционных максимумов со справочными данными картотеки ASTM.

Рисунок 2 – Дифрактограммы быстрозакаленных фольг толщиной 50-60 мкм (δ - ∞) и 20–30 мкм (a, s) сплавов Cu-Zr с содержанием циркония (aт.%): a – 67; δ – 62; e – 55; c – 50; ∂ – 44; e – 41; ∞ – 38; s – 32

экспериментальных Анализ данных. С целью определения концентрационных интервалов, в пределах которых при заданном режиме охлаждения формируются аморфные структуры, сплавы различных составов, отмеченные стрелками на рис.1, б, подвергали закалке из жидкого состояния, добиваясь получения фольг близкой толщины (50-60 мкм). Структуру быстрозакаленных фольг контролировали дифрактометрическим методом, для чего осуществляли съемку дифракционных картин от контактной (КП) и свободной (СП) поверхностей образцов. На рис.2 показана серия кривых рассеяния для быстрозакаленных сплавов Cu-Zr с содержанием циркония от 32 до 67 ат.%. Видно, что дифрактограммы фольг, принадлежащих концентрационному интервалу 38-62 ат.% Zr, в интервале значений $sin\theta/\lambda=1-5$ нм⁻¹ содержат лишь два сильно размытых максимума, т.е. имеют вид, типичный для расплавов и металлических стекол. Отсутствие в дифракционных спектрах быстрозакаленных образцов четких максимумов, являющихся характерной особенностью

картин рассеяния поликристаллических материалов, свидетельствует о том, что в рассматриваемом промежутке составов в условиях ЗЖС процессы кристаллизации подавляются и фиксируются аморфные структуры.

Путем обработки дифракционных картин полученных аморфных образцов определяли координаты первого θ_1 и второго θ_2 максимумов, а также эффективные размеры областей когерентного рассеяния (ОКР) *L* и кратчайшие межатомные расстояния R_0 , которые рассчитывали по соотношениям Селякова-Шеррера [10] и Эренфеста [11] соответственно:

$$L = \lambda / \beta \cdot \cos \theta_1, \tag{2}$$

$$R_{a} = 0.615 \cdot \lambda / \sin \theta_{1}, \qquad (3)$$

где *λ* – длина волны рентгеновского излучения;

β-интегральная ширина первого диффузного гало.

Изменения контролируемых структурных параметров от состава показаны в табл.1.

х. ат%	l,	$\sin\theta_1/\lambda$,	$\frac{\sin \theta_2}{\sin \theta_2}$	L,	R_o ,	$R_o^{\text{инт}}$,
,, .	МКМ	HM	$\sin \theta_1$	HM	HM	HM
38	58	2,26	1,72	1,30	0,272	0,281
41	56	2,23	1,67	1,27	0,275	0,283
44	62	2,22	1,66	1,26	0,277	0,285
50	55	2,21	1,66	1,33	0,280	0,289
55	57	2,12	1,66	1,31	0,290	0,292
62	50	2,11	1,65	1,28	0,293	0,297

Таблица 1 – Результаты обработки дифрактограмм быстрозакаленных сплавов системы Cu_{100-x}Zr_x

Как видно из табл.1, с ростом содержания циркония положение первого пика $(sin\theta/\lambda)$ дифракционных картин изменяется от 2,26 до 2,11 нм⁻¹. Однако относительные положения максимумов не обнаруживают концентрационной зависимости, а соотношение $sin\theta_2/sin\theta_1$ лежит в пределах 1,65-1,72, что является характерной особенностью структуры металлических стекол. Результаты расчетов размеров ОКР свидетельствуют о том, что все дифрактограммы имеют приблизительно одинаковую степень диффузности, которая отвечает значениям L в пределах 1,28-1,33 нм. Рассчитанные значения кратчайших межатомных расстояний R_0 в рассматриваемом концентрационном интервале демонстрируют увеличение от 0,272 до 0,293 нм с ростом содержания циркония и удовлетворительно коррелируют с теоретическими значениями $R_o^{инт}$, полученными по кристаллографическим параметрам для чистых компонентов (Zr и Cu) и равновесных кристаллических фаз системы Cu–Zr (табл.1). Это означает, что аморфные фазы системы Cu-Zr имеют состав, близкий к исходному, а закономерное увеличение R_0 и $R_o^{инт}$ объясняется ростом относительного количества циркония, имеющего больший атомный радиус (1,60 нм) по сравнению с атомным радиусом меди (1,28 нм) [12].

Как видно из рис.1, *в* и 2, при выходе за пределы концентрационного интервала 38-62 ат.% Zr как в одну, так и в другую сторону в быстрозакаленных фольгах фиксируются аморфно-кристаллические структуры. В сплавах, обогащенных цирконием,

роль кристаллической фазы играет соединение CuZr₂ (рис.2, *a*), в то время как в сплавах с повышенным содержанием меди выявляется соединение Cu₅₁Zr₁₄ (рис.2, *з*). Дальнейшее отклонение состава сплавов от указанного выше интервала приводит к полному исчезновению аморфной составляющей в структуре быстроохлажденных фольг и формированию смеси равновесных фаз системы Cu-Zr. Таким образом, согласно результатам дифрактометрического анализа при закалке из жидкого состояния сплавов системы Cu-Zr со скоростями охлаждения ~(2-4)·10⁵ K/c, которые соответствуют толщине фольг 50-60 мкм, полностью аморфная структура фиксируется в сплавах с содержанием циркония от 38 до 62 ат.%.

