Таблиця 1 — Максимальна величина похибки $\Delta S\alpha$ тах головки дотику при відхиленні геометричної форми шариків від 3-го до 28-го ступеня точності ($d_0=3\cdot10^{-3}$ м, $R_{uu}=2,5\cdot10^{-3}$ м, $L_{\mu}=70\cdot10^{-3}$ м, $L=26\cdot10^{-3}$ м)

Ступінь	Відхилення	Величина похибки, ΔSα max		
точності	розміру діаметра	аналітично,	в пакеті	різниця величин
кульки	кульки, 10 ⁻⁶ м	10 ⁻⁶ м	AutoCAD, 10 ⁻⁶ м	похибки, 10 ⁻⁶ м
3	0,08	0,119905	0,108716	0,011189
5	0,13	0,194844	0,176662	0,018182
10	0,25	0,374703	0,339720	0,034983
16	0,40	0,599524	0,543526	0,055998
20	0,50	0,749405	0,679385	0,070020
28	0,70	1,043167	0,951078	0,092089

Висновки. Автоматизований метод визначення похибки вимірювальної головки дотику в графічному пакеті AutoCAD, яка залежить від відхилень номінальних розмірів шариків і виникає в результаті обертання шарика навколо струни, значно спрощує розв'язання задачі і наочно відображає результати розрахунків. При цьому похибка обчислення знаходиться у межах від 0,011^{-10⁻⁶}м до 0,070^{-10⁻⁶}м.

ЛІТЕРАТУРА

- 1. Шкиль В.Н. Измерительная головка касания / В.Н.Шкиль // Придніпровський науковий вісник: Машинобудування та технічні науки. 1997. № 44 (55). С.25-27.
- 2. Пискунов М.С. Дифференциальное и интегральное исчисление. В 2-х т. Т.2. / Пискунов М.С. М.: Наука, 1972. 576с.
- 3. Шкиль В.Н. Влияние отклонений геометрической формы деталей головки касания на погрешность измерения / В.Н.Шкиль // Дніпропетровськ: Системні технології. 1998. Випуск 2. С.140-144.

Надійшла до редколегії 06.12.2013.

УДК 669.013.002.5:531.3

БЕЙГУЛ О.О., д.т.н., професор КОРНІЙЧУК М.М., інженер ЛЕПЕТОВА Г.Л., к.т.н., доцент

Дніпродзержинський державний технічний університет

ОБГРУНТУВАННЯ УМОВИ ПОПЕРЕЧНОЇ СТІЙКОСТІ ЗЧЛЕНОВАНОГО КОНТЕЙНЕРОВОЗА З U-ПОДІБНОЮ РАМОЮ У ЗБУРЕНОМУ РУСІ

Вступ. Здійснення технічного переозброєння та подальшого підйому продуктивності праці в чорній металургії нерозривно пов'язані з удосконаленням структури і якості промислового транспорту. На підприємствах, які будуються та розширюються, з'являються технологічні лінії, де традиційний залізничний транспорт витісняється більш гнучким у своєму використанні технологічним спецавтотранспортом. На ділянках перевезення крупногабаритних штучних вантажів, у тому числі контейнерів, пакетів, піддонів, використовуються спецавтотранспортні засоби з вантажопідйомними пристроями [1-3], підйомно-транспортні машини з портальною несучою системою [4, 5], спецавтотранспортні засоби з U–подібною у плані рамою [6, 7]. Останні зі зчленованою компоновкою являються найбільш універсальними та перспективними, маючи на увазі багатопланове використання тягачів (рис.1).

1 – контейнер; 2 – тягач; 3 – напівпричіп з U–подібною рамою; 4 – ложемент Рисунок 1 – Зчленований контейнеровоз з U–подібною рамою

Постановка задачі. Характерною особливістю контейнеровозів є наявність високо розташованого центра маси, що разом зі специфічним навантаженням додає проблеми стійкості збуреного руху у поперечній площині. Основним джерелом поперечних коливань системи є асиметричні кінематичні збурення з боку нерівностей дороги. Слід зазначити, що вузол зчіплювання розташовується на рівні осі підвіски напівпричепа, що конструктивно просто виконати, і у такому разі коливання напівпричепа та тягача у поперечній площині можна розглядати як незалежні. На цій підставі розглядаємо поперечні коливання напівпричепа зчленованого контейнеровоза без урахування тягача. Відомі роботи Веселова Г.П., Густомясова А.М., Колмакова В.І. [8], Лобаса Л.Г., Ващенка Ю.Л. [9] присвячені дослідженню динаміки системи «тягач-причіп», але вони не розглядають поперечні коливання окремих ланок.