С целью использования сплавов Cu-Zr в качестве базовой системы для создания многокомпонентных объемно-аморфизирующихся композиций для сплавов, принадлежащих области аморфизации, определяли критическую скорость охлаждения v_c (максимальную толщину фольг l_c), при которой фиксируется полностью аморфная структура. Сплавы считали аморфными, если дифрактограммы, полученные от противоположных поверхностей фольг, являются качественно подобными, носят диффузный характер и не содержат явно выраженных максимумов интенсивности от кристаллических фаз. Исследуемые образцы в виде фольг толщиной от 30 до 200 мкм получали, варьируя технологические параметры используемых способов быстрой закалки (давление транспортирующего газа, скорость вращения цилиндра и степень предварительного перегрева расплава). Результаты расчетов критической скорости охлаждения от содержания Zr в исследуемых сплавах представлены на рис.3, кривая 1.

Рисунок 3 – Концентрационная зависимость критической скорости закалки для сплавов системы Cu–Zr

Как следует из рис.3, наивысшей склонностью к аморфихарактеризуется зации сплав Cu₅₆Zr₄₄ ($\nu_c = 3.10^4$ K/с, $l_c = 120$ мкм). Согласно равновесной диаграмме состояния (рис.1, а) состав этого сплава близок к точке низкотемпературного эвтектического превращения, в котором участвуют промежуточные соединения Cu₁₀Zr₇ и CuZr. Одна из эвтектических фаз (CuZr) образуется по перитектической реакции и в процессе дальнейшего охлаждения при температуре 985 К испытывает эвтектоидный распад на смесь интерметаллидов Cu₁₀Zr₇ и CuZr₂. Отмеченные особенности строения диаграммы состояния свидетельствуют, что соединение CuZr характеризуется низкой ус-

тойчивостью структуры и, следовательно, относительно невысокими значениями скоростей зарождения и роста кристаллов. Поэтому при закалке из жидкого состояния образование фазы CuZr может быть подавлено, что облегчает некристаллическое затвердевание анализируемого сплава.

При отклонении состава сплавов от точки максимальной стеклообразующей способности в сторону меди значения υ_c резко возрастают, достигая уровня ~2·10⁵ К/с в сплаве Cu₆₂Zr₃₈, соответствующем нижней границе интервала полной аморфизации.

Наоборот, при увеличении содержания Zr относительно состава Cu₅₆Zr₄₄ концентрационная зависимость v_c демонстрирует иной характер. В интервале составов 44-50 ат.% Zr прирост значений v_c весьма незначителен (приблизительно 36%), в сплавах с 50-55 ат.% Zr кривая проходит через второй слабо выраженный минимум, после чего на отрезке 55-62 ат.% Zr критическая скорость закалки возрастает практически на порядок (от 5·10⁴ до 4·10⁵ K/c). На рис.3, кривая 2 также представлены результаты работы [13]. Видно, что кривые 1 и 2 на рис.3 коррелируют между собой по расположению точки абсолютного минимума (44 ат.% Zr). Однако соответствующее значение критической скорости охлаждения (~10⁵ K/c), приведенное авторами [13], существенно превышает оценочное значение (3·10⁴ K/c), полученное в настоящей работе с помощью соотношений (1). Причинами выявленного несоответствия, по-видимому, являются различия методик приготовления быстрозакаленных образцов и расчетов скорости охлаждения.

Выводы.

1. Рентгеноструктурными исследованиями сплавов системы Cu-Zr установлено, что при закалке из жидкого состояния со скоростями охлаждения $\upsilon_c = (2-4) \cdot 10^5$ К/с в концентрационном диапазоне 38-62 ат.% Zr процессы кристаллизации подавляются и фиксируются аморфные фазы исходного химического состава.

2. При выходе за границы интервала аморфизации формируются аморфно-кристаллические структуры, в которых роль кристаллической составляющей играют равновесные конгрузнтные соединения: Cu₅₁Zr₁₄ в сплавах, обогащенных медью (32-37% Zr), и CuZr₂ в сплавах, обогащенных цирконием (63-68% Zr).

3. Показано, что наибольшей склонностью к некристаллическому затвердеванию обладает сплав Cu₅₆Zr₄₄, который переходит в аморфное состояние при скорости быстрой закалки $v_c = 3 \cdot 10^4$ K/c. Этот состав сплавов Cu-Zr может быть рекомендован в качестве базовой бинарной композиции для создания легко стеклующихся многокомпонентных сплавов.