На рівні розглянутих робіт невирішеною частиною загальної проблеми є обгрунтування умови поперечної стійкості зчленованого контейнеровоза з U–подібною рамою у збуреному русі.

Результати роботи. На рис.2 зображено контейнеровоз на вигляді ззаду. Будемо вважати, що кінематичні збурення діють лише на праву підвіску напівпричепа.

Рівняння збуреного руху отримуємо у формі рівняння Лагранжа другого роду

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = -\frac{\partial \Pi}{\partial q_j} + Q_j, \qquad (1)$$

де Т-кінетична енергія системи, Дж;

П – потенціальна енергія системи, Дж;

*q*_{*i*} −*j*-а узагальнена координата, м (рад);

 $Q_j - j$ - а узагальнена сила неконсервативного походження, Н (Н·м).

1 – контейнер; 2 – правий лонжерон рами; 3 – праве колесо підвіски напівпричепа; 4 – правий ложемент; 5 – лівий ложемент;

6 – ліве колесо підвіски напівпричепа; 7 – лівий лонжерон рами

Рисунок 2 – Зчленований контейнеровоз на вигляді ззаду

У такому разі $q_1 = y$, $q_2 = \theta$, де y – вертикальне переміщення напівпричепа, а θ – кут повороту напівпричепа у поперечній площині.

Кінетична енергія системи

$$T = \frac{m_c \dot{y}^2}{2} + \frac{I_c \dot{\theta}^2}{2} + \frac{m_c v^2}{2},$$
(2)

де *m_c* – сумарна маса напівпричепа, кг;

- I_{c} сумарний момент інерції напівпричепа відносно поздовжньої осі, яка проходить через центр маси системи, кг·м²;
- *v* швидкість руху системи, м/с.

Потенціальна енергія системи реалізується енергією стисненого повітря у шинах коліс, вираз якої приймає наступний вигляд:

$$\Pi = \frac{C_{u}}{2} \left(y - l_{\kappa} \theta \right)^2 + \frac{C_{u}}{2} \left(y + l_{\kappa} \theta - h_n \right)^2, \tag{3}$$

де *С_ш* – радіальна жорсткість шини колеса напівпричепа, Н/м;

l_к – половина колії напівпричепа, м;

h_n – підйом правого колеса напівпричепа на нерівностях синусоїдального профілю, м.

У загальному вигляді можна записати

$$h_n = h_0 \sin \frac{2\pi x}{l_0},\tag{4}$$

де *h*₀ – амплітудне значення профілю нерівностей, м;

- х абсциса апроксимуючої функції нерівностей, м;
- *l*₀ довжина синусоїди, яка апроксимує функцію нерівностей, м.

При русі системи

=

=

$$x = vt . (5)$$

3 урахуванням виразу (5) підйом правого колеса напівпричепа дорівнює:

$$h_n = h_0 \sin \frac{2\pi v}{l_0} t \,. \tag{6}$$

Нехтуючи силами неконсервативного походження, підставляємо вирази кінетичної та потенціальної енергій у рівняння Лагранжа другого роду (1):

$$\begin{aligned} \frac{\partial T}{\partial \dot{y}} &= \frac{\partial}{\partial \dot{y}} \left(\frac{m_c \dot{y}^2}{2} + \frac{I_c \dot{\theta}^2}{2} + \frac{m_c v^2}{2} \right) = m_c \dot{y} ;\\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{y}} \right) &= \frac{d}{dt} \left(m_c \dot{y} \right) = m_c \ddot{y} ;\\ \frac{\partial T}{\partial y} &= \frac{\partial}{\partial y} \left(\frac{m_c \dot{y}^2}{2} + \frac{I_c \dot{\theta}^2}{2} + \frac{m_c v^2}{2} \right) = 0 ;\\ \frac{\partial \Pi}{\partial y} &= \frac{\partial}{\partial y} \left[\frac{C_u}{2} \left(y - l_\kappa \theta \right)^2 + \frac{C_u}{2} \left(y + l_\kappa \theta - h_n \right)^2 \right] =\\ &= \frac{C_u}{2} \cdot 2 (y - l_\kappa \theta) \cdot 1 + \frac{C_u}{2} \cdot 2 (y + l_\kappa \theta - h_n) \cdot 1 =\\ &= C_u y - C_u l_\kappa \theta + C_u y + C_u l_\kappa \theta - C_u h_n = 2C_u y - C_u h_n .\end{aligned}$$

Об'єднуючи отримані вирази, записуємо перше диференціальне рівняння:

$$m_{c}\ddot{y} + 2C_{u}y = C_{u}h_{n}.$$

$$(7)$$

$$\frac{\partial T}{\partial \dot{\theta}} = \frac{\partial}{\partial \dot{\theta}} \left(\frac{m_{c}\dot{y}^{2}}{2} + \frac{I_{c}\dot{\theta}^{2}}{2} + \frac{m_{c}v^{2}}{2} \right) = I_{c}\dot{\theta};$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} \right) = \frac{d}{dt} \left(I_{c}\dot{\theta} \right) = I_{c}\ddot{\theta};$$

$$\frac{\partial T}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{m_{c}\dot{y}^{2}}{2} + \frac{I_{c}\dot{\theta}^{2}}{2} + \frac{m_{c}v^{2}}{2} \right) = 0;$$

$$\frac{\partial \Pi}{\partial \theta} = \frac{\partial}{\partial \theta} \left[\frac{C_{u}}{2} \left(y - I_{\kappa}\theta \right)^{2} + \frac{C_{u}}{2} \left(y + I_{\kappa}\theta - h_{n} \right)^{2} \right] =$$

$$= \frac{C_{u}}{2} \cdot 2(y - I_{\kappa}\theta) \cdot (-I_{\kappa}) + \frac{C_{u}}{2} \cdot 2(y + I_{\kappa}\theta - h_{n}) \cdot I_{\kappa} =$$

$$= -C_{u}I_{\kappa}y + C_{u}I_{\kappa}^{2}\theta + C_{u}I_{\kappa}y + C_{u}I_{\kappa}^{2}\theta - C_{u}I_{\kappa}h_{n} = 2C_{u}I_{\kappa}^{2}\theta - C_{u}I_{\kappa}h_{n}.$$

Об'єднуючи отримані вирази, записуємо друге диференціальне рівняння:

$$I_c \ddot{\theta} + 2C_{\omega} l_{\kappa}^2 \theta = C_{\omega} l_{\kappa} h_n \,. \tag{8}$$

Переписуємо рівняння (7) і (8) з урахуванням виразу (6):

$$m_c \ddot{y} + 2C_{uv} y = C_{uv} h_0 \sin \frac{2\pi v}{l_0} t;$$
 (9)

$$I_c \ddot{\theta} + 2C_{ul} l_\kappa^2 \theta = C_{ul} l_\kappa h_0 \sin \frac{2\pi v}{l_0} t.$$
⁽¹⁰⁾

Записуємо рівняння (9) та (10) з введенням нових позначень

$$\ddot{y} + p_y^2 y = \frac{C_{uu}}{m_c} h_0 \sin \frac{2\pi v}{l_0} t, \qquad (11)$$

де $p_y^2 = \frac{2C_u}{m_c}$ – квадрат власної кругової частоти системи по узагальненій координаті *y*, с⁻²;

$$\ddot{\theta} + p_{\theta}^2 \theta = \frac{C_{ul_{\kappa}}}{I_c} h_0 \sin \frac{2\pi v}{l_0} t, \qquad (12)$$

де $p_{\theta}^2 = \frac{2C_{ul}l_{\kappa}^2}{I_c}$ – квадрат власної кругової частоти системи по узагальненій координаті θ , c⁻².

Розв'язання рівнянь (11) та (12) мають наступний вигляд:

$$y = C_1 \cos p_y t + C_2 \sin p_y t + \frac{C_{ut} h_0}{m_c \left(p_y^2 + \frac{4\pi^2 v^2}{l_0^2} \right)} \sin \left(\frac{2\pi v}{l_0} t - \psi_1 \right),$$
(13)

$$\theta = C_3 \cos p_{\theta} t + C_4 \sin p_{\theta} t + \frac{C_{ul} l_{\kappa} h_0}{I_c \left(p_{\theta}^2 - \frac{4\pi^2 v^2}{l_0^2} \right)} \sin \left(\frac{2\pi v}{l_0} t - \psi_2 \right).$$
(14)

Перші два доданки у виразах (13) та (14) описують вільні коливання системи, які визначаються початковими умовами і через деякий час практично зникають. Лишаються вимушені коливання, які описуються наступним чином:

$$y = \frac{C_{uu}h_0}{m_c \left(p_y^2 - \frac{4\pi^2 v^2}{l_0^2}\right)} \sin\left(\frac{2\pi v}{l_0}t - \psi_1\right),$$
(15)

$$\theta = \frac{C_{ul} l_{\kappa} h_0}{I_c \left(p_{\theta}^2 - \frac{4\pi^2 v^2}{l_0^2} \right)} \sin\left(\frac{2\pi v}{l_0} t - \psi_2\right).$$
(16)

Безпосередньо з виразу (16) отримуємо умову втрати стійкості напівпричепа у поперечній площині при асиметричному кінематичному збуренні

$$p_{\theta}^2 - \frac{4\pi^2 v^2}{l_0^2} = 0 \tag{17}$$

або після розкриття власної кругової частоти p_{Θ}

$$\frac{2C_{m}l_{\kappa}^{2}}{I_{c}} - \frac{4\pi^{2}v^{2}}{l_{0}^{2}} = 0, \qquad (18)$$

звідки отримуємо критичну швидкість *v_{кp}*, при якій наступає втрата стійкості напівпричепа контейнеровоза у поперечній площині:

$$v_{\kappa p} = \frac{l_{\kappa} l_0}{\pi} \sqrt{\frac{C_{uu}}{2I_c}} \,. \tag{19}$$

Висновки. Таким чином, отримано і обґрунтовано умову поперечної стійкості зчленованого контейнеровоза з U–подібною рамою у збуреному русі шляхом математичного моделювання методами аналітичної механіки, що дає можливість обирати режими руху контейнеровозів в умовах технологічних доріг.

ЛІТЕРАТУРА

- 1. Грифф М.И. Автотранспортные средства с грузоподъемными устройствами для перевозки грузов в контейнерах и пакетах / М.И.Гриф, Р.А.Затван, В.Ф.Трофименко. – М.: Транспорт, 1989. – 159с.
- 2. Грушников В.А. Выбор транспортных средств для контейнерной доставки строительных грузов / В.А.Грушников // Промышленный транспорт. 1987. № 11. С.7.
- 3. Пашков А.К. Пакетирование и перевозка тарно-штучных грузов / А.К.Пашков, Ю.Н.Полярин. М.: Транспорт, 2000. 254с.
- 4. Беккер И.Г. Портальные автомобили / И.Г.Беккер. М.: Машиностроение, 1971. 316с.
- 5. Технологічні і конструктивні параметри несучих систем портальних підйомнотранспортних машин / [О.О.Бейгул, Д.З.Шматко, О.М.Коробочка, Г.Л.Лепетова]. – Дніпродзержинськ: ДДТУ, 2007. – 167с.
- 6. Золотарев А.Ф. Контейнеровоз на базе трактора Т-150К / А.Ф.Золотарев, И.А.Тоцкий // Промышленный транспорт. 1979. № 6. С.22.
- Дослідження та вибір типу несучої системи автоскраповоза з U–подібною рамою / [О.О.Бейгул, М.М.Корнійчук, Г.Л.Лепетова, Д.В.Найда] // Надійність металургійного обладнання: міжнар. наук.-техн. конф., 28-31 жовтня 2013р.: зб. наук. праць. – Дніпропетровськ: IMA-прес, 2013. – С.138-141.
- Веселов Г.П. Аналитическое исследование колебаний системы тягач-прицеп / Г.П.Веселов, А.Н.Густомясов, В.И.Колманов // Известия вузов. Машиностроение. – 1988. – № 5. – С.92-97.
- Лобас Л.Г. Динамическое поведение двухзвенного автопоезда вблизи границы области устойчивости / Л.Г.Лобас, Ю.Л.Ващенко // Прикладная математика. – 1991. – Т.27. – № 12. – С.85-91.

Надійшла до редколегії 11.02.2014.