ЛИТЕРАТУРА

- Либерман Х.Х. Приготовление образцов: различные методы и описание способов закалки из расплава // Аморфные металлические сплавы / [под ред. Ф.Е.Люборского; пер. с англ. А.М.Глезера]. – М.: Металлургия, 1987. – 584с.
- 2. Мирошниченко И.С. Закалка из жидкого состояния / И.С.Мирошниченко М.: Металлургия, 1982. 167с.
- Маслов В.В. Получение аморфных металлических сплавов / В.В.Маслов, Д.Ю.Падерно // Аморфные металлические сплавы. – Киев: Наукова Думка, 1987. – С.52-86.
- 4. Wang W.H Bulk metallic glasses / W.H.Wang, C.Dong, C.H.Shek // Mat. Sci. and Eng. 2004. R.44. P.45-89.
- 5. Ковнеристый Ю.К. Объемно-аморфизирующиеся металлические сплавы / Ю.К.Ковнеристый. М.: Наука, 1999. 80с.
- 6. Suryanarayana J. Bulk metallic glasses / J.Suryanarayana, A.Inoue. New York: Taylor & Francis Group, 2011. 523p.
- Schroers J. Processing of Bulk Metallic Glass / J.Schroers // Adv. Mater. 2010. Vol. 22. – P.1566-1597.
- 8. Диаграммы состояния двойных металлических систем: справочник в 3-х т. Т. 2 / [под общ. ред. Лякишева Н.П.]. М.: Машиностроение, 1997. 1024с.
- Лысенко А.Б. Расчет скорости охлаждения при закалке сплавов из жидкого состояния / А.Б.Лысенко, Г.В.Борисова, О.Л.Кравец // Физика и техника высоких давлений. – 2004. – Т. 14, № 1. – С.44-53.

- 10. Уманский Я.С. Рентгенография металлов и полупроводников / Я.С.Уманский. М.: Металлургия, 1969. 496с.
- 11. Скрышевский А.Ф. Структурный анализ жидкостей / А.Ф.Скрышевский. М.: Высшая школа, 1971. 352с.
- 12. Горелик С.С. Рентгенографический и электроннооптический анализ / С.С.Горелик, Л.Н.Расторгуев, Ю.А.Скаков. М.: Металлургия, 1970. 366с.
- 13. Glass forming ability of transition metal Zr alloys / Nishi Y., Morohoski T., Kawakomi M. [et al.] // Proc. 4-th Int. Conf. on Rapidly Quenched Metals. Sendai, 1982. P.111-114.

Поступила в редколлегию 26.06.2013.

УДК 621.643.412

РЕЙДЕРМАН Ю.І., к.т.н. доцент ЧЕРЕДНИК Є.О., ст. викладач ПЕРЕМІТЬКО В.В., к.т.н., доцент ЛАЗАРЕНКО Р.О., магістр СІМЧУК В.І., магістр

Дніпродзержинський державний технічний університет

УПРАВЛІННЯ ЯКІСТЮ ШЛЯХОМ РОЗРОБКИ АЛГОРИТМУ РОЗРАХУНКУ ПАРАМЕТРІВ РЕЖИМУ ЗВАРЮВАННЯ У ВУГЛЕКИСЛОМУ ГАЗІ ДЛЯ ПРОГРАМИ НА МОВІ JAVA-2

Вступ. Розрахунок параметрів режиму зварювання і форми зварного шва є актуальним завданням у зв'язку із зростанням ступеня автоматизації, роботизації виробництва зварних конструкцій і необхідністю підвищення продуктивності праці інженерів при проектуванні технології.

Постановка задачі. Зроблено багато спроб пов'язати параметри процесу зварювання шляхом плавлення . Можна виділити три напрями у вирішенні цього завдання: розробку методик визначення режимів зварювання і розмірів шва за допомогою номограм і емпіричних рівнянь [1]; створення рівнянь, що зв'язують режим зварювання і розміри шва методом формальної [2] і критеріальної інтерполяції [3]; розробку систем, що складаються з рівнянь, отриманих з теорії теплопередачі при зварюванні, та рівнянь, складених методом критеріальної інтерполяції. У деяких випадках в систему вводять рівняння, отримані методом формальної інтерполяції [4]. Поставлено завдання розробки алгоритму розрахунку параметрів режиму зварювання в CO₂ з'єднань різних типів з низьковуглецевих і низьколегованих сталей.

Результати роботи. За базову систему прийнята система чотирьох рівнянь, що дозволяє визначити чотири параметри режиму зварювання (зварювальний струм I_{3B} , напругу дуги U_{d} , швидкість зварювання V_{3B} і діаметр електродного дроту d_{e}) за заданими розмірами конструктивних елементів з'єднань та швів (товщина деталей S, зазор в місці їх з'єднання b, притуплення c, кут оброблення α або катет k, ширина і висота підсилення g шва) по ГОСТ 14771-76. Рівняння пов'язують параметри режиму зварювання, розміри швів і конструктивних елементів з'єднань, а також теплофізичні характеристики зварюваного матеріалу (коефіцієнти теплопровідності λ і теплопровідності α , щільність матеріалу ρ , температуру його плавлення T і ефективний ККД дуги η). Система має вигляд